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Abstract

One of the core components of modern spo-
ken dialogue systems is the belief tracker,
which estimates the user’s goal at every
step of the dialogue. However, most current
approaches have difficulty scaling to larger,
more complex dialogue domains. This is
due to their dependency on either: a) Spo-
ken Language Understanding models that
require large amounts of annotated training
data; or b) hand-crafted lexicons for captur-
ing some of the linguistic variation in users’
language. We propose a novel Neural Be-
lief Tracking (NBT) framework which over-
comes these problems by building on re-
cent advances in representation learning.
NBT models reason over pre-trained word
vectors, learning to compose them into dis-
tributed representations of user utterances
and dialogue context. Our evaluation on
two datasets shows that this approach sur-
passes past limitations, matching the per-
formance of state-of-the-art models which
rely on hand-crafted semantic lexicons and
outperforming them when such lexicons
are not provided.

1 Introduction

Spoken dialogue systems (SDS) allow users to in-
teract with computer applications through conversa-
tion. Task-based systems help users achieve goals
such as finding restaurants or booking flights. The
dialogue state tracking (DST) component of an
SDS serves to interpret user input and update the
belief state, which is the system’s internal repre-
sentation of the state of the conversation (Young
et al., 2010). This is a probability distribution over
dialogue states used by the downstream dialogue
manager to decide which action the system should

User: I’m looking for a cheaper restaurant
inform(price=cheap)

System: Sure. What kind - and where?
User: Thai food, somewhere downtown
inform(price=cheap, food=Thai,
area=centre)

System: The House serves cheap Thai food
User: Where is it?
inform(price=cheap, food=Thai,
area=centre); request(address)

System: The House is at 106 Regent Street

Figure 1: Annotated dialogue states in a sample di-
alogue. Underlined words show rephrasings which
are typically handled using semantic dictionaries.

perform next (Su et al., 2016a,b); the system action
is then verbalised by the natural language generator
(Wen et al., 2015a,b; Dušek and Jurčı́ček, 2015).

The Dialogue State Tracking Challenge (DSTC)
series of shared tasks has provided a common evalu-
ation framework accompanied by labelled datasets
(Williams et al., 2016). In this framework, the di-
alogue system is supported by a domain ontology
which describes the range of user intents the sys-
tem can process. The ontology defines a collection
of slots and the values that each slot can take. The
system must track the search constraints expressed
by users (goals or informable slots) and questions
the users ask about search results (requests), tak-
ing into account each user utterance (input via a
speech recogniser) and the dialogue context (e.g.,
what the system just said). The example in Figure
1 shows the true state after each user utterance in
a three-turn conversation. As can be seen in this
example, DST models depend on identifying men-
tions of ontology items in user utterances. This
becomes a non-trivial task when confronted with
lexical variation, the dynamics of context and noisy
automated speech recognition (ASR) output.

1777

https://doi.org/10.18653/v1/P17-1163
https://doi.org/10.18653/v1/P17-1163


FOOD=CHEAP: [affordable, budget, low-cost,
low-priced, inexpensive, cheaper, economic, ...]

RATING=HIGH: [best, high-rated, highly rated,
top-rated, cool, chic, popular, trendy, ...]

AREA=CENTRE: [center, downtown, central,
city centre, midtown, town centre, ...]

Figure 2: An example semantic dictionary with
rephrasings for three ontology values in a restau-
rant search domain.

Traditional statistical approaches use separate
Spoken Language Understanding (SLU) modules
to address lexical variability within a single dia-
logue turn. However, training such models requires
substantial amounts of domain-specific annotation.
Alternatively, turn-level SLU and cross-turn DST
can be coalesced into a single model to achieve
superior belief tracking performance, as shown by
Henderson et al. (2014d). Such coupled models
typically rely on manually constructed semantic
dictionaries to identify alternative mentions of on-
tology items that vary lexically or morphologically.
Figure 2 gives an example of such a dictionary
for three slot-value pairs. This approach, which
we term delexicalisation, is clearly not scalable
to larger, more complex dialogue domains. Im-
portantly, the focus on English in DST research
understates the considerable challenges that mor-
phology poses to systems based on exact matching
in morphologically richer languages such as Italian
or German (see Vulić et al. (2017)).

