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Abstract
Most neural machine translation (NMT)
models are based on the sequential
encoder-decoder framework, which makes
no use of syntactic information. In this pa-
per, we improve this model by explicitly
incorporating source-side syntactic trees.
More specifically, we propose (1) a bidi-
rectional tree encoder which learns both
sequential and tree structured representa-
tions; (2) a tree-coverage model that lets
the attention depend on the source-side
syntax. Experiments on Chinese-English
translation demonstrate that our proposed
models outperform the sequential atten-
tional model as well as a stronger baseline
with a bottom-up tree encoder and word
coverage.1

1 Introduction

Recently, neural machine translation (NMT) mod-
els (Sutskever et al., 2014; Bahdanau et al.,
2015) have obtained state-of-the-art performance
on many language pairs. Their success depends
on the representation they use to bridge the source
and target language sentences. However, this rep-
resentation, a sequence of fixed-dimensional vec-
tors, differs considerably from most theories about
mental representations of sentences, and from tra-
ditional natural language processing pipelines, in
which semantics is built up compositionally using
a recursive syntactic structure.

Perhaps as evidence of this, current NMT mod-
els still suffer from syntactic errors such as at-
tachment (Shi et al., 2016). We argue that instead
of letting the NMT model rely solely on the im-
plicit structure it learns during training (Cho et al.,

∗ Corresponding author.
1Our code is publicly available at https://github.

com/howardchenhd/Syntax-awared-NMT/

(a) example sentence pair with alignments

aozhou

x1

chongxin

x2

kaifang

x3

zhu

x4

manila

x5

dashiguan

x6

(b) binarized source side tree

Figure 1: An example sentence pair (a), with its
binarized source side tree (b). We use xi to rep-
resent the i-th word in the source sentence. We
will use this sentence pairs as the running exam-
ple throughout this paper.

2014a), we can improve its performance by aug-
menting it with explicit structural information and
using this information throughout the model. This
has two benefits.

First, the explicit syntactic information will help
the encoder generate better source side represen-
tations. Li et al. (2015) show that for tasks in
which long-distance semantic dependencies mat-
ter, representations learned from recursive mod-
els using syntactic structures may be more pow-
erful than those from sequential recurrent models.
In the NMT case, given syntactic information, it
will be easier for the encoder to incorporate long
distance dependencies into better representations,
which is especially important for the translation of
long sentences.

Second, it becomes possible for the decoder to
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use syntactic information to guide its reordering
decisions better (especially for language pairs with
significant reordering, like Chinese-English). Al-
though the attention model (Bahdanau et al., 2015)
and the coverage model (Tu et al., 2016; Mi et al.,
2016) provide effective mechanisms to control the
generation of translation, these mechanisms work
at the word level and cannot capture phrasal cohe-
sion between the two languages (Fox, 2002; Kim
et al., 2017). With explicit syntactic structure, the
decoder can generate the translation more in line
with the source syntactic structure. For example,
when translating the phrase zhu manila dashiguan
in Figure 1, the tree structure indicates that zhu ‘in’
and manila form a syntactic unit, so that the model
can avoid breaking this unit up to make an incor-
rect translation like “in embassy of manila” 2.

In this paper, we propose a novel encoder-
decoder model that makes use of a precomputed
source-side syntactic tree in both the encoder and
decoder. In the encoder (§3.3), we improve the tree
encoder of Eriguchi et al. (2016) by introducing
a bidirectional tree encoder. For each source tree
node (including the source words), we generate a
representation containing information both from
below (as with the original bottom-up encoder)
and from above (using a top-down encoder). Thus,
the annotation of each node summarizes the sur-
rounding sequential context, as well as the entire
syntactic context.

In the decoder (§3.4), we incorporate source
syntactic tree structure into the attention model via
an extension of the coverage model of Tu et al.
(2016). With this tree-coverage model, we can bet-
ter guide the generation phase of translation, for
example, to learn a preference for phrasal cohe-
sion (Fox, 2002). Moreover, with a tree encoder,
the decoder may try to translate both a parent and
a child node, even though they overlap; the tree-
coverage model enables the decoder to learn to
avoid this problem.

