
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1756–1765
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1161

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1756–1765
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1161

Semi-supervised sequence tagging with bidirectional language models

Matthew E. Peters, Waleed Ammar, Chandra Bhagavatula, Russell Power
Allen Institute for Artificial Intelligence

{matthewp,waleeda,chandrab,russellp}@allenai.org

Abstract

Pre-trained word embeddings learned
from unlabeled text have become a stan-
dard component of neural network archi-
tectures for NLP tasks. However, in most
cases, the recurrent network that oper-
ates on word-level representations to pro-
duce context sensitive representations is
trained on relatively little labeled data.
In this paper, we demonstrate a general
semi-supervised approach for adding pre-
trained context embeddings from bidi-
rectional language models to NLP sys-
tems and apply it to sequence labeling
tasks. We evaluate our model on two stan-
dard datasets for named entity recognition
(NER) and chunking, and in both cases
achieve state of the art results, surpassing
previous systems that use other forms of
transfer or joint learning with additional
labeled data and task specific gazetteers.

1 Introduction

Due to their simplicity and efficacy, pre-trained
word embedding have become ubiquitous in NLP
systems. Many prior studies have shown that they
capture useful semantic and syntactic information
(Mikolov et al., 2013; Pennington et al., 2014) and
including them in NLP systems has been shown to
be enormously helpful for a variety of downstream
tasks (Collobert et al., 2011).

However, in many NLP tasks it is essential to
represent not just the meaning of a word, but also
the word in context. For example, in the two
phrases “A Central Bank spokesman” and “The
Central African Republic”, the word ‘Central’ is
used as part of both an Organization and Location.
Accordingly, current state of the art sequence tag-
ging models typically include a bidirectional re-

current neural network (RNN) that encodes token
sequences into a context sensitive representation
before making token specific predictions (Yang
et al., 2017; Ma and Hovy, 2016; Lample et al.,
2016; Hashimoto et al., 2016).

Although the token representation is initialized
with pre-trained embeddings, the parameters of
the bidirectional RNN are typically learned only
on labeled data. Previous work has explored meth-
ods for jointly learning the bidirectional RNN with
supplemental labeled data from other tasks (e.g.,
Søgaard and Goldberg, 2016; Yang et al., 2017).

In this paper, we explore an alternate semi-
supervised approach which does not require ad-
ditional labeled data. We use a neural language
model (LM), pre-trained on a large, unlabeled cor-
pus to compute an encoding of the context at each
position in the sequence (hereafter an LM embed-
ding) and use it in the supervised sequence tag-
ging model. Since the LM embeddings are used to
compute the probability of future words in a neu-
ral LM, they are likely to encode both the semantic
and syntactic roles of words in context.

Our main contribution is to show that the con-
text sensitive representation captured in the LM
embeddings is useful in the supervised sequence
tagging setting. When we include the LM embed-
dings in our system overall performance increases
from 90.87% to 91.93% F1 for the CoNLL 2003
NER task, a more then 1% absolute F1 increase,
and a substantial improvement over the previous
state of the art. We also establish a new state of
the art result (96.37% F1) for the CoNLL 2000
Chunking task.

As a secondary contribution, we show that us-
ing both forward and backward LM embeddings
boosts performance over a forward only LM. We
also demonstrate that domain specific pre-training
is not necessary by applying a LM trained in the
news domain to scientific papers.
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2 Language model augmented sequence
taggers (TagLM)

2.1 Overview
The main components in our language-model-
augmented sequence tagger (TagLM) are illus-
trated in Fig. 1. After pre-training word embed-
dings and a neural LM on large, unlabeled corpora
(Step 1), we extract the word and LM embeddings
for every token in a given input sequence (Step 2)
and use them in the supervised sequence tagging
model (Step 3).

2.2 Baseline sequence tagging model
Our baseline sequence tagging model is a hierar-
chical neural tagging model, closely following a
number of recent studies (Ma and Hovy, 2016;
Lample et al., 2016; Yang et al., 2017; Chiu and
Nichols, 2016) (left side of Figure 2).