In this paper, we present two new models, col-
lectively called the Neural Belief Tracker (NBT)
family. The proposed models couple SLU and DST,
efficiently learning to handle variation without re-
quiring any hand-crafted resources. To do that,
NBT models move away from exact matching and
instead reason entirely over pre-trained word vec-
tors. The vectors making up the user utterance and
preceding system output are first composed into in-
termediate representations. These representations
are then used to decide which of the ontology-
defined intents have been expressed by the user
up to that point in the conversation.

To the best of our knowledge, NBT models are
the first to successfully use pre-trained word vector
spaces to improve the language understanding ca-
pability of belief tracking models. In evaluation on
two datasets, we show that: a) NBT models match
the performance of delexicalisation-based models
which make use of hand-crafted semantic lexicons;

and b) the NBT models significantly outperform
those models when such resources are not avail-
able. Consequently, we believe this work proposes
a framework better-suited to scaling belief tracking
models for deployment in real-world dialogue sys-
tems operating over sophisticated application do-
mains where the creation of such domain-specific
lexicons would be infeasible.

2 Background

Models for probabilistic dialogue state tracking, or
belief tracking, were introduced as components of
spoken dialogue systems in order to better handle
noisy speech recognition and other sources of un-
certainty in understanding a user’s goals (Bohus
and Rudnicky, 2006; Williams and Young, 2007;
Young et al., 2010). Modern dialogue management
policies can learn to use a tracker’s distribution
over intents to decide whether to execute an action
or request clarification from the user. As men-
tioned above, the DSTC shared tasks have spurred
research on this problem and established a standard
evaluation paradigm (Williams et al., 2013; Hen-
derson et al., 2014b,a). In this setting, the task is
defined by an ontology that enumerates the goals a
user can specify and the attributes of entities that
the user can request information about. Many dif-
ferent belief tracking models have been proposed
in the literature, from generative (Thomson and
Young, 2010) and discriminative (Henderson et al.,
2014d) statistical models to rule-based systems
(Wang and Lemon, 2013). To motivate the work
presented here, we categorise prior research accord-
ing to their reliance (or otherwise) on a separate
SLU module for interpreting user utterances:1

Separate SLU Traditional SDS pipelines use
Spoken Language Understanding (SLU) decoders
to detect slot-value pairs expressed in the Auto-
matic Speech Recognition (ASR) output. The
downstream DST model then combines this in-
formation with the past dialogue context to up-
date the belief state (Thomson and Young, 2010;
Wang and Lemon, 2013; Lee and Kim, 2016; Perez,
2016; Perez and Liu, 2017; Sun et al., 2016; Jang
et al., 2016; Shi et al., 2016; Dernoncourt et al.,
2016; Liu and Perez, 2017; Vodolán et al., 2017).

1The best-performing models in DSTC2 all used both raw
ASR output and the output of (potentially more than one) SLU
decoders (Williams, 2014; Williams et al., 2016). This does
not mean that those models are immune to the drawbacks
identified here for the two model categories; in fact, they share
the drawbacks of both.
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Figure 3: Architecture of the NBT Model. The implementation of the three representation learning
subcomponents can be modified, as long as these produce adequate vector representations which the
downstream model components can use to decide whether the current candidate slot-value pair was
expressed in the user utterance (taking into account the preceding system act).

In the DSTC challenges, some systems used the
output of template-based matching systems such
as Phoenix (Wang, 1994). However, more robust
and accurate statistical SLU systems are available.
Many discriminative approaches to spoken dia-
logue SLU train independent binary models that
decide whether each slot-value pair was expressed
in the user utterance. Given enough data, these
models can learn which lexical features are good
indicators for a given value and can capture ele-
ments of paraphrasing (Mairesse et al., 2009). This
line of work later shifted focus to robust handling of
rich ASR output (Henderson et al., 2012; Tur et al.,
2013). SLU has also been treated as a sequence
labelling problem, where each word in an utterance
is labelled according to its role in the user’s intent;
standard labelling models such as CRFs or Recur-
rent Neural Networks can then be used (Raymond
and Ricardi, 2007; Yao et al., 2014; Celikyilmaz
and Hakkani-Tur, 2015; Mesnil et al., 2015; Peng
et al., 2015; Zhang and Wang, 2016; Liu and Lane,
2016b; Vu et al., 2016; Liu and Lane, 2016a, i.a.).
Other approaches adopt a more complex modelling
structure inspired by semantic parsing (Saleh et al.,
2014; Vlachos and Clark, 2014). One drawback
shared by these methods is their resource require-
ments, either because they need to learn indepen-
dent parameters for each slot and value or because
they need fine-grained manual annotation at the
word level. This hinders scaling to larger, more
realistic application domains.