To demonstrate the effectiveness of the pro-
posed model, we carry out experiments on
Chinese-English translation. Our experiments
show that: (1) our bidirectional tree encoder based
NMT system achieves significant improvements
over the standard attention-based NMT system,
and (2) incorporating source tree structure into
the attention model yields a further improvement.

2According to the source sentence, “embassy” belongs to
“australia”, not “manila”.
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Figure 2: Illustration of the bidirectional sequen-
tial encoder. The dashed rectangle represents the
annotation of word xi.

In all, we demonstrate an improvement of +3.54
BLEU over a standard attentional NMT system,
and +1.90 BLEU over a stronger NMT system
with a Tree-LSTM encoder (Eriguchi et al., 2016)
and a coverage model (Tu et al., 2016). To the
best of our knowledge, this is the first work that
uses source-side syntax in both the encoder and
decoder of an NMT system.

2 Neural Machine Translation

Most NMT systems follow the encoder-decoder
framework with attention, first proposed by Bah-
danau et al. (2015). Given a source sentence
x = x1 · · · xi · · · xI and a target sentence y =

y1 · · · y j · · · yJ , NMT aims to directly model the
translation probability:

P(y | x; θ) =

J∏

1

P(y j | y<j, x; θ), (1)

where θ is a set of parameters and y< j is the
sequence of previously generated target words.
Here, we briefly describe the underlying frame-
work of the encoder-decoder NMT system.

2.1 Encoder Model
Following Bahdanau et al. (2015), we use a bidi-
rectional gated recurrent unit (GRU) (Cho et al.,
2014b) to encode the source sentence, so that the
annotation of each word contains a summary of
both the preceding and following words. The bidi-
rectional GRU consists of a forward and a back-
ward GRU, as shown in Figure 2. The forward
GRU reads the source sentence from left to right
and calculates a sequence of forward hidden states
(
−→
h1, . . . ,

−→
hI). The backward GRU scans the source

sentence from right to left, resulting in a sequence
of backward hidden states (

←−
h1, . . . ,

←−
hI). Thus

−→
hi = GRU(

−−→
hi−1, si)

←−
hi = GRU(

←−−
hi−1, si)

(2)
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where si is the i-th source word’s word embedding,
and GRU is a gated recurrent unit; see the paper by
Cho et al. (2014b) for a definition.

The annotation of each source word xi is ob-
tained by concatenating the forward and backward
hidden states:

←→
hi =


−→
hi←−
hi

 .

The whole sequence of these annotations is used
by the decoder.

2.2 Decoder Model

The decoder is a forward GRU predicting the
translation y word by word. The probability of
generating the j-th word y j is:

P(y j | y<j, x; θ) = softmax(t j−1, d j, c j) (3)

where t j−1 is the word embedding of the ( j − 1)-
th target word, d j is the decoder’s hidden state of
time j, and c j is the context vector at time j. The
state d j is computed as

d j = GRU(d j−1, t j−1, c j), (4)

where GRU(·) is extended to more than two argu-
ments by first concatenating all arguments except
the first.

The attention mechanism computes the context
vector ci as a weighted sum of the source annota-
tions,

c j =

I∑

i=1

α j,i
←→
hi (5)

where the attention weight α j,i is

α j,i =
exp (e j,i)∑I

i′=1 exp (e j,i′)
(6)

and

e j,i = vT
a tanh (Wad j−1 + Ua

←→
hi ) (7)

where va, Wa and Ua are the weight matrices of
the attention model, and e j,i is an attention model

that scores how well d j−1 and
←→
hi match.

With this strategy, the decoder can attend to the
source annotations that are most relevant at a given
time.

3 Tree Structure Enhanced Neural
Machine Translation

Although syntax has shown its effectiveness in
non-neural statistical machine translation (SMT)
systems (Yamada and Knight, 2001; Koehn et al.,
2003; Liu et al., 2006; Chiang, 2007), most pro-
posed NMT models (a notable exception being
that of Eriguchi et al. (2016)) process a sentence
only as a sequence of words, and do not explic-
itly exploit the inherent structure of natural lan-
guage sentences. In this section, we present mod-
els which directly incorporate source syntactic
trees into the encoder-decoder framework.