Given a sentence of tokens (t1, t2, . . . , tN ) it
first forms a representation, xk, for each token by
concatenating a character based representation ck
with a token embedding wk:

ck = C(tk; θc)

wk = E(tk; θw)

xk = [ck;wk] (1)

The character representation ck captures morpho-
logical information and is either a convolutional
neural network (CNN) (Ma and Hovy, 2016; Chiu
and Nichols, 2016) or RNN (Yang et al., 2017;
Lample et al., 2016). It is parameterized by
C(·, θc) with parameters θc. The token embed-
dings, wk, are obtained as a lookup E(·, θw), ini-
tialized using pre-trained word embeddings, and
fine tuned during training (Collobert et al., 2011).

To learn a context sensitive representation, we
employ multiple layers of bidirectional RNNs. For
each token position, k, the hidden state hk,i of
RNN layer i is formed by concatenating the hid-
den states from the forward (

−→
h k,i) and backward

(
←−
h k,i) RNNs. As a result, the bidirectional RNN

is able to use both past and future information to
make a prediction at token k. More formally, for
the first RNN layer that operates on xk to output
hk,1:

−→
h k,1 =

−→
R 1(xk,

−→
h k−1,1; θ−→R1

)

←−
h k,1 =

←−
R 1(xk,

←−
h k+1,1; θ←−R1

)

hk,1 = [
−→
h k,1;

←−
h k,1] (2)

Step	2:	Prepare	word	
embedding	and	LM	
embedding	for	each	
token	in	the	input	
sequence.
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Figure 1: The main components in TagLM,
our language-model-augmented sequence tagging
system. The language model component (in or-
ange) is used to augment the input token represen-
tation in a traditional sequence tagging models (in
grey).

The second RNN layer is similar and uses hk,1 to
output hk,2. In this paper, we use L = 2 lay-
ers of RNNs in all experiments and parameterize
Ri as either Gated Recurrent Units (GRU) (Cho
et al., 2014) or Long Short-Term Memory units
(LSTM) (Hochreiter and Schmidhuber, 1997) de-
pending on the task.

Finally, the output of the final RNN layer hk,L

is used to predict a score for each possible tag us-
ing a single dense layer. Due to the dependencies
between successive tags in our sequence label-
ing tasks (e.g. using the BIOES labeling scheme,
it is not possible for I-PER to follow B-LOC),
it is beneficial to model and decode each sen-
tence jointly instead of independently predicting
the label for each token. Accordingly, we add
another layer with parameters for each label bi-
gram, computing the sentence conditional random
field (CRF) loss (Lafferty et al., 2001) using the
forward-backward algorithm at training time, and
using the Viterbi algorithm to find the most likely
tag sequence at test time, similar to Collobert et al.
(2011).
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Figure 2: Overview of TagLM, our language model augmented sequence tagging architecture. The
top level embeddings from a pre-trained bidirectional LM are inserted in a stacked bidirectional RNN
sequence tagging model. See text for details.

2.3 Bidirectional LM
A language model computes the probability of a
token sequence (t1, t2, . . . , tN )

p(t1, t2, . . . , tN ) =

N∏

k=1

p(tk | t1, t2, . . . , tk−1).

Recent state of the art neural language models
(Józefowicz et al., 2016) use a similar architec-
ture to our baseline sequence tagger where they
pass a token representation (either from a CNN
over characters or as token embeddings) through
multiple layers of LSTMs to embed the history
(t1, t2, . . . , tk) into a fixed dimensional vector−→
h LM

k . This is the forward LM embedding of the
token at position k and is the output of the top
LSTM layer in the language model. Finally, the
language model predicts the probability of token
tk+1 using a softmax layer over words in the vo-
cabulary.

The need to capture future context in the LM
embeddings suggests it is beneficial to also con-
sider a backward LM in additional to the tradi-
tional forward LM. A backward LM predicts the
previous token given the future context. Given a
sentence with N tokens, it computes

p(t1, t2, . . . , tN ) =
N∏

k=1

p(tk | tk+1, tk+2, . . . , tN ).

A backward LM can be implemented in an anal-
ogous way to a forward LM and produces the
backward LM embedding

←−
h LM

k , for the sequence
(tk, tk+1, . . . , tN ), the output embeddings of the
top layer LSTM.

In our final system, after pre-training the for-
ward and backward LMs separately, we remove
the top layer softmax and concatenate the for-
ward and backward LM embeddings to form
bidirectional LM embeddings, i.e., hLM

k =

[
−→
h LM

k ;
←−
h LM

k ]. Note that in our formulation, the
forward and backward LMs are independent, with-
out any shared parameters.