Joint SLU/DST Research on belief tracking has
found it advantageous to reason about SLU and
DST jointly, taking ASR predictions as input and
generating belief states as output (Henderson et al.,
2014d; Sun et al., 2014; Zilka and Jurcicek, 2015;
Mrkšić et al., 2015). In DSTC2, systems which
used no external SLU module outperformed all sys-
tems that only used external SLU features. Joint
models typically rely on a strategy known as delex-
icalisation whereby slots and values mentioned in
the text are replaced with generic labels. Once
the dataset is transformed in this manner, one can
extract a collection of template-like n-gram fea-
tures such as [want tagged-value food]. To per-
form belief tracking, the shared model iterates over
all slot-value pairs, extracting delexicalised feature
vectors and making a separate binary decision re-
garding each pair. Delexicalisation introduces a
hidden dependency that is rarely discussed: how
do we identify slot/value mentions in text? For
toy domains, one can manually construct semantic
dictionaries which list the potential rephrasings for
all slot values. As shown by Mrkšić et al. (2016),
the use of such dictionaries is essential for the per-
formance of current delexicalisation-based models.
Again though, this will not scale to the rich variety
of user language or to general domains.

The primary motivation for the work presented
in this paper is to overcome the limitations that
affect previous belief tracking models. The
NBT model efficiently learns from the avail-
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able data by: 1) leveraging semantic informa-
tion from pre-trained word vectors to resolve lex-
ical/morphological ambiguity; 2) maximising the
number of parameters shared across ontology val-
ues; and 3) having the flexibility to learn domain-
specific paraphrasings and other kinds of variation
that make it infeasible to rely on exact matching
and delexicalisation as a robust strategy.

3 Neural Belief Tracker

The Neural Belief Tracker (NBT) is a model de-
signed to detect the slot-value pairs that make up
the user’s goal at a given turn during the flow of
dialogue. Its input consists of the system dialogue
acts preceding the user input, the user utterance
itself, and a single candidate slot-value pair that
it needs to make a decision about. For instance,
the model might have to decide whether the goal
FOOD=ITALIAN has been expressed in ‘I’m look-
ing for good pizza’. To perform belief tracking, the
NBT model iterates over all candidate slot-value
pairs (defined by the ontology), and decides which
ones have just been expressed by the user.

Figure 3 presents the flow of information in the
model. The first layer in the NBT hierarchy per-
forms representation learning given the three model
inputs, producing vector representations for the
user utterance (r), the current candidate slot-value
pair (c) and the system dialogue acts (tq, ts, tv).
Subsequently, the learned vector representations
interact through the context modelling and seman-
tic decoding submodules to obtain the intermediate
interaction summary vectors dr,dc and d. These
are used as input to the final decision-making mod-
ule which decides whether the user expressed the
intent represented by the candidate slot-value pair.

3.1 Representation Learning

For any given user utterance, system act(s) and can-
didate slot-value pair, the representation learning
submodules produce vector representations which
act as input for the downstream components of
the model. All representation learning subcompo-
nents make use of pre-trained collections of word
vectors. As shown by Mrkšić et al. (2016), special-
ising word vectors to express semantic similarity
rather than relatedness is essential for improving
belief tracking performance. For this reason, we
use the semantically-specialised Paragram-SL999
word vectors (Wieting et al., 2015) throughout this
work. The NBT training procedure keeps these

vectors fixed: that way, at test time, unseen words
semantically related to familiar slot values (i.e. in-
expensive to cheap) will be recognised purely by
their position in the original vector space (see also
Rocktäschel et al. (2016)). This means that the
NBT model parameters can be shared across all
values of the given slot, or even across all slots.