3.1 Preliminaries

Like Eriguchi et al. (2016), we currently focus on
source side syntactic trees, which can be computed
prior to translation. Whereas Eriguchi et al. (2016)
use HPSG trees, we use phrase-structure trees as
in the Penn Chinese Treebank (Xue et al., 2005).
Currently, we are only using the structure infor-
mation from the tree without the syntactic labels.
Thus our approach should be applicable to any
syntactic grammar that provides such a tree struc-
ture (Figure 1(b)).

More formally, the encoder is given a source
sentence x = x1 · · · xI as well as a source tree
whose leaves are labeled x1, . . . , xI . We assume
that this tree is strictly binary branching. For con-
venience, each node is assigned an index. The leaf
nodes get indices 1, . . . , I, which is the same as
their word indices. For any node with index k, let
p(k) denote the index of the node’s parent (if it ex-
ists), and L(k) and R(k) denote the indices of the
node’s left and right children (if they exist).

3.2 Tree-GRU Encoder

We first describe tree encoders (Tai et al., 2015;
Eriguchi et al., 2016), and then discuss our im-
provements.

Following Eriguchi et al. (2016), we build a tree
encoder on top of the sequential encoder (as shown
in Figure 3(a)). If node k is a leaf node, its hidden
state is the annotation produced by the sequential
encoder:

h↑k =
←→
hk .

Thus, the encoder is able to capture both sequen-
tial context and syntactic context.

If node k is an interior node, its hidden state is
the combination of its previously calculated left
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child hidden state hL(k) and right child hidden state
hR(k):

h↑k = f (h↑L(k), h
↑
R(k)) (8)

where f (·) is a nonlinear function, originally a
Tree-LSTM (Tai et al., 2015; Eriguchi et al.,
2016).

The first improvement we make to the above
tree encoder is that, to be consistent with the se-
quential encoder model, we use Tree-GRU units
instead of Tree-LSTM units. Similar to Tree-
LSTMs, the Tree-GRU has gating mechanisms to
control the information flow inside the unit for
every node without separate memory cells. Then,
Eq. 8 is calculated by a Tree-GRU as follows:

rL = σ(U(rL)
L h↑L(k) + U(rL)

R h↑R(k) + b(rL))

rR = σ(U(rR)
L h↑L(k) + U(rR)

R h↑R(k) + b(rR))

zL = σ(U(zL)
L h↑L(k) + U(zL)

R h↑R(k) + b(zL))

zR = σ(U(zR)
L h↑L(k) + U(zR)

R h↑R(k) + b(zR))

z = σ(U(z)
L h↑L(k) + U(z)

R h↑R(k) + b(z))

h̃↑k = tanh
(
UL(rL � h↑L(k)) + UR(rR � h↑R(k))

)

h↑k = zL � h↑L(k) + zR � h↑R(k) + z � h̃↑k

where rL, rR are the reset gates and zL, zR are the
update gates for the left and right children, and z
is the update gate for the internal hidden state h̃↑k .
The U(·) and b(·) are the weight matrices and bias
vectors.

3.3 Bidirectional Tree Encoder

Although the bottom-up tree encoder can take ad-
vantage of syntactic structure, the learned repre-
sentation of a node is based on its subtree only;
it contains no information from higher up in the
tree. In particular, the representation of leaf nodes
is still the sequential one. Thus no syntactic infor-
mation is fed into words. By analogy with the bidi-
rectional sequential encoder, we propose a natural
extension of the bottom-up tree encoder: the bidi-
rectional tree encoder (Figure 3(b)).

Unlike the bottom-up tree encoder or the right-
to-left sequential encoder, the top-down encoder
by itself would have no lexical information as in-
put. To address this issue, we feed the hidden
states of the bottom-up encoder to the top-down
encoder. In this way, the information of the whole
syntactic tree is handed to the root node and prop-
agated to its offspring by the top-down encoder.

x1 x2 x3 x4 x5 x6

−→
h 1

−→
h 2

−→
h 3

−→
h 4

−→
h 5

−→
h 6

−→
h 1

←−
h 2

←−
h 3

←−
h 4

←−
h 5

←−
h 6

h↑7

h↑8

h↑9

h↑10

h↑11

(a) Tree-GRU Encoder

x1 x2 x3 x4 x5 x6

h↑1 h↑2 h↑3 h↑4 h↑5 h↑6h↓1 h↓2 h↓3 h↓4 h↓5 h↓6

h↑7 h↓7

h↑8 h↓8

h↑9 h↓9

h↑10 h↓10

h↑11 h↓11

(b) Bidirectional Tree Encoder

Figure 3: Illustration of the proposed encoder
models for the running example. The non-leaf
nodes are assigned with index 7-11. The annota-
tions h↑i of leaf nodes in (b) are identical to the an-
notations (dashed rectangles) of leaf nodes in (a).
The dotted rectangles in (b) indicate the annotation
produced by the bidirectional tree encoder.

