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Abstract

In this paper, we study a novel approach
for named entity recognition (NER) and
mention detection (MD) in natural lan-
guage processing. Instead of treating
NER as a sequence labeling problem, we
propose a new local detection approach,
which relies on the recent fixed-size ordi-
nally forgetting encoding (FOFE) method
to fully encode each sentence fragment
and its left/right contexts into a fixed-
size representation. Subsequently, a sim-
ple feedforward neural network (FFNN)
is learned to either reject or predict en-
tity label for each individual text frag-
ment. The proposed method has been eval-
uated in several popular NER and MD
tasks, including CoNLL 2003 NER task
and TAC-KBP2015 and TAC-KBP2016
Tri-lingual Entity Discovery and Linking
(EDL) tasks. Our method has yielded
pretty strong performance in all of these
examined tasks. This local detection ap-
proach has shown many advantages over
the traditional sequence labeling methods.

1 Introduction

Natural language processing (NLP) plays an im-
portant role in artificial intelligence, which has
been extensively studied for many decades. Con-
ventional NLP techniques include the rule-based
symbolic approaches widely used about two
decades ago, and the more recent statistical ap-
proaches relying on feature engineering and sta-
tistical models. In the recent years, deep learning
approach has achieved huge successes in many ap-
plications, ranging from speech recognition to im-
age classification. It is drawing increasing atten-
tion in the NLP community.

In this paper, we are interested in a fundamen-
tal problem in NLP, namely named entity recogni-
tion (NER) and mention detection (MD). NER and
MD are very challenging tasks in NLP, laying the
foundation of almost every NLP application. NER
and MD are tasks of identifying entities (named
and/or nominal) from raw text, and classifying the
detected entities into one of the pre-defined cate-
gories such as person (PER), organization (ORG),
location (LOC), etc. Some tasks focus on named
entities only, while the others also detect nominal
mentions. Moreover, nested mentions may need to
be extracted too. For example,

[Sue]PER and her [brother]PER N studied in
[University of [Toronto]LOC ]ORG

.

where Toronto is a LOC entity, embedded in an-
other longer ORG entity University of Toronto.

Similar to many other NLP problems, NER and
MD is formulated as a sequence labeling prob-
lem, where a tag is sequentially assigned to each
word in the input sentence. It has been extensively
studied in the NLP community (Borthwick et al.,
1998). The core problem is to model the condi-
tional probability of an output sequence given an
arbitrary input sequence. Many hand-crafted fea-
tures are combined with statistical models, such as
conditional random fields (CRFs) (Nguyen et al.,
2010), to compute conditional probabilities. More
recently, some popular neural networks, includ-
ing convolutional neural networks (CNNs) and re-
current neural networks (RNNs), are proposed to
solve sequence labelling problems. In the infer-
ence stage, the learned models compute the condi-
tional probabilities and the output sequence is gen-
erated by the Viterbi decoding algorithm (Viterbi,
1967).

In this paper, we propose a novel local detec-
tion approach for solving NER and MD problems.
The idea can be easily extended to many other se-
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quence labeling problems, such as chunking, part-
of-speech tagging (POS). Instead of globally mod-
eling the whole sequence in training and jointly
decode the entire output sequence in test, our
method examines all word segments (up to a cer-
tain length) in a sentence. A word segment will
be examined individually based on the underlying
segment itself and its left and right contexts in the
sentence so as to determine whether this word seg-
ment is a valid named entity and the corresponding
label if it is. This approach conforms to the way
human resolves an NER problem. Given any word
fragment and its contexts in a sentence or para-
graph, people accurately determine whether this
word segment is a named entity or not. People
rarely conduct a global decoding over the entire
sentence to make such a decision. The key to mak-
ing an accurate local decision for each individual
fragment is to have full access to the fragment it-
self as well as its complete contextual information.
The main pitfall to implement this idea is that we
can not easily encode the segment and its contexts
in models since they are of varying lengths in nat-
ural languages. Many feature engineering tech-
niques have been proposed but all of these meth-
ods will inevitably lead to information loss. In this
work, we propose to use a recent fixed-size encod-
ing method, namely fixed-size ordinally forgetting
encoding (FOFE) (Zhang et al., 2015a,b), to solve
this problem. The FOFE method is a simple recur-
sive encoding method. FOFE theoretically guar-
antees (almost) unique and lossless encoding of
any variable-length sequence. The left and the
right contexts for each word segment are encoded
by FOFE method, and then a simple neural net-
work can be trained to make a precise recogni-
tion for each individual word segment based on the
fixed-size presentation of the contextual informa-
tion. This FOFE-based local detection approach
is more appealing to NER and MD. Firstly, fea-
ture engineering is almost eliminated. Secondly,
under this local detection framework, nested men-
tion is handled with little modification. Next, it
makes better use of partially-labeled data avail-
able from many application scenarios. Sequence
labeling model requires all entities in a sentence
to be labeled. If only some (not all) entities are la-
beled, it is not effective to learn a sequence label-
ing model. However, every single labeled entity,
along with its contexts, may be used to learn the
proposed model. At last, due to the simplicity of