Let u represent a user utterance consisting of
ku words u1, u2, . . . , uku . Each word has an asso-
ciated word vector u1, . . . ,uku . We propose two
model variants which differ in the method used to
produce vector representations of u: NBT-DNN
and NBT-CNN. Both act over the constituent n-
grams of the utterance. Let vn

i be the concatenation
of the n word vectors starting at index i, so that:

vn
i = ui ⊕ . . .⊕ ui+n−1 (1)

where⊕ denotes vector concatenation. The simpler
of our two models, which we term NBT-DNN, is
shown in Figure 4. This model computes cumula-
tive n-gram representation vectors r1, r2 and r3,
which are the n-gram ‘summaries’ of the unigrams,
bigrams and trigrams in the user utterance:

rn =

ku−n+1∑

i=1

vn
i (2)

Each of these vectors is then non-linearly mapped
to intermediate representations of the same size:

r′n = σ(W s
nrn + bsn) (3)

where the weight matrices and bias terms map the
cumulative n-grams to vectors of the same dimen-
sionality and σ denotes the sigmoid activation func-
tion. We maintain a separate set of parameters for
each slot (indicated by superscript s). The three
vectors are then summed to obtain a single repre-
sentation for the user utterance:

r = r′1 + r′2 + r′3 (4)

The cumulative n-gram representations used by
this model are just unweighted sums of all word
vectors in the utterance. Ideally, the model should
learn to recognise which parts of the utterance are
more relevant for the subsequent classification task.
For instance, it could learn to ignore verbs or stop
words and pay more attention to adjectives and
nouns which are more likely to express slot values.
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Figure 4: NBT-DNN MODEL. Word vectors of n-grams (n = 1, 2, 3) are summed to obtain cumulative
n-grams, then passed through another hidden layer and summed to obtain the utterance representation r.

Figure 5: NBT-CNN Model. L convolutional filters of window sizes 1, 2, 3 are applied to word vectors
of the given utterance (L = 3 in the diagram, but L = 300 in the system). The convolutions are followed
by the ReLU activation function and max-pooling to produce summary n-gram representations. These are
summed to obtain the utterance representation r.

NBT-CNN Our second model draws inspiration
from successful applications of Convolutional Neu-
ral Networks (CNNs) for language understanding
(Collobert et al., 2011; Kalchbrenner et al., 2014;
Kim, 2014). These models typically apply a num-
ber of convolutional filters to n-grams in the input
sentence, followed by non-linear activation func-
tions and max-pooling. Following this approach,
the NBT-CNN model applies L = 300 differ-
ent filters for n-gram lengths of 1, 2 and 3 (Fig-
ure 5). Let F s

n ∈ RL×nD denote the collection
of filters for each value of n, where D = 300 is
the word vector dimensionality. If vn

i denotes the
concatenation of n word vectors starting at index
i, let mn = [vn

1 ;v
n
2 ; . . . ;v

n
ku−n+1] be the list of

n-grams that convolutional filters of length n run
over. The three intermediate representations are
then given by:

Rn = F s
n mn (5)

Each column of the intermediate matrices Rn is
produced by a single convolutional filter of length
n. We obtain summary n-gram representations
by pushing these representations through a recti-

fied linear unit (ReLU) activation function (Nair
and Hinton, 2010) and max-pooling over time
(i.e. columns of the matrix) to get a single feature
for each of the L filters applied to the utterance:

r′n = maxpool (ReLU (Rn + bsn)) (6)

where bsn is a bias term broadcast across all filters.
Finally, the three summary n-gram representations
are summed to obtain the final utterance represen-
tation vector r (as in Equation 4). The NBT-CNN
model is (by design) better suited to longer utter-
ances, as its convolutional filters interact directly
with subsequences of the utterance, and not just
their noisy summaries given by the NBT-DNN’s
cumulative n-grams.

3.2 Semantic Decoding

The NBT diagram in Figure 3 shows that the ut-
terance representation r and the candidate slot-
value pair representation c directly interact through
the semantic decoding module. This compo-
nent decides whether the user explicitly expressed
an intent matching the current candidate pair
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(i.e. without taking the dialogue context into ac-
count). Examples of such matches would be ‘I
want Thai food’ with food=Thai or more de-
manding ones such as ‘a pricey restaurant’ with
price=expensive. This is where the use of
high-quality pre-trained word vectors comes into
play: a delexicalisation-based model could deal
with the former example but would be helpless in
the latter case, unless a human expert had provided
a semantic dictionary listing all potential rephras-
ings for each value in the domain ontology.