In the top-down encoder, each hidden state has
only one predecessor. In fact, the top-down path
from root of a tree to any node can be viewed as a
sequential recurrent neural network. We can calcu-
late the hidden states of each node top-down using
a standard sequential GRU.

First, the hidden state of the root node ρ is sim-
ply computed as follows:

h↓ρ = tanh (Wh↑ρ + b) (9)

where W and b are a weight matrix and bias vector.
Then, other nodes are calculated by a GRU. For

hidden state h↓k :

h↓k = GRU(h↓p(k), h
↑
k) (10)
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where p(k) is the parent index of k. We replace
the weight matrices Wr, Ur, Wz, Uz, W and U in
the standard GRU with Pr

D, Qr
D, Pz

D, Qz
D, PD, and

QD, respectively. The subscript D is either L or
R depending on whether node k is a left or right
child, respectively.

Finally, the annotation of each node is obtained
by concatenating its bottom-up hidden state and
top-down hidden state:

hlk =


h↑k
h↓k

 .

This allows the tree structure information flow
from the root to the leaves (words). Thus, all the
annotations are based on the full context of word
sequence and syntactic tree structure.

Kokkinos and Potamianos (2017) propose a
similar bidirectional Tree-GRU for sentiment
analysis, which differs from ours in several re-
spects: in the bottom-up encoder, we use separate
reset/update gates for left and right children, anal-
ogous to Tree-LSTMs (Tai et al., 2015); in the top-
down encoder, we use separate weights for left and
right children.

Teng and Zhang (2016) also propose a bidirec-
tional Tree-LSTM encoder for classification tasks.
They use a more complex head-lexicalization
scheme to feed the top-down encoder. We will
compare their model with ours in the experiments.

3.4 Tree-Coverage Model

We also extend the decoder to incorporate infor-
mation about the source syntax into the attention
model. We have observed two issues in transla-
tions produced using the tree encoder. First, a syn-
tactic phrase in the source sentence is often incor-
rectly translated into discontinuous words in the
output. Second, since the non-leaf node annota-
tions contain more information than the leaf node
annotations, the attention model prefers to attend
to the non-leaf nodes, which may aggravate the
over-translation problem (translating the same part
of the sentence more than once).

As shown in Figure 4(a), almost all the non-leaf
nodes are attended too many times during decod-
ing. As a result, the Chinese phrase zhu manila is
translated twice because the model attends to the
node spanning zhu manila even though both words
have already been translated; there is no mecha-
nism to prevent this.

(a) Tree-GRU Encoder

(b) + Tree-Coverage Model

Figure 4: The attention heapmap plotting the atten-
tion weights during different translation steps, for
translating the sentence in Figure 1(a). The nodes
[7]-[11] correspond to non-leaf nodes indexed in
Figure 3. Incorporating Tree-Coverage Model pro-
duces more concentrated alignments and alleviates
the over-translation problem.

Inspired by the approaches of Cohn et al.
(2016), Feng et al. (2016), Tu et al. (2016) and
Mi et al. (2016), we propose to use prior knowl-
edge to control the attention mechanism. In our
case, the prior knowledge is the source syntactic
information.

In particular, we build our model on top of the
word coverage model proposed by Tu et al. (2016),
which alleviate the problems of over-translation
and under-translation (failing to translate part of
a sentence). The word coverage model makes the
attention at a given time step j dependent on the
attention at previous time steps via coverage vec-
tors:

C j,i = GRU(C j−1,i, α j,i, d j−1, hi). (11)
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The coverage vectors are, in turn, used to update
the attention at the next time step, by a small mod-
ification to the calculation of e j,i in Eq. (7):

e j,i = vT
a tanh (Wad j−1 + Uahi + VaC j−1,i). (12)

The word coverage model could be interpreted
as a control mechanism for the attention model.
Like the standard attention model, this coverage
model sees the source-sentence annotations as a
bag of vectors; it knows nothing about word order,
still less about syntactic structure.