FOFE, simple neural networks, such as multilayer
perceptrons, are sufficient for recognition. These
models are much faster to train and easier to tune.
In the test stage, all possible word segments from a
sentence may be packed into a mini-batch, jointly
recognized in parallel on GPUs. This leads to a
very fast decoding process as well.

In this paper, we have applied this FOFE-based
local detection approach to several popular NER
and MD tasks, including the CoNLL 2003 NER
task and TAC-KBP2015 and TAC-KBP2016 Tri-
lingual Entity Discovery and Linking (EDL) tasks.
Our proposed method has yielded strong perfor-
mance in all of these examined tasks.

2 Related Work

It has been a long history of research involving
neural networks (NN). In this section, we briefly
review some recent NN-related research work in
NLP, which may be relevant to our work.

The success of word embedding (Mikolov et al.,
2013; Liu et al., 2015) encourages researchers to
focus on machine-learned representation instead
of heavy feature engineering in NLP. Using word
embedding as the typical feature representation
for words, NNs become competitive to traditional
approaches in NER. Many NLP tasks, such as
NER, chunking and part-of-speech (POS) tagging
can be formulated as sequence labeling tasks. In
(Collobert et al., 2011), deep convolutional neu-
ral networks (CNN) and conditional random fields
(CRF) are used to infer NER labels at a sentence
level, where they still use many hand-crafted fea-
tures to improve performance, such as capitaliza-
tion features explicitly defined based on first-letter
capital, non-initial capital and so on.

Recently, recurrent neural networks (RNNs)
have demonstrated the ability in modeling se-
quences (Graves, 2012). Huang et al. (2015)
built on the previous CNN-CRF approach by re-
placing CNNs with bidirectional Long Short-Term
Memory (B-LSTM). Though they have reported
improved performance, they employ heavy fea-
ture engineering in that work, most of which
is language-specific. There is a similar attempt
in (Rondeau and Su, 2016) with full-rank CRF.
CNNs are used to extract character-level features
automatically in (dos Santos et al., 2015).

Gazetteer is a list of names grouped by the pre-
defined categories. Gazetteer is shown to be one
of the most effective external knowledge sources
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to improve NER performance (Sang and Meulder,
2003). Thus, gazetteer is widely used in many
NER systems. In (Chiu and Nichols, 2016), state-
of-the-art performance on a popular NER task,
i.e., CoNLL2003, is achieved by incorporating a
large gazetteer. Different from previous ways to
use a set of bits to indicate whether a word is in
gazetteer or not, they have encoded a match in
BIOES (Begin, Inside, Outside, End, Single) an-
notation, which captures positional information.

Interestingly enough, none of these recent suc-
cesses in NER was achieved by a vanilla RNN.
Rather, these successes are often established by
sophisticated models combining CNNs, LSTMs
and CRFs in certain ways. In this paper, based on
recent work in (Zhang et al., 2015a,b) and (Zhang
et al., 2016), we propose a novel but simple solu-
tion to NER by applying DNN on top of FOFE-
based features. This simpler approach can achieve
performance very close to state-of-the-art on vari-
ous NER and MD tasks, without using any exter-
nal knowledge or feature engineering.

3 Preliminary

In this section, we will briefly review some back-
ground techniques, which are important to our
proposed NER and mention detection approach.