2.4 Combining LM with sequence model
Our combined system, TagLM, uses the LM em-
beddings as additional inputs to the sequence tag-
ging model. In particular, we concatenate the LM
embeddings hLM with the output from one of the
bidirectional RNN layers in the sequence model.
In our experiments, we found that introducing the
LM embeddings at the output of the first layer per-
formed the best. More formally, we simply replace
(2) with

hk,1 = [
−→
h k,1;

←−
h k,1;h

LM
k ]. (3)

There are alternate possibilities for adding the
LM embeddings to the sequence model. One pos-
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sibility adds a non-linear mapping after the con-
catenation and before the second RNN (e.g. re-
placing (3) with f([

−→
h k,1;

←−
h k,1;h

LM
k ]) where f

is a non-linear function). Another possibility in-
troduces an attention-like mechanism that weights
the all LM embeddings in a sentence before in-
cluding them in the sequence model. Our ini-
tial results with the simple concatenation were en-
couraging so we did not explore these alternatives
in this study, preferring to leave them for future
work.

3 Experiments

We evaluate our approach on two well bench-
marked sequence tagging tasks, the CoNLL 2003
NER task (Sang and Meulder, 2003) and the
CoNLL 2000 Chunking task (Sang and Buch-
holz, 2000). We report the official evaluation met-
ric (micro-averaged F1). In both cases, we use
the BIOES labeling scheme for the output tags,
following previous work which showed it out-
performs other options (e.g., Ratinov and Roth,
2009). Following Chiu and Nichols (2016), we
use the Senna word embeddings (Collobert et al.,
2011) and pre-processed the text by lowercasing
all tokens and replacing all digits with 0.

CoNLL 2003 NER. The CoNLL 2003 NER
task consists of newswire from the Reuters RCV1
corpus tagged with four different entity types
(PER, LOC, ORG, MISC). It includes standard
train, development and test sets. Following pre-
vious work (Yang et al., 2017; Chiu and Nichols,
2016) we trained on both the train and develop-
ment sets after tuning hyperparameters on the de-
velopment set.

The hyperparameters for our baseline model are
similar to Yang et al. (2017). We use two bidirec-
tional GRUs with 80 hidden units and 25 dimen-
sional character embeddings for the token charac-
ter encoder. The sequence layer uses two bidirec-
tional GRUs with 300 hidden units each. For reg-
ularization, we add 25% dropout to the input of
each GRU, but not to the recurrent connections.

CoNLL 2000 chunking. The CoNLL 2000
chunking task uses sections 15-18 from the Wall
Street Journal corpus for training and section 20
for testing. It defines 11 syntactic chunk types
(e.g., NP, VP, ADJP) in addition to other. We
randomly sampled 1000 sentences from the train-
ing set as a held-out development set.

The baseline sequence tagger uses 30 dimen-
sional character embeddings and a CNN with 30
filters of width 3 characters followed by a tanh
non-linearity for the token character encoder. The
sequence layer uses two bidirectional LSTMs with
200 hidden units. Following Ma and Hovy (2016)
we added 50% dropout to the character embed-
dings, the input to each LSTM layer (but not re-
current connections) and to the output of the final
LSTM layer.

Pre-trained language models. The primary
bidirectional LMs we used in this study were
trained on the 1B Word Benchmark (Chelba et al.,
2014), a publicly available benchmark for large-
scale language modeling. The training split has
approximately 800 million tokens, about a 4000X
increase over the number training tokens in the
CoNLL datasets. Józefowicz et al. (2016) ex-
plored several model architectures and released
their best single model and training recipes. Fol-
lowing Sak et al. (2014), they used linear projec-
tion layers at the output of each LSTM layer to
reduce the computation time but still maintain a
large LSTM state. Their single best model took
three weeks to train on 32 GPUs and achieved 30.0
test perplexity. It uses a character CNN with 4096
filters for input, followed by two stacked LSTMs,
each with 8192 hidden units and a 1024 dimen-
sional projection layer. We use CNN-BIG-LSTM
to refer to this language model in our results.