For our model, we extend the word coverage
model to coverage on the tree structure by adding
a coverage vector for each node in the tree. We
further incorporate source tree structure informa-
tion into the calculation of the coverage vector by
requiring each node’s coverage vector to depend
on its children’s coverage vectors and attentions at
the previous time step:

C j,i = GRU(C j−1,i, α j,i, d j−1, hi,

C j−1,L(i), α j,L(i),

C j−1,R(i), α j,R(i)).

(13)

Although both child and parent nodes of a sub-
tree are helpful for translation, they may supply re-
dundant information. With our mechanism, when
the child node is used to produce a translation,
the coverage vector of its parent node will re-
flect this fact, so that the decoder may avoid using
the redundant information in the parent node. Fig-
ure 4(b) shows a heatmap of the attention of our
tree structure enhanced attention model. The atten-
tion of non-leaf nodes becomes more concentrated
and the over-translation of zhu manila is corrected.

4 Experiments

4.1 Data
We conduct experiments on the NIST Chinese-
English translation task. The parallel training data
consists of 1.6M sentence pairs extracted from
LDC corpora,3 with 46.6M Chinese words and
52.5M English words, respectively. We use NIST
MT02 as development data, and NIST MT03–06
as test data. These data are mostly in the same
genre (newswire), avoiding the extra consideration
of domain adaptation. Table 1 shows the statis-
tics of the data sets. The Chinese side of the cor-
pora is word segmented using ICTCLAS.4 We

3LDC2002E18, LDC2003E14, the Hansards portion of
LDC2004T08, and LDC2005T06.

4http://ictclas.nlpir.org

Data Usage Sents.
LDC train 1.6M
MT02 dev 878
MT03 test 919
MT04 test 1,597
MT05 test 1,082
MT06 test 1,664

Table 1: Experiment data and statistics.

parse the Chinese sentences with the Berkeley
Parser5 (Petrov and Klein, 2007) and binarize the
resulting trees following Zhang and Clark (2009).
The English side of the corpora is lowercased and
tokenized.

We filter out any translation pairs whose source
sentences fail to be parsed. For efficient training,
we also filter out the sentence pairs whose source
or target lengths are longer than 50. We use a
shortlist of the 30,000 most frequent words in each
language to train our models, covering approxi-
mately 98.2% and 99.5% of the Chinese and En-
glish tokens, respectively. All out-of-vocabulary
words are mapped to a special symbol UNK.

4.2 Model and Training Details

We compare our proposed models with several
state-of-the-art NMT systems and techniques:

• NMT: the standard attentional NMT
model (Bahdanau et al., 2015).

• Tree-LSTM: the attentional NMT
model extended with the Tree-LSTM
encoder (Eriguchi et al., 2016).

• Coverage: the attentional NMT model ex-
tended with word coverage (Tu et al., 2016).

We used the dl4mt implementation of the atten-
tional model,6 reimplementing the tree encoder
and word coverage models. The word embed-
ding dimension is 512. The hidden layer sizes of
both forward and backward sequential encoder are
1024 (except where indicated). Since our Tree-
GRU encoders are built on top of the bidirectional
sequential encoder, the size of the hidden layer (in
each direction) is 2048. For the coverage model,
we set the size of coverage vectors to 50.