3.1 Deep Feedforward Neural Networks

It is well known that neural network is a universal
approximator under certain conditions (Hornik,
1991). A feedforward neural network (FFNN) is a
weighted graph with a layered architecture. Each
layer is composed of several nodes. Successive
layers are fully connected. Each node applies a
function on the weighted sum of the lower layer.
An NN can learn by adjusting its weights in a
process called back-propagation. The learned NN
may be used to generalize and extrapolate to new
inputs that have not been seen during training.

3.2 Fixed-size Ordinally Forgetting Encoding

FFNN is a powerful computation model. How-
ever, it requires fixed-size inputs and lacks the
ability of capturing long-term dependency. Be-
cause most NLP problems involves variable-
length sequences of words, RNNs/LSTMs are
more popular than FFNNs in dealing with these
problems. The Fixed-size Ordinally Forgetting
Encoding (FOFE), originally proposed in (Zhang
et al., 2015a,b), nicely overcomes the limitations

of FFNNs because it can uniquely and losslessly
encode a variable-length sequence of words into a
fixed-size representation.

Give a vocabulary V , each word can be repre-
sented by a one-hot vector. FOFE mimics bag-of-
words (BOW) but incorporates a forgetting factor
to capture positional information. It encodes any
sequence of variable length composed by words in
V . Let S = w1, w2, w3, ..., wT denote a sequence
of T words from V , and et be the one-hot vector
of the t-th word in S, where 1 ≤ t ≤ T . The
FOFE of each partial sequence zt from the first
word to the t-th word is recursively defined as:

zt =

{
0, if t = 0

α · zt−1 + et, otherwise
(1)

where the constant α is called forgetting factor,
and it is picked between 0 and 1 exclusively. Ob-
viously, the size of zt is |V |, and it is irrelevant to
the length of original sequence, T .

Here’s an example. Assume that we have three
words in our vocabulary, e.g. A, B, C, whose
one-hot representations are [1, 0, 0], [0, 1, 0] and
[0, 0, 1] respectively. When calculating from left
to right, the FOFE for the sequence “ABC” is
[α2, α, 1] and that of “ABCBC” is [α4, α+α3, 1+
α2].

The word sequences can be unequivocally re-
covered from their FOFE representations (Zhang
et al., 2015a,b). The uniqueness of FOFE repre-
sentation is theoretically guaranteed by the follow-
ing two theorems:

Theorem 1. If the forgetting factor α satisfies
0 < α ≤ 0.5, FOFE is unique for any countable
vocabulary V and any finite value T .

Theorem 2. For 0.5 < α < 1, given any finite
value T and any countable vocabulary V , FOFE
is almost unique everywhere, except only a finite
set of countable choices of α.

Though in theory uniqueness is not guaranteed
when α is chosen from 0.5 to 1, in practice the
chance of hitting such scenarios is extremely slim,
almost impossible due to quantization errors in the
system. Furthermore, in natural languages, nor-
mally a word does not appear repeatedly within
a near context. Simply put, FOFE is capable
of uniquely encoding any sequence of arbitrary
length, serving as a fixed-size but theoretically
lossless representation for any sequence.
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Figure 1: Illustration of the local detection approach for NER using FOFE codes as input and an FFNN
as model. The window currently examines the fragment of Toronto Maple Leafs. The window will scan
and scrutinize all fragments up to K words.

3.3 Character-level Models in NLP
Kim et al. (2016) model morphology in the char-
acter level since this may provide some additional
advantages in dealing with unknown or out-of-
vocabulary (OOVs) words in a language. In the
literature, convolutional neural networks (CNNs)
have been widely used as character-level models
in NLP (Kim et al., 2016). A trainable character
embedding is initialized based on a set of possible
characters. When a word fragment comes, char-
acter vectors are retrieved according to its spelling
to construct a matrix. This matrix can be viewed
as a single-channel image. CNN is applied to gen-
erate a more abstract representation of the word
fragment.

The above FOFE method can be easily ex-
tended to model character-level feature in NLP.
Any word, phrase or fragment can be viewed as
a sequence of characters. Based on a pre-defined
set of all possible characters, we apply the same
FOFE method to encode the sequence of charac-
ters. This always leads to a fixed-size representa-
tion, irrelevant to the number of characters in ques-
tion. For example, a word fragment of “Walmart”
may be viewed as a sequence of seven characters:
‘W’, ‘a’, ‘l’, ‘m’, ‘a’, ‘r’, ‘t’. The FOFE codes
of character sequences are always fixed-sized and
they can be directly fed to an FFNN for morphol-
ogy modeling.