Let the vector space representations of a candi-
date pair’s slot name and value be given by cs and
cv (with vectors of multi-word slot names/values
summed together). The NBT model learns to map
this tuple into a single vector c of the same dimen-
sionality as the utterance representation r. These
two representations are then forced to interact in or-
der to learn a similarity metric which discriminates
between interactions of utterances with slot-value
pairs that they either do or do not express:

c = σ
(
W s

c (cs + cv) + bsc
)

(7)

d = r⊗ c (8)

where ⊗ denotes element-wise vector multiplica-
tion. The dot product, which may seem like the
more intuitive similarity metric, would reduce the
rich set of features in d to a single scalar. The
element-wise multiplication allows the downstream
network to make better use of its parameters by
learning non-linear interactions between sets of
features in r and c.2

3.3 Context Modelling
This ‘decoder’ does not yet suffice to extract intents
from utterances in human-machine dialogue. To
understand some queries, the belief tracker must be
aware of context, i.e. the flow of dialogue leading
up to the latest user utterance. While all previous
system and user utterances are important, the most
relevant one is the last system utterance, in which
the dialogue system could have performed (among
others) one of the following two system acts:

1. System Request: The system asks the user
about the value of a specific slot Tq. If the
system utterance is: ‘what price range would

2We also tried to concatenate r and c and pass that vector
to the downstream decision-making neural network. However,
this set-up led to very weak performance since our relatively
small datasets did not suffice for the network to learn to model
the interaction between the two feature vectors.

you like?’ and the user answers with any, the
model must infer the reference to price range,
and not to other slots such as area or food.

2. System Confirm: The system asks the user
to confirm whether a specific slot-value pair
(Ts, Tv) is part of their desired constraints. For
example, if the user responds to ‘how about
Turkish food?’ with ‘yes’, the model must be
aware of the system act in order to correctly
update the belief state.

If we make the Markovian decision to only con-
sider the last set of system acts, we can incorporate
context modelling into the NBT. Let tq and (ts, tv)
be the word vectors of the arguments for the sys-
tem request and confirm acts (zero vectors if none).
The model computes the following measures of
similarity between the system acts, candidate pair
(cs, cv) and utterance representation r:

mr = (cs · tq)r (9)

mc = (cs · ts)(cv · tv)r (10)

where · denotes dot product. The computed similar-
ity terms act as gating mechanisms which only pass
the utterance representation through if the system
asked about the current candidate slot or slot-value
pair. This type of interaction is particularly useful
for the confirm system act: if the system asks the
user to confirm, the user is likely not to mention any
slot values, but to just respond affirmatively or neg-
atively. This means that the model must consider
the three-way interaction between the utterance,
candidate slot-value pair and the slot value pair of-
fered by the system. If (and only if) the latter two
are the same should the model consider the affirma-
tive or negative polarity of the user utterance when
making the subsequent binary decision.

Binary Decision Maker The intermediate repre-
sentations are passed through another hidden layer
and then combined. If φdim(x) = σ(Wx+ b) is a
layer which maps input vector x to a vector of size
dim, the input to the final binary softmax (which
represents the decision) is given by:

y = φ2
(
φ100(d) + φ100(mr) + φ100(mc)

)

4 Belief State Update Mechanism

In spoken dialogue systems, belief tracking models
operate over the output of automatic speech recog-
nition (ASR). Despite improvements to speech
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recognition, the need to make the most out of im-
perfect ASR will persist as dialogue systems are
used in increasingly noisy environments.

In this work, we define a simple rule-based
belief state update mechanism which can be
applied to ASR N -best lists. For dialogue turn t,
let syst−1 denote the preceding system output, and
let ht denote the list of N ASR hypotheses hti with
posterior probabilities pti. For any hypothesis hti,
slot s and slot value v ∈ Vs, NBT models estimate
P(s, v | hti, syst−1), which is the (turn-level)
probability that (s, v) was expressed in the given
hypothesis. The predictions for N such hypotheses
are then combined as:

P(s, v | ht, syst−1) =
N∑

i=1

pti P
(
s, v | hti, syst

)

This turn-level belief state estimate is then com-
bined with the (cumulative) belief state up to time
(t− 1) to get the updated belief state estimate:

P(s, v | h1:t, sys1:t−1) = λ P
(
s, v | ht, syst−1

)

+ (1− λ) P
(
s, v | h1:t−1, sys1:t−2

)

where λ is the coefficient which determines the
relative weight of the turn-level and previous turns’
belief state estimates.3 For slot s, the set of its
detected values at turn t is then given by:

V t
s = {v ∈ Vs | P

(
s, v | h1:t, sys1:t−1

)
≥ 0.5}

For informable (i.e. goal-tracking) slots, the value
in V t

s with the highest probability is chosen as the
current goal (if V t

s 6= {∅}). For requests, all slots
in V t

req are deemed to have been requested. As
requestable slots serve to model single-turn user
queries, they require no belief tracking across turns.