In addition to CNN-BIG-LSTM from
Józefowicz et al. (2016),1 we used the same cor-
pus to train two additional language models with
fewer parameters: forward LSTM-2048-512
and backward LSTM-2048-512. Both language
models use token embeddings as input to a single
layer LSTM with 2048 units and a 512 dimension
projection layer. We closely followed the proce-
dure outlined in Józefowicz et al. (2016), except
we used synchronous parameter updates across
four GPUs instead of asynchronous updates across
32 GPUs and ended training after 10 epochs. The
test set perplexities for our forward and backward
LSTM-2048-512 language models are 47.7 and
47.3, respectively.2

1https://github.com/tensorflow/models/
tree/master/lm_1b

2Due to different implementations, the perplexity of the
forward LM with similar configurations in Józefowicz et al.
(2016) is different (45.0 vs. 47.7).
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Model F1± std
Chiu and Nichols (2016) 90.91± 0.20
Lample et al. (2016) 90.94
Ma and Hovy (2016) 91.37

Our baseline without LM 90.87± 0.13
TagLM 91.93± 0.19

Table 1: Test set F1 comparison on CoNLL 2003
NER task, using only CoNLL 2003 data and unla-
beled text.

Model F1± std
Yang et al. (2017) 94.66
Hashimoto et al. (2016) 95.02
Søgaard and Goldberg (2016) 95.28

Our baseline without LM 95.00± 0.08
TagLM 96.37± 0.05

Table 2: Test set F1 comparison on CoNLL 2000
Chunking task using only CoNLL 2000 data and
unlabeled text.

Training. All experiments use the Adam opti-
mizer (Kingma and Ba, 2015) with gradient norms
clipped at 5.0. In all experiments, we fine tune
the pre-trained Senna word embeddings but fix all
weights in the pre-trained language models. In ad-
dition to explicit dropout regularization, we also
use early stopping to prevent over-fitting and use
the following process to determine when to stop
training. We first train with a constant learning
rate α = 0.001 on the training data and monitor
the development set performance at each epoch.
Then, at the epoch with the highest development
performance, we start a simple learning rate an-
nealing schedule: decrease α an order of magni-
tude (i.e., divide by ten), train for five epochs, de-
crease α an order of magnitude again, train for five
more epochs and stop.

Following Chiu and Nichols (2016), we train
each final model configuration ten times with dif-
ferent random seeds and report the mean and stan-
dard deviation F1. It is important to estimate the
variance of model performance since the test data
sets are relatively small.

3.1 Overall system results

Tables 1 and 2 compare results from TagLM
with previously published state of the art results
without additional labeled data or task specific
gazetteers. Tables 3 and 4 compare results of

TagLM to other systems that include additional la-
beled data or gazetteers. In both tasks, TagLM es-
tablishes a new state of the art using bidirectional
LMs (the forward CNN-BIG-LSTM and the back-
ward LSTM-2048-512).

In the CoNLL 2003 NER task, our model scores
91.93 mean F1, which is a statistically signifi-
cant increase over the previous best result of 91.62
±0.33 from Chiu and Nichols (2016) that used
gazetteers (at 95%, two-sided Welch t-test, p =
0.021).

In the CoNLL 2000 Chunking task, TagLM
achieves 96.37 mean F1, exceeding all previously
published results without additional labeled data
by more then 1% absolute F1. The improvement
over the previous best result of 95.77 in Hashimoto
et al. (2016) that jointly trains with Penn Treebank
(PTB) POS tags is statistically significant at 95%
(p < 0.001 assuming standard deviation of 0.1).

Importantly, the LM embeddings amounts to an
average absolute improvement of 1.06 and 1.37 F1

in the NER and Chunking tasks, respectively.

Adding external resources. Although we do
not use external labeled data or gazetteers, we
found that TagLM outperforms previous state of
the art results in both tasks when external re-
sources (labeled data or task specific gazetteers)
are available. Furthermore, Tables 3 and 4 show
that, in most cases, the improvements we obtain
by adding LM embeddings are larger then the im-
provements previously obtained by adding other
forms of transfer or joint learning. For example,
Yang et al. (2017) noted an improvement of only
0.06 F1 in the NER task when transfer learning
from both CoNLL 2000 chunks and PTB POS tags
and Chiu and Nichols (2016) reported an increase
of 0.71 F1 when adding gazetteers to their base-
line. In the Chunking task, previous work has re-
ported from 0.28 to 0.75 improvement in F1 when
including supervised labels from the PTB POS
tags or CoNLL 2003 entities (Yang et al., 2017;
Søgaard and Goldberg, 2016; Hashimoto et al.,
2016).