4 FOFE-based Local Detection for NER

As described above, our FOFE-based local detec-
tion approach for NER, called FOFE-NER here-
after, is motivated by the way how human actu-
ally infers whether a word segment in text is an
entity or mention, where the entity types of the

other entities in the same sentence is not a must.
Particularly, the dependency between adjacent en-
tities is fairly weak in NER. Whether a fragment
is an entity or not, and what class it may belong
to, largely depend on the internal structure of the
fragment itself as well as the left and right con-
texts in which it appears. To a large extent, the
meaning and spelling of the underlying fragment
are informative to distinguish named entities from
the rest of the text. Contexts play a very important
role in NER or MD when it involves multi-sense
words/phrases or out-of-vocabulary (OOV) words.

As shown in Figure 1, our proposed FOFE-
NER method will examine all possible fragments
in text (up to a certain length) one by one. For each
fragment, it uses the FOFE method to fully en-
code the underlying fragment itself, its left context
and right context into some fixed-size representa-
tions, which are in turn fed to an FFNN to pre-
dict whether the current fragment is NOT a valid
entity mention (NONE), or its correct entity type
(PER, LOC, ORG and so on) if it is a valid men-
tion. This method is appealing because the FOFE
codes serves as a theoretically lossless representa-
tion of the hypothesis and its full contexts. FFNN
is used as a universal approximator to map from
text to the entity labels.

In this work, we use FOFE to explore both
word-level and character-level features for each
fragment and its contexts.

4.1 Word-level Features

FOFE-NER generates several word-level features
for each fragment hypothesis and its left and right
contexts as follows:

• Bag-of-word (BoW) of the fragment, e.g.
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bag-of-word vector of ‘Toronto’, ‘Maple’ and
‘Leafs’ in Figure 1.

• FOFE code for left context including the
fragment, e.g. FOFE code of the word se-
quence of “... puck from space for the Toronto
Maple Leafs” in Figure 1.

• FOFE code for left context excluding the
fragment, e.g. the FOFE code of the word
sequence of “... puck from space for the” in
Figure 1..

• FOFE code for right context including the
fragment, e.g. the FOFE code of the word
sequence of “... against opener home ’ Leafs
Maple Toronto” in Figure 1.

• FOFE code for right context excluding the
fragment, e.g. the FOFE code of the word se-
quence of “... against opener home ” in Fig-
ure 1.

Moreover, all of the above word features are
computed for both case-sensitive words in raw
text as well as case-insensitive words in normal-
ized lower-case text. These FOFE codes are pro-
jected to lower-dimension dense vectors based on
two projection matrices, Ws and Wi, for case-
sensitive and case-insensitive FOFE codes respec-
tively. These two projection matrices are initial-
ized by word embeddings trained by word2vec,
and fine-tuned during the learning of the neural
networks.

Due to the recursive computation of FOFE
codes in eq.(1), all of the above FOFE codes can
be jointly computed for one sentence or document
in a very efficient manner.

4.2 Character-level Features

On top of the above word-level features, we also
augment character-level features for the underly-
ing segment hypothesis to further model its mor-
phological structure. For the example in Figure 1,
the current fragment, Toronto Maple Leafs, is con-
sidered as a sequence of case-sensitive characters,
i.e. “{‘T’, ‘o’, ..., ‘f’ , ‘s’ }”, we then add the fol-
lowing character-level features for this fragment:
• Left-to-right FOFE code of the character se-

quence of the underlying fragment. That is
the FOFE code of the sequence, “‘T’, ‘o’, ...,
‘f’ , ‘s’ ”.

• Right-to-left FOFE code of the character se-
quence of the underlying fragment. That is

the FOFE code of the sequence, “‘s’ , ‘f’ , ...,
‘o’, ‘T’ ”.

These case-sensitive character FOFE codes are
also projected by another character embedding
matrix, which is randomly initialized and fine-
tuned during model training.

Alternatively, we may use the character CNNs,
as described in Section 3.3, to generate character-
level features for each fragment hypothesis as
well.