5 Experiments

5.1 Datasets

Two datasets were used for training and evalua-
tion. Both consist of user conversations with task-
oriented dialogue systems designed to help users
find suitable restaurants around Cambridge, UK.
The two corpora share the same domain ontology,
which contains three informable (i.e. goal-tracking)
slots: FOOD, AREA and PRICE. The users can spec-
ify values for these slots in order to find restaurants

3This coefficient was tuned on the DSTC2 development
set. The best performance was achieved with λ = 0.55.

which best meet their criteria. Once the system sug-
gests a restaurant, the users can ask about the values
of up to eight requestable slots (PHONE NUMBER,
ADDRESS, etc.). The two datasets are:

1. DSTC2: We use the transcriptions, ASR hy-
potheses and turn-level semantic labels pro-
vided for the Dialogue State Tracking Chal-
lenge 2 (Henderson et al., 2014a). The of-
ficial transcriptions contain various spelling
errors which we corrected manually; the
cleaned version of the dataset is avail-
able at mi.eng.cam.ac.uk/˜nm480/
dstc2-clean.zip. The training data con-
tains 2207 dialogues and the test set consists
of 1117 dialogues. We train NBT models on
transcriptions but report belief tracking perfor-
mance on test set ASR hypotheses provided
in the original challenge.

2. WOZ 2.0: Wen et al. (2017) performed a Wiz-
ard of Oz style experiment in which Amazon
Mechanical Turk users assumed the role of
the system or the user of a task-oriented dia-
logue system based on the DSTC2 ontology.
Users typed instead of using speech, which
means performance in the WOZ experiments
is more indicative of the model’s capacity for
semantic understanding than its robustness to
ASR errors. Whereas in the DSTC2 dialogues
users would quickly adapt to the system’s
(lack of) language understanding capability,
the WOZ experimental design gave them free-
dom to use more sophisticated language. We
expanded the original WOZ dataset from Wen
et al. (2017) using the same data collection
procedure, yielding a total of 1200 dialogues.
We divided these into 600 training, 200 vali-
dation and 400 test set dialogues. The WOZ
2.0 dataset is available at mi.eng.cam.ac.
uk/˜nm480/woz_2.0.zip.

Training Examples The two corpora are used to
create training data for two separate experiments.
For each dataset, we iterate over all train set utter-
ances, generating one example for each of the slot-
value pairs in the ontology. An example consists
of a transcription, its context (i.e. list of preceding
system acts) and a candidate slot-value pair. The
binary label for each example indicates whether or
not its utterance and context express the example’s
candidate pair. For instance, ‘I would like Irish
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food’ would generate a positive example for candi-
date pair FOOD=IRISH, and a negative example for
every other slot-value pair in the ontology.

Evaluation We focus on two key evaluation met-
rics introduced in (Henderson et al., 2014a):

1. Goals (‘joint goal accuracy’): the proportion
of dialogue turns where all the user’s search
goal constraints were correctly identified;

2. Requests: similarly, the proportion of dia-
logue turns where user’s requests for infor-
mation were identified correctly.

5.2 Models

We evaluate two NBT model variants: NBT-DNN
and NBT-CNN. To train the models, we use the
Adam optimizer (Kingma and Ba, 2015) with cross-
entropy loss, backpropagating through all the NBT
subcomponents while keeping the pre-trained word
vectors fixed (in order to allow the model to deal
with unseen words at test time). The model is
trained separately for each slot. Due to the high
class bias (most of the constructed examples are
negative), we incorporate a fixed number of posi-
tive examples in each mini-batch.4

Baseline Models For each of the two datasets,
we compare the NBT models to:

1. A baseline system that implements a well-
known competitive delexicalisation-based
model for that dataset. For DSTC2, the model
is that of Henderson et al. (2014c; 2014d).
This model is an n-gram based neural net-
work model with recurrent connections be-
tween turns (but not inside utterances) which
replaces occurrences of slot names and val-
ues with generic delexicalised features. For
WOZ 2.0, we compare the NBT models to a
more sophisticated belief tracking model pre-
sented in (Wen et al., 2017). This model uses
an RNN for belief state updates and a CNN
for turn-level feature extraction. Unlike NBT-
CNN, their CNN operates not over vectors,

4Model hyperparameters were tuned on the respective val-
idation sets. For both datasets, the initial Adam learning rate
was set to 0.001, and 1

8
th of positive examples were included

in each mini-batch. The batch size did not affect performance:
it was set to 256 in all experiments. Gradient clipping (to
[−2.0, 2.0]) was used to handle exploding gradients. Dropout
(Srivastava et al., 2014) was used for regularisation (with 50%
dropout rate on all intermediate representations). Both NBT
models were implemented in TensorFlow (Abadi et al., 2015).

but over delexicalised features akin to those
used by Henderson et al. (2014c).

2. The same baseline model supplemented with
a task-specific semantic dictionary (produced
by the baseline system creators). The two
dictionaries are available at mi.eng.cam.
ac.uk/˜nm480/sem-dict.zip. The
DSTC2 dictionary contains only three rephras-
ings. Nonetheless, the use of these rephras-
ings translates to substantial gains in DST per-
formance (see Sect. 6.1). We believe this
result supports our claim that the vocabu-
lary used by Mechanical Turkers in DSTC2
was constrained by the system’s inability to
cope with lexical variation and ASR noise.
The WOZ dictionary includes 38 rephrasings,
showing that the unconstrained language used
by Mechanical Turkers in the Wizard-of-Oz
setup requires more elaborate lexicons.

Both baseline models map exact matches
of ontology-defined intents (and their lexicon-
specified rephrasings) to one-hot delexicalised n-
gram features. This means that pre-trained vectors
cannot be incorporated directly into these models.

6 Results

6.1 Belief Tracking Performance
Table 1 shows the performance of NBT models
trained and evaluated on DSTC2 and WOZ 2.0
datasets. The NBT models outperformed the base-
line models in terms of both joint goal and request
accuracies. For goals, the gains are always statis-
tically significant (paired t-test, p < 0.05). More-
over, there was no statistically significant variation
between the NBT and the lexicon-supplemented
models, showing that the NBT can handle seman-
tic relations which otherwise had to be explicitly
encoded in semantic dictionaries.

While the NBT performs well across the board,
we can compare its performance on the two datasets
to understand its strengths. The improvement over
the baseline is greater on WOZ 2.0, which cor-
roborates our intuition that the NBT’s ability to
learn linguistic variation is vital for this dataset
containing longer sentences, richer vocabulary and
no ASR errors. By comparison, the language of
the subjects in the DSTC2 dataset is less rich, and
compensating for ASR errors is the main hurdle:
given access to the DSTC2 test set transcriptions,
the NBT models’ goal accuracy rises to 0.96. This
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DST Model DSTC2 WOZ 2.0
Goals Requests Goals Requests

Delexicalisation-Based Model 69.1 95.7 70.8 87.1
Delexicalisation-Based Model + Semantic Dictionary 72.9* 95.7 83.7* 87.6
NEURAL BELIEF TRACKER: NBT-DNN 72.6* 96.4 84.4* 91.2*
NEURAL BELIEF TRACKER: NBT-CNN 73.4* 96.5 84.2* 91.6*

Table 1: DSTC2 and WOZ 2.0 test set accuracies for: a) joint goals; and b) turn-level requests. The
asterisk indicates statistically significant improvement over the baseline trackers (paired t-test; p < 0.05).

indicates that future work should focus on better
ASR compensation if the model is to be deployed
in environments with challenging acoustics.

6.2 The Importance of Word Vector Spaces
The NBT models use the semantic relations em-
bedded in the pre-trained word vectors to handle
semantic variation and produce high-quality inter-
mediate representations. Table 2 shows the per-
formance of NBT-CNN5 models making use of
three different word vector collections: 1) ‘random’
word vectors initialised using the XAVIER initiali-
sation (Glorot and Bengio, 2010); 2) distributional
GloVe vectors (Pennington et al., 2014), trained
using co-occurrence information in large textual
corpora; and 3) semantically specialised Paragram-
SL999 vectors (Wieting et al., 2015), which are ob-
tained by injecting semantic similarity constraints
from the Paraphrase Database (Ganitkevitch et al.,
2013) into the distributional GloVe vectors in order
to improve their semantic content.