3.2 Analysis

To elucidate the characteristics of our LM aug-
mented sequence tagger, we ran a number of addi-
tional experiments on the CoNLL 2003 NER task.

How to use LM embeddings? In this experi-
ment, we concatenate the LM embeddings at dif-
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F1 F1

Model External resources Without With ∆

Yang et al. (2017) transfer from CoNLL 2000/PTB-POS 91.2 91.26 +0.06
Chiu and Nichols (2016) with gazetteers 90.91 91.62 +0.71
Collobert et al. (2011) with gazetteers 88.67 89.59 +0.92
Luo et al. (2015) joint with entity linking 89.9 91.2 +1.3

Ours no LM vs TagLM unlabeled data only 90.87 91.93 +1.06

Table 3: Improvements in test set F1 in CoNLL 2003 NER when including additional labeled data or
task specific gazetteers (except the case of TagLM where we do not use additional labeled resources).

F1 F1

Model External resources Without With ∆

Yang et al. (2017) transfer from CoNLL 2003/PTB-POS 94.66 95.41 +0.75
Hashimoto et al. (2016) jointly trained with PTB-POS 95.02 95.77 +0.75
Søgaard and Goldberg (2016) jointly trained with PTB-POS 95.28 95.56 +0.28

Ours no LM vs TagLM unlabeled data only 95.00 96.37 +1.37

Table 4: Improvements in test set F1 in CoNLL 2000 Chunking when including additional labeled data
(except the case of TagLM where we do not use additional labeled data).

Use LM embeddings at F1± std
input to the first RNN layer 91.55± 0.21
output of the first RNN layer 91.93± 0.19
output of the second RNN layer 91.72± 0.13

Table 5: Comparison of CoNLL-2003 test set F1

when the LM embeddings are included at different
layers in the baseline tagger.

ferent locations in the baseline sequence tagger. In
particular, we used the LM embeddings hLM

k to:

• augment the input of the first RNN layer; i.e.,
xk = [ck;wk;hLM

k ],

• augment the output of the first RNN layer;
i.e., hk,1 = [

−→
h k,1;

←−
h k,1;h

LM
k ],3 and

• augment the output of the second RNN layer;
i.e., hk,2 = [

−→
h k,2;

←−
h k,2;h

LM
k ].

Table 5 shows that the second alternative per-
forms best. We speculate that the second RNN
layer in the sequence tagging model is able to cap-
ture interactions between task specific context as
expressed in the first RNN layer and general con-
text as expressed in the LM embeddings in a way
that improves overall system performance. These

3This configuration the same as Eq. 3 in §2.4. It was re-
produced here for convenience.

results are consistent with Søgaard and Goldberg
(2016) who found that chunking performance was
sensitive to the level at which additional POS su-
pervision was added.

Does it matter which language model to use?
In this experiment, we compare six different con-
figurations of the forward and backward language
models (including the baseline model which does
not use any language models). The results are re-
ported in Table 6.

We find that adding backward LM embeddings
consistently outperforms forward-only LM em-
beddings, with F1 improvements between 0.22
and 0.27%, even with the relatively small back-
ward LSTM-2048-512 LM.

LM size is important, and replacing the forward
LSTM-2048-512 with CNN-BIG-LSTM (test
perplexities of 47.7 to 30.0 on 1B Word Bench-
mark) improves F1 by 0.26 - 0.31%, about as
much as adding backward LM. Accordingly, we
hypothesize (but have not tested) that replacing
the backward LSTM-2048-512with a backward
LM analogous to the CNN-BIG-LSTM would fur-
ther improve performance.