5 Training and Decoding Algorithm

Obviously, the above FOFE-NER model will take
each sentence of words, S = [w1, w2, w3, ..., wm],
as input, and examine all continuous sub-
sequences [wi, wi+1, wi+2, ..., wj ] up to n words
in S for possible entity types. All sub-sequences
longer than n words are considered as non-entities
in this work.

When we train the model, based on the entity
labels of all sentences in the training set, we will
generate many sentence fragments up to n words.
These fragments fall into three categories:
• Exact-match with an entity label, e.g., the

fragment “Toronto Maple Leafs” in the pre-
vious example.

• Partial-overlap with an entity label, e.g., “for
the Toronto”.

• Disjoint with all entity label, e.g. “from space
for”.

For all exact-matched fragments, we generate
the corresponding outputs based on the types of
the matched entities in the training set. For both
partial-overlap and disjoint fragments, we intro-
duce a new output label, NONE, to indicate that
these fragments are not a valid entity. Therefore,
the output nodes in the neural networks contains
all entity types plus a rejection option denoted as
NONE.

During training, we implement a producer-
consumer software design such that a thread
fetches training examples, computes all FOFE
codes and packs them as a mini-batch while the
other thread feeds the mini-batches to neural net-
works and adjusts the model parameters and all
projection matrices. Since “partial-overlap” and
“disjoint” significantly outnumber “exact-match”,
they are down-sampled so as to balance the data
set.

During inference, all fragments not longer than
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n words are all fed to FOFE-NER to compute
their scores over all entity types. In practice, these
fragments can be packed as one mini-batch so that
we can compute them in parallel on GPUs. As the
NER result, the FOFE-NER model will return a
subset of fragments only if: i) they are recognized
as a valid entity type (not NONE); AND ii) their
NN scores exceed a global pruning threshold.

Occasionally, some partially-overlapped or
nested fragments may occur in the above pruned
prediction results. We can use one of the following
simple post-processing methods to remove over-
lappings from the final results:

1. highest-first: We check every word in a sen-
tence. If it is contained by more than one
fragment in the pruned results, we only keep
the one with the maximum NN score and dis-
card the rest.

2. longest-first: We check every word in a sen-
tence. If it is contained by more than one
fragment in the pruned results, we only keep
the longest fragment and discard the rest.

Either of these strategies leads to a collection of
non-nested, non-overlapping, non-NONE entity
labels.

In some tasks, it may require to label all nested
entities. This has imposed a big challenge to the
sequence labeling methods. However, the above
post-processing can be slightly modified to gen-
erate nested entities’ labels. In this case, we first
run either highest-first or longest-first to generate
the first round result. For every entity survived in
this round, we will recursively run either highest-
first or longest-first on all entities in the original
set, which are completely contained by it. This
will generate more prediction results. This pro-
cess may continue to allow any levels of nesting.
For example, for a sentence of “w1 w2 w3 w4 w5”,
if the model first generates the prediction results
after the global pruning, as [“w2w3”, PER, 0.7],
[“w3w4”, LOC, 0.8], [“w1w2w3w4”, ORG, 0.9],
if we choose to run highest-first, it will gener-
ate the first entity label as [“w1w2w3w4”, ORG,
0.9]. Secondly, we will run highest-first on the
two fragments that are completely contained by
the first one, i.e., [“w2w3”, PER, 0.7], [“w3w4”,
LOC, 0.8], then we will generate the second nested
entity label as [“w3w4”, LOC, 0.8]. Fortunately,
in any real NER and MD tasks, it is pretty rare
to have overlapped predictions in the NN outputs.

Therefore, the extra expense to run this recursive
post-processing method is minimal.

6 Second-Pass Augmentation

As we know, CRF brings marginal performance
gain to all taggers (but not limited to NER) be-
cause of the dependancies (though fairly weak) be-
tween entity types. We may easily add this level of
information to our model by introducing another
pass of FOFE-NER. We call it 2nd-pass FOFE-
NER.

In 2nd-pass FOFE-NER, another set of model
is trained on outputs from the first-pass FOFE-
NER, including all predicted entities. For exam-
ple, given a sentence

S = [w1, w2, ...wi, ...wj , ...wn]

and an underlying word segment