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Abstract

A common test administered during neu-
rological examination is the semantic flu-
ency test, in which the patient must list as
many examples of a given semantic cate-
gory as possible under timed conditions.
Poor performance is associated with neu-
rological conditions characterized by im-
pairments in executive function, such as
dementia, schizophrenia, and autism spec-
trum disorder (ASD). Methods for analyz-
ing semantic fluency responses at the level
of detail necessary to uncover these dif-
ferences have typically relied on subjec-
tive manual annotation. In this paper, we
explore automated approaches for scor-
ing semantic fluency responses that lever-
age ontological resources and distribu-
tional semantic models to characterize the
semantic fluency responses produced by
young children with and without ASD. Us-
ing these methods, we find significant dif-
ferences in the semantic fluency responses
of children with ASD, demonstrating the
utility of using objective methods for clin-
ical language analysis.

1 Introduction

Semantic fluency tasks, in which patients under-
going neuropsychological evaluation must list as
many items as possible in a particular semantic
category in a fixed, brief period of time, are widely
used by clinicians to evaluate language, develop-
ment, and cognition. Performance on such tasks
is usually measured in terms of the raw number of
appropriate items produced. A more detailed anal-
ysis of these lists, however, can reveal patterns as-
sociated with a variety of neurological conditions,
including autism, dementia, and schizophrenia.

Semantic fluency responses hold particular
promise for shedding light on the language of chil-
dren with autism spectrum disorder (ASD). ASD
has been associated with atypical semantics and
pragmatic expression since the condition was was
first identified over 70 years ago (Kanner, 1943).
One linguistic feature of ASD, referenced in many
of the diagnostic instruments for the disorder, is
the use of words that are meaningful but unex-
pected (Lord et al., 2002; Rutter et al., 2003), a
phenomenon that could play an important role in
the production of semantically related words.

In this paper, we present NLP-informed ap-
proaches for automatically approximating the sub-
jective manual methods described in the psychol-
ogy literature for analyzing semantic fluency re-
sponses. Applying these methods to data collected
from young children with and without ASD, we
find that none of the standard manual measures of
semantic fluency are able to distinguish children
with ASD from those without. Several compu-
tationally derived measures, however, are signifi-
cantly different between diagnostic groups. These
results indicate that computationally derived mea-
sures of semantic fluency tap into subtle differ-
ences that would be difficult to detect using stan-
dard manual metrics, lending support for the clin-
ical utility of computational linguistic analysis.

2 Background
The semantic fluency task is a subtype of a more
general word-generation task commonly referred
to as verbal fluency. In such tasks, a participant
must verbally produce a list of words belonging
to some category (e.g., animals) within a predeter-
mined amount of time, usually 60 seconds. Per-
formance on verbal fluency tasks has been corre-
lated with executive function, and differences in
verbal fluency scores have been noted in a vari-
ety of neurological conditions including dementia
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(Henry et al., 2004), schizophrenia (Frith et al.,
1995), and autism (Turner, 1999; Geurts et al.,
2004; Spek et al., 2009; Begeer et al., 2014).

The rate at which speakers generate words in
a semantic fluency response has been observed to
vary throughout the timed period, typically with
several related words being produced in close suc-
cession followed by a pause before a new burst
of related words (Bousfield et al., 1954). Troyer
et al. (1997) proposed two cognitive processes
underlying this pattern: clustering and switching.
Clustering refers to the tendency of speakers to list
words in clusters according to their membership
in a particular subcategory of the larger seman-
tic category (e.g., pets for the larger category of
animals). Switching is the decision made by the
speaker to abandon a subcategory when it has been
exhausted and to list items in a new subcategory.

Autism is associated with deficits in executive
function, and thus we should expect to see con-
sistent patterns demonstrating deficits in seman-
tic fluency performance in the ASD population.
Several studies have found overall weaker perfor-
mance, in terms of raw item count, in individu-
als with ASD (Turner, 1999; Geurts et al., 2004;
Spek et al., 2009); other more recent studies, how-
ever, have not been able to replicate this finding
(Lopez et al., 2005; Inokuchi and Kamio, 2013;
Begeer et al., 2014). Similarly conflicting results
have been reported when evaluating the semantic
relatedness of adjacent words, with some finding
smaller clusters in ASD (Turner, 1999), some find-
ing larger clusters (Begeer et al., 2014), and still
others finding no differences (Spek et al., 2009).

One likely source of these discrepancies is the
subjectivity inherent in the cluster assignment
task. Troyer et al. (1997) provide examples of
common clusters and their member animals, but
they note the difficulty in assigning items to sub-
categories, explaining that their proposed subcate-
gories were not generated using any existing tax-
onomy but instead grew organically out of the pat-
terns observed in the data. An additional compli-
cation is that a word’s subcategory membership is
dependent on its context. The word camel, for in-
stance, could be assigned to any number of cate-
gories (e.g., desert animal, zoo animal), depend-
ing on the nearby words. This is particularly prob-
lematic when analyzing the responses of children,
whose semantic categories might not align with
those of an adult annotator.

In response to these challenges, some recent
work has focused on modeling the cluster-switch
behavior using computational linguistic methods,
in particular, using latent semantic analysis to cal-
culate the semantic similarity between adjacent
words. Mean scores over these similarity val-
ues can capture a individual’s tendency to use
a naming strategy relying on similarity (Nicode-
mus et al., 2014; Rosenstein et al., 2015). Other
work has focused on setting thresholds over these
similarity values in order to delineate the bound-
aries between clusters or chains of related words
(Rosenstein et al., 2015; Pakhomov and Hemmy,
2014). None of these studies, however, has com-
pared the output of the automated methods to man-
ual annotations in order to determine their accu-
racy. Furthermore, the thresholds used for clus-
ter boundary identification in these studies were
set by “rule of thumb” rather than empirically or
probabilistically.

To our knowledge, this is the first attempt to
use distributional semantic models to analyze se-
mantic fluency responses in children with autism
spectrum disorder. More importantly, it is the first
study that uses machine learning to validate the
utility of these models for replicating and, perhaps
improving upon, human annotation methods of se-
mantic fluency responses.

3 Data
The participants in this study were 22 children
with typical development (TD) and 22 high-
functioning children with ASD, ranging in age
from 4 to 9 years. ASD was diagnosed via
clinical consensus according to the Diagnostic
and Statistical Manual of Mental Disorders, 4th
Edition (DSM-IV-TR) criteria for Autistic Dis-
order (American Psychiatric Association, 2000)
and the established thresholds on two commonly
used diagnostic instruments: the Autism Diagnos-
tic Observation Schedule (ADOS) (Lord et al.,
2002) and the Social Communication Question-
naire (SCQ) (Rutter et al., 2003). None of the
participants analyzed here met the criteria for lan-
guage impairment, and the two groups were se-
lected so that there were no statistically signifi-
cant differences (via two-tailed t-test) between the
groups in chronological age, verbal IQ, and full
scale IQ. In addition to the experimental corpus,
we had access to a development set of 55 seman-
tic fluency responses that were discarded after the
groups were matched on these three criteria.
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During administration of the task, the clinician
asked the child to name as many animals as he
could as quickly as possible. The children’s re-
sponses were timed and recorded. The audio was
then transcribed by a speech-language pathologist,
and the transcripts were reviewed to remove extra-
neous dialogue and to standardize spelling. Two
manual annotations were performed: (1) seman-
tic clusters (Troyer et al., 1997), in which a clus-
ter consists of two or more animals belonging to
same subcategory (giraffe, elephant, lion); and (2)
semantic chains (Pakhomov and Hemmy, 2014),
in which each animal shares something in com-
mon at least with the immediately preceding an-
imal (elephant, lion, cat). Inter-annotator agree-
ment for labeling cluster boundaries according to
the Troyer criteria was low (Cohen’s κ < 0.4); we
therefore limit our discussion to semantic chains,
whose boundaries were labeled with more sub-
stantial agreement (κ = 0.71).

4 Features
4.1 Manually derived measures
Performance on a verbal fluency task is normally
evaluated by counting the number of unique items
produced in the designated time period. Credit is
given both to a general category such as fish and to
examples of that category, such as salmon; how-
ever, a morphological or descriptive variation of
another item (e.g., doggy for dog) is considered a
repetition and does not contribute to the total. We
report this count, along with the number of seman-
tic chains and mean length of semantic chain.

4.2 Semantic similarity measures
There are a number of ways to measure the seman-
tic similarity between two words, some relying on
manually curated knowledge bases and other de-
rived distributionally from large text corpora. A
high mean similarity between adjacent word pairs
in a list of words might suggest that the list con-
tains a small number of large clusters of strongly
related words (a cluster-and-switch strategy) or a
sequence of items each of which is closely re-
lated to the previous item but not necessarily to the
items before that (a chaining strategy). In either
case, the participant is tapping into semantic sub-
categories when producing his response. A lower
mean similarity should indicate that a participant
has produced a large number of small clusters or
has selected items from the larger category seem-
ingly at random.

One possible way to capture relatedness is by
using a manually curated lexical ontology that im-
plicitly encodes the similarity between pairs of
words, such as WordNet (Fellbaum, 1998). Var-
ious algorithms have been proposed for assigning
similarities scores for two synsets in WordNet by
traversing the hierarchical trees connecting those
synsets. Here we calculate the mean path sim-
ilarity for each adjacent word pair in a partici-
pant’s generated wordlist. Words not appearing
in WordNet were manually replaced with equiv-
alent synsets (e.g., puppy dog was replaced with
puppy). When multiple synsets were associated
with a given item, we used the first synset whose
hypernym included the synset for animal or imag-
inary being (e.g., pegasus).

One disadvantage inherent in the WordNet on-
tology of animal names is that it is derived from
the biological taxonomy of the animal kingdom;
that is, the degree to which two animals are seman-
tically related within WordNet is determined pri-
marily by their biological similarity and not by se-
mantic features (e.g., region of origin, usual habi-
tat) that a non-zoologist might use to organize an-
imals names. In order to model multiple dimen-
sions of similarity, we turn to the use of vector
space models. We explore two vector-space rep-
resentations: latent semantic analysis (LSA) (Lan-
dauer et al., 1998) and continuous space neural
word embeddings (Bengio et al., 2003). Using
the gensim Python library (Řehůřek and Sojka,
2010), we built an LSA model and a word2vec
model, both with 400 dimensions but otherwise
using default parameters settings, on the full text
of Wikipedia downloaded in November, 2016. For
each model, we take the mean of the set of cosine
similarities between each adjacent pair of items
in a participant’s response. We also calculate the
mean similarity over 100 random permutations of
a participant’s wordlist to capture “global coher-
ence”, as proposed by Nicodemus et al. (2014).

4.3 Measures of identifying semantic chains
Previous work in using word embeddings to model
clustering relied on a simple cosine similarity
threshold, determined heuristically (set arbitrarily
0.9 in Rosenstein et al. (2015), and at the 75th
percentile in Pakhomov and Hemmy (2014)), in
which a cluster boundary is inserted between any
two adjacent words whose similarity did not ex-
ceed that threshold. We instead propose to empiri-
cally determine the optimal value of such a thresh-
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Feature TD ASD t
Raw count 12.0 10.2 1.043
Manual chain count 6.14 4.86 1.603
Manual chain length 2.0 2.13 -0.572
WordNet path similarity 0.169 0.1697 0.1721
LSA cosine similarity 0.365 0.308 1.636
LSA coherence 0.311 0.248 1.934∗
w2v cosine similarity 0.427 0.392 1.710∗
w2v coherence 0.409 0.375 1.530
LSA chain count 4.09 4.31 -0.316
LSA chain length 3.38 1.87 2.310∗
w2v chain count 4.14 4.41 -0.3800
w2v chain length 3.07 1.91 1.9265∗
SVM chain count 4.09 4.86 -1.0894
SVM chain length 3.66 2.19 2.4164∗

Table 1: Mean values by diagnostic group for
semantic fluency metrics (∗p <0.05, one-tailed).

old. First, while leaving one subject out, we iter-
atively sweep through a range of possible values
for the threshold to determine the value that max-
imizes the accuracy of semantic chain boundary
identification for the rest of the participants. We
then apply that threshold to the left-out subject.

In addition to thresholding over individual simi-
larity metrics, we also use three similarity metrics
(WordNet path similarity, LSA cosine similarity,
and word2vec cosine similarity) as features within
a support vector machine to classify any pair of ad-
jacent words as either containing a semantic chain
boundary or as belonging to the same semantic
chain. Using all two-word sequences found in the
children’s responses and the manual indications of
the locations of cluster boundaries, we perform
leave-one-out cross validation to predict whether
the second word in each word pair represents the
start of a new chain or a continuation of the previ-
ous chain.

Although the methods all achieved reasonable
boundary identification accuracy, with AUC rang-
ing from 0.65 to 0.8, we note that the goal of de-
termining cluster boundaries in this way is not to
replicate human cluster boundary insertion, which
we know to be subjective and difficult to perform
reliably. Rather, we are attempting to develop an
objective way to insert boundaries that does not
rely on an annotator’s ability to infer another indi-
vidual’s semantic organization of the world.

5 Results
Table 1 shows the mean value for each group and
the t-statistic for each of the features. In contrast to
some previous work (Turner, 1999; Geurts et al.,
2004; Spek et al., 2009), we find no between-
group differences in raw item count. These re-

sults, however, support other work that did not find
such differences when comparing groups matched
on verbal ability, as our groups are (Lopez et al.,
2005; Inokuchi and Kamio, 2013).

Mean cosine similarity derived using the
word2vec model is significantly different between
the two groups, with the TD group showing a
higher mean similarity between adjacent items.
We also see that the global coherence measure, de-
rived by taking the mean similarity over 100 ran-
dom orderings of each list, is significantly higher
in the TD group when derived using LSA.

Although there are no between-group differ-
ences in the manually derived measures of chain
count and chain length, we find differences in
chain length when derived using both threshold-
ing over similarity measures and machine learn-
ing. In all three cases, children with typical devel-
opment have longer semantic chains than children
with ASD, suggesting that TD children employ the
semantic chaining strategy that is reportedly pre-
ferred by neurotypical adults. In short, there are
differences in the semantic fluency responses of
young children with ASD, and these differences
would be difficult to reliably detect without ap-
pealing to computational techniques.

Figure 1 shows two semantic fluency responses,
one produced by a child with ASD and one by
a child with TD, with plots indicating the cosine
similarities between adjacent words derived from
both the LSA and word2vec models. Semantic
chain boundaries proposed by the SVM are indi-
cated with vertical dashed lines. Note that LSA
and word2vec similarity values are only some-
what correlated, underscoring the potential utility
of combining the two scores for chain boundary
identification. As expected given the results in Ta-
ble 1, the child with ASD has generally lower co-
sine similarity scores and many more chain bound-
aries than the typically developing child.

6 Discussion and future work
One problem with applying the chaining and clus-
tering paradigms to children is that the semantic
features linking animals for a child might be very
different those of adults. Well over half of the chil-
dren in this study included the sequence cat, bear
or bear, cat, despite the lack of clear relation be-
tween the two words from an adult’s perspective.
We found, however, that our automated methods
usually grouped these two words together, recog-
nizing some similarity that adults seem to miss. At
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Figure 1: Plots of successive word-pair cosine similarity values derived using LSA and word2vec models
for a child with ASD (upper panel) and a child with TD (lower panel). Vertical dashed lines indicate
semantic chain boundaries proposed by the SVM.

the same time, relying on large corpora of adult-
focused texts may introduce problems: the low-
est similarity values found in our data set involved
the word turkey, suggesting a preponderance in the
data of the country rather than the bird. More
sensitive text normalization methods could likely
resolve this problem, but we also plan to build
LSA and neural word embedding models using
child language data (e.g., the CHILDES corpus
(MacWhinney, 2000)) and child-oriented texts in
the public domain.

Future work will focus on improving our meth-
ods for identifying semantic chains while account-
ing for different methods of semantic organiza-
tion by combining information gained from the
rich but out-of-domain data scenarios described
here with in-domain experimental data. In addi-
tion to incorporating more child-oriented training
data, we plan to use graph-based models to cap-
ture the ways in which speakers proceed through
the semantic space (Abbott et al., 2015).

As the contradictory results in the literature in-
dicate, the precise nature of the linguistic deficits
associated with ASD is somewhat unclear. Many
of the most widely reported linguistic deficits fail
to obtain when participants are carefully matched,
particularly on verbal IQ. The atypical language
features that do persist under strict matching are
usually semantic or pragmatic and, hence, more
difficult to detect using easily scored standard lan-
guage assessment instruments. Methods lever-
aging large corpora that reflect neurotypical lan-
guage use may prove to be one of the more useful
tools for identifying atypical language in ASD.
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