5https://github.com/slavpetrov/
berkeleyparser

6https://github.com/nyu-dl/dl4mt-tutorial
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# Encoder Coverage MT02 MT03 MT04 MT05 MT06 Average
1 Sequential no 33.76 31.88 33.15 30.55 27.47 30.76
2 Tree-LSTM no 33.83 33.15 33.81 31.22 27.86 31.51(+0.75)
3 Tree-GRU no 35.39 33.62 35.1 32.55 28.26 32.38(+1.62)
4 Bidirectional no 35.52 33.91 35.51 33.34 29.91 33.17(+2.41)
5 Sequential word 34.21 32.73 34.17 31.64 28.29 31.71(+0.95)
6 Tree-LSTM word 35.81 33.62 34.84 32.6 28.52 32.40(+1.64)
7 Tree-GRU word 35.91 33.71 35.46 33.02 29.14 32.84(+2.08)
8 Bidirectional word 36.14 35.00 36.07 33.74 30.40 33.80(+3.04)
9 Tree-LSTM tree 34.97 33.91 35.21 33.08 29.38 32.90(+2.14)
10 Tree-GRU tree 35.67 34.25 35.72 33.47 29.95 33.35(+2.59)
11 Bidirectional tree 36.57 35.64 36.63 34.35 30.57 34.30(+3.54)

Table 2: BLEU scores of different systems. “Sequential”, “Tree-LSTM”, “Tree-GRU” and “Bidirec-
tional” denote the encoder part for the standard sequential encoder, Tree-LSTM encoder, Tree-GRU
encoder and the bidirectional tree encoder, respectively. “no”, “word” and “tree” in column “Coverage”
represents the decoder part for using no coverage (standard attention), word coverage (Tu et al., 2016)
and our proposed tree-coverage model, respectively.

# System Coverage MT02 MT03 MT04 MT05 MT06 Average
12′ Seq-LSTM no 34.98 32.81 34.08 31.39 28.03 31.58(+0.82)
13′ SeqTree-LSTM no 35.28 33.56 34.94 32.64 29.26 32.60(+1.84)

Table 3: BLEU scores of different systems based on LSTM. “Seq-LSTM” denotes both the encoder and
decoder parts for the sequential model are based on LSTM; “SeqTree-LSTM” means using Tree-LSTM
encoder on top of “Seq-LSTM”.

We use Adadelta (Zeiler, 2012) for optimization
using a mini-batch size of 32. All other settings are
the same as in Bahdanau et al. (2015).

We use case insensitive 4-gram BLEU (Pap-
ineni et al., 2002) for evaluation, as calculated by
multi-bleu.perl in the Moses toolkit.7

4.3 Tree Encoders
This set of experiments evaluates the effectiveness
of our proposed tree encoders. Table 2, row 2 con-
firms the finding of Eriguchi et al. (2016) that a
Tree-LSTM encoder helps, and row 3 shows that
our Tree-GRU encoder gets a better result (+0.87
BLEU, v.s. row 2). To verify our assumption that
model consistency is important for performance,
we also conduct experiments to compare Tree-
LSTM and Tree-GRU on top of LSTM-based
encoder-decoder settings. Tree-Lstm with LSTM
based sequential model can obtain 1.02 BLEU im-
provement(Table 3, row 13′), while Tree-LSTM
with GRU based sequential model only gets 0.75
BLEU improvement. Although Tree-Lstm with
LSTM based sequential model obtain a slightly
better result(+0.22 BLEU, v.s. Table 2, row 3), it

7http://www.statmt.org/moses

has more parameters(+1.6M) and takes 1.3 times
longer for training.

Since the annotation size of our bidirectional
tree encoder is twice of the Tree-LSTM encoder,
we halved the size of the hidden layers in the se-
quential encoder to 512 in each direction, to make
fair comparison. These results are shown in Ta-
ble 4. Row 4′ shows that, even with the same an-
notation size, our bidirectional tree encoder works
better than the original Tree-LSTM encoder (row
2). In fact, our halved-sized unidirectional Tree-
GRU encoder (row 3′) also works better than the
Tree-LSTM encoder (row 2) with half of its anno-
tation size.

We also compared our bidirectional tree en-
coder with the head-lexicalization based bidirec-
tional tree encoder proposed by Teng and Zhang
(2016), which forms the input vector for each non-
leaf node by a bottom-up head propagation mech-
anism (Table 4, row 14′). Our bidirectional tree
encoder gives a better result, suggesting that head
word information may not be as helpful for ma-
chine translation as it is for syntactic parsing.