To highlight the importance of including lan-
guage models trained on a large scale data, we
also experimented with training a language model
on just the CoNLL 2003 training and development
data. Due to the much smaller size of this data
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Forward language model Backward language model LM perplexity F1± std
Fwd Bwd

— — N/A N/A 90.87± 0.13

LSTM-512-256∗ LSTM-512-256∗ 106.9 104.2 90.79± 0.15

LSTM-2048-512 — 47.7 N/A 91.40± 0.18
LSTM-2048-512 LSTM-2048-512 47.7 47.3 91.62± 0.23

CNN-BIG-LSTM — 30.0 N/A 91.66± 0.13
CNN-BIG-LSTM LSTM-2048-512 30.0 47.3 91.93± 0.19

Table 6: Comparison of CoNLL-2003 test set F1 for different language model combinations. All lan-
guage models were trained and evaluated on the 1B Word Benchmark, except LSTM-512-256∗ which
was trained and evaluated on the standard splits of the NER CoNLL 2003 dataset.

set, we decreased the model size to 512 hidden
units with a 256 dimension projection and normal-
ized tokens in the same manner as input to the se-
quence tagging model (lower-cased, with all dig-
its replaced with 0). The test set perplexities for
the forward and backward models (measured on
the CoNLL 2003 test data) were 106.9 and 104.2,
respectively. Including embeddings from these
language models decreased performance slightly
compared to the baseline system without any LM.
This result supports the hypothesis that adding lan-
guage models help because they learn composi-
tion functions (i.e., the RNN parameters in the lan-
guage model) from much larger data compared to
the composition functions in the baseline tagger,
which are only learned from labeled data.

Importance of task specific RNN. To under-
stand the importance of including a task specific
sequence RNN we ran an experiment that removed
the task specific sequence RNN and used only the
LM embeddings with a dense layer and CRF to
predict output tags. In this setup, performance was
very low, 88.17 F1, well below our baseline. This
result confirms that the RNNs in the baseline tag-
ger encode essential information which is not en-
coded in the LM embeddings. This is unsurprising
since the RNNs in the baseline tagger are trained
on labeled examples, unlike the RNN in the lan-
guage model which is only trained on unlabeled
examples. Note that the LM weights are fixed in
this experiment.

Dataset size. A priori, we expect the addition
of LM embeddings to be most beneficial in cases
where the task specific annotated datasets are
small. To test this hypothesis, we replicated the
setup from Yang et al. (2017) that samples 1%
of the CoNLL 2003 training set and compared

the performance of TagLM to our baseline with-
out LM. In this scenario, test F1 increased 3.35%
(from 67.66 to 71.01%) compared to an increase
of 1.06% F1 for a similar comparison with the full
training dataset. The analogous increases in Yang
et al. (2017) are 3.97% for cross-lingual trans-
fer from CoNLL 2002 Spanish NER and 6.28%
F1 for transfer from PTB POS tags. However,
they found only a 0.06% F1 increase when using
the full training data and transferring from both
CoNLL 2000 chunks and PTB POS tags. Taken
together, this suggests that for very small labeled
training sets, transferring from other tasks yields
a large improvement, but this improvement almost
disappears when the training data is large. On the
other hand, our approach is less dependent on the
training set size and significantly improves perfor-
mance even with larger training sets.

Number of parameters. Our TagLM formula-
tion increases the number of parameters in the sec-
ond RNN layer R2 due to the increase in the input
dimension h1 if all other hyperparameters are held
constant. To confirm that this did not have a ma-
terial impact on the results, we ran two additional
experiments. In the first, we trained a system with-
out a LM but increased the second RNN layer hid-
den dimension so that number of parameters was
the same as in TagLM. In this case, performance
decreased slightly (by 0.15% F1) compared to the
baseline model, indicating that solely increasing
parameters does not improve performance. In the
second experiment, we decreased the hidden di-
mension of the second RNN layer in TagLM to
give it the same number of parameters as the base-
line no LM model. In this case, test F1 increased
slightly to 92.00 ± 0.11 indicating that the addi-
tional parameters in TagLM are slightly hurting

1762



performance.4

Does the LM transfer across domains? One
artifact of our evaluation framework is that both
the labeled data in the chunking and NER tasks
and the unlabeled text in the 1 Billion Word
Benchmark used to train the bidirectional LMs are
derived from news articles. To test the sensitiv-
ity to the LM training domain, we also applied
TagLM with a LM trained on news articles to the
SemEval 2017 Shared Task 10, ScienceIE.5 Scien-
ceIE requires end-to-end joint entity and relation-
ship extraction from scientific publications across
three diverse fields (computer science, material
sciences, and physics) and defines three broad en-
tity types (Task, Material and Process). For this
task, TagLM increased F1 on the development set
by 4.12% (from 49.93 to to 54.05%) for entity ex-
traction over our baseline without LM embeddings
and it was a major component in our winning sub-
mission to ScienceIE, Scenario 1 (Ammar et al.,
2017). We conclude that LM embeddings can im-
prove the performance of a sequence tagger even
when the data comes from a different domain.