The results in Table 2 show that the use of seman-
tically specialised word vectors leads to consider-
able performance gains: Paragram-SL999 vectors
(significantly) outperformed GloVe and XAVIER

vectors for goal tracking on both datasets. The
gains are particularly robust for noisy DSTC2
data, where both collections of pre-trained vec-
tors consistently outperformed random initialisa-
tion. The gains are weaker for the noise-free WOZ
2.0 dataset, which seems to be large (and clean)
enough for the NBT model to learn task-specific
rephrasings and compensate for the lack of seman-
tic content in the word vectors. For this dataset,
GloVe vectors do not improve over the randomly
initialised ones. We believe this happens because
distributional models keep related, yet antonymous
words close together (e.g. north and south, expen-
sive and inexpensive), offsetting the useful seman-
tic content embedded in this vector spaces.

5The NBT-DNN model showed the same trends. For
brevity, Table 2 presents only the NBT-CNN figures.

Word Vectors DSTC2 WOZ 2.0
Goals Requests Goals Requests

XAVIER (No Info.) 64.2 81.2 81.2 90.7
GloVe 69.0* 96.4* 80.1 91.4

Paragram-SL999 73.4* 96.5* 84.2* 91.6

Table 2: DSTC2 and WOZ 2.0 test set performance
(joint goals and requests) of the NBT-CNN model
making use of three different word vector collec-
tions. The asterisk indicates statistically significant
improvement over the baseline XAVIER (random)
word vectors (paired t-test; p < 0.05).

7 Conclusion

In this paper, we have proposed a novel neural
belief tracking (NBT) framework designed to over-
come current obstacles to deploying dialogue sys-
tems in real-world dialogue domains. The NBT
models offer the known advantages of coupling
Spoken Language Understanding and Dialogue
State Tracking, without relying on hand-crafted
semantic lexicons to achieve state-of-the-art perfor-
mance. Our evaluation demonstrated these benefits:
the NBT models match the performance of models
which make use of such lexicons and vastly outper-
form them when these are not available. Finally, we
have shown that the performance of NBT models
improves with the semantic quality of the under-
lying word vectors. To the best of our knowledge,
we are the first to move past intrinsic evaluation
and show that semantic specialisation boosts per-
formance in downstream tasks.

In future work, we intend to explore applications
of the NBT for multi-domain dialogue systems, as
well as in languages other than English that require
handling of complex morphological variation.
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Barahona, Stefan Ultes, David Vandyke, Tsung-
Hsien Wen, and Steve Young. 2016b. On-line active
reward learning for policy optimisation in spoken di-
alogue systems. In Proceedings of ACL.

Kai Sun, Lu Chen, Su Zhu, and Kai Yu. 2014. The
SJTU System for Dialog State Tracking Challenge
2. In Proceedings of SIGDIAL.

Kai Sun, Qizhe Xie, and Kai Yu. 2016. Recurrent Poly-
nomial Network for Dialogue State Tracking. Dia-
logue & Discourse 7(3):65–88.

Blaise Thomson and Steve Young. 2010. Bayesian up-
date of dialogue state: A POMDP framework for
spoken dialogue systems. Computer Speech and
Language .

Gokhan Tur, Anoop Deoras, and Dilek Hakkani-Tur.
2013. Semantic Parsing Using Word Confusion Net-
works With Conditional Random Fields. In Proceed-
ings of Interspeech.

Andreas Vlachos and Stephen Clark. 2014. A new cor-
pus and imitation learning framework for context-
dependent semantic parsing. TACL 2:547–559.

Miroslav Vodolán, Rudolf Kadlec, and Jan Kleindienst.
2017. Hybrid Dialog State Tracker with ASR Fea-
tures. In Proceedings of EACL.

Ngoc Thang Vu, Pankaj Gupta, Heike Adel, and Hin-
rich Schütze. 2016. Bi-directional recurrent neural
network with ranking loss for spoken language un-
derstanding. In Proceedings of ICASSP.
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