When we set the hidden size back to 1024, we
found that training the bidirectional tree encoder
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# Encoder Coverage MT02 MT03 MT04 MT05 MT06 Average
3′ Tree-GRU no 34.92 32.79 34.16 32.03 28.75 31.93(+1.17)
4′ Bidirectional no 35.02 32.64 35.04 32.50 29.72 32.48(+1.72)
14′ Bidirectional-head no 34.66 33.17 34.78 31.70 28.47 32.03(+1.27)

Table 4: Experiments with 512 hidden units in each direction of the sequential encoder. The bidirectional
tree encoder using head-lexicalization (Bidirectional-head), proposed by (Teng and Zhang, 2016), does
not work as well as our simpler bidirectional tree encoder (Bidirectional).

was more difficult. Therefore, we adopted a two-
phase training strategy: first, we train the param-
eters of the bottom-up encoder based NMT sys-
tem; then, with the initialization of bottom-up en-
coder and random initialization of the top-down
part and decoder, we train the bidirectional tree
encoder based NMT system. Table 2, row 4 shows
the results of this two-phase training: the bidirec-
tional model (row 4) is 0.79 BLEU better than our
unidirectional Tree-GRU (row 3).

4.4 Tree-Coverage Model
Rows 5–8 in Table 2 show that the word cover-
age model of Tu et al. (2016) consistently helps
when used with our proposed tree encoders, with
the bidirectional tree encoder remaining the best.
However, the improvements of the tree encoder
models are smaller than that of the baseline sys-
tem. This may be caused by the fact that the word
coverage model neglects the relationship among
the trees, e.g. the relationship between children
and parent nodes. Our tree-coverage model consis-
tently improves performance further (rows 9–11).

Our best model combines our bidirectional tree
encoder with our tree-coverage model (row 11),
yielding a net improvement of +3.54 BLEU over
the standard attentional model (row 1), and +1.90
BLEU over the stronger baseline that implements
both the bottom-up tree encoder and coverage
model from previous work (row 6).

As noted before, the original coverage model
does not take word order into account. For com-
parison, we also implement an extension of the
coverage model that lets each coverage vector also
depend on those of its left and right neighbors at
the previous time step. This model does not help;
in fact, it reduces BLEU by about 0.2.

4.5 Analysis By Sentence Length
Following Bahdanau et al. (2015), we bin the de-
velopment and test sentences by length and show
BLEU scores for each bin in Figure 5. The pro-
posed bidirectional tree encoder outperforms the

Figure 5: Performance of translations with respect
to the lengths of the source sentences. “+” indi-
cates the improvement over the baseline sequential
model.

sequential NMT system and the Tree-GRU en-
coder across all lengths. The improvements be-
come larger for sentences longer than 20 words,
and the biggest improvement is for sentences
longer than 50 words. This provides some evi-
dence for the importance of syntactic information
for long sentences.

5 Related Work

Recently, many studies have focused on using ex-
plicit syntactic tree structure to help learn sen-
tence representations for various sentence classifi-
cation tasks. For example, Teng and Zhang (2016)
and Kokkinos and Potamianos (2017) extend the
bottom-up model to a bidirectional model for clas-
sification tasks, using Tree-LSTMs with head lex-
icalization and Tree-GRUs, respectively. We draw
on some of these ideas and apply them to machine
translation. We use the representation learnt from
tree structures to enhance the original sequential
model, and make use of these syntactic informa-
tion during the generation phase.

In NMT systems, the attention model (Bah-
danau et al., 2015) becomes a crucial part of the
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decoder model. Cohn et al. (2016) and Feng et al.
(2016) extend the attentional model to include
structural biases from word based alignment mod-
els. Kim et al. (2017) incorporate richer structural
distributions within deep networks to extend the
attention model. Our contribution to the decoder
model is to directly exploit structural information
in the attention model combined with a coverage
mechanism.

6 Conclusion

We have investigated the potential of using explicit
source-side syntactic trees in NMT by proposing a
novel syntax-aware encoder-decoder model. Our
experiments have demonstrated that a top-down
encoder is a useful enhancement for the original
bottom-up tree encoder (Eriguchi et al., 2016); and
incorporating syntactic structure information into
the decoder can better control the translation. Our
analysis suggests that the benefit of source-side
syntax is especially strong for long sentences.

Our current work only uses the structure part
of the syntactic tree, without the labels. For future
work, it will be interesting to make use of node
labels from the tree, or to use syntactic information
on the target side, as well.
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