4 Related work

Unlabeled data. TagLM was inspired by the
widespread use of pre-trained word embeddings
in supervised sequence tagging models. Besides
pre-trained word embeddings, our method is most
closely related to Li and McCallum (2005). In-
stead of using a LM, Li and McCallum (2005) uses
a probabilistic generative model to infer context-
sensitive latent variables for each token, which
are then used as extra features in a supervised
CRF tagger (Lafferty et al., 2001). Other semi-
supervised learning methods for structured pre-
diction problems include co-training (Blum and
Mitchell, 1998; Pierce and Cardie, 2001), expec-
tation maximization (Nigam et al., 2000; Mohit
and Hwa, 2005), structural learning (Ando and
Zhang, 2005) and maximum discriminant func-
tions (Suzuki et al., 2007; Suzuki and Isozaki,
2008). It is easy to combine TagLM with any
of the above methods by including LM embed-
dings as additional features in the discriminative
components of the model (except for expectation
maximization). A detailed discussion of semi-
supervised learning methods in NLP can be found

4A similar experiment for the Chunking task did not im-
prove F1 so this conclusion is task dependent.

5https://scienceie.github.io/

in (Søgaard, 2013).
Melamud et al. (2016) learned a context en-

coder from unlabeled data with an objective func-
tion similar to a bi-directional LM and applied it to
several NLP tasks closely related to the unlabeled
objective function: sentence completion, lexical
substitution and word sense disambiguation.

LM embeddings are related to a class of meth-
ods (e.g., Le and Mikolov, 2014; Kiros et al.,
2015; Hill et al., 2016) for learning sentence and
document encoders from unlabeled data, which
can be used for text classification and textual en-
tailment among other tasks. Dai and Le (2015)
pre-trained LSTMs using language models and se-
quence autoencoders then fine tuned the weights
for classification tasks. In contrast to our method
that uses unlabeled data to learn token-in-context
embeddings, all of these methods use unlabeled
data to learn an encoder for an entire text sequence
(sentence or document).

Neural language models. LMs have always
been a critical component in statistical machine
translation systems (Koehn, 2009). Recently, neu-
ral LMs (Bengio et al., 2003; Mikolov et al., 2010)
have also been integrated in neural machine trans-
lation systems (e.g., Kalchbrenner and Blunsom,
2013; Devlin et al., 2014) to score candidate trans-
lations. In contrast, TagLM uses neural LMs to
encode words in the input sequence.

Unlike forward LMs, bidirectional LMs have
received little prior attention. Most similar to
our formulation, Peris and Casacuberta (2015)
used a bidirectional neural LM in a statistical ma-
chine translation system for instance selection.
They tied the input token embeddings and soft-
max weights in the forward and backward direc-
tions, unlike our approach which uses two distinct
models without any shared parameters. Frinken
et al. (2012) also used a bidirectional n-gram LM
for handwriting recognition.

Interpreting RNN states. Recently, there has
been some interest in interpreting the activations
of RNNs. Linzen et al. (2016) showed that sin-
gle LSTM units can learn to predict singular-plural
distinctions. Karpathy et al. (2015) visualized
character level LSTM states and showed that indi-
vidual cells capture long-range dependencies such
as line lengths, quotes and brackets. Our work
complements these studies by showing that LM
states are useful for downstream tasks as a way
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of interpreting what they learn.

Other sequence tagging models. Current state
of the art results in sequence tagging problems are
based on bidirectional RNN models. However,
many other sequence tagging models have been
proposed in the literature for this class of problems
(e.g., Lafferty et al., 2001; Collins, 2002). LM em-
beddings could also be used as additional features
in other models, although it is not clear whether
the model complexity would be sufficient to effec-
tively make use of them.

5 Conclusion

In this paper, we proposed a simple and general
semi-supervised method using pre-trained neural
language models to augment token representations
in sequence tagging models. Our method signifi-
cantly outperforms current state of the art models
in two popular datasets for NER and Chunking.
Our analysis shows that adding a backward LM in
addition to traditional forward LMs consistently
improves performance. The proposed method is
robust even when the LM is trained on unlabeled
data from a different domain, or when the base-
line model is trained on a large number of labeled
examples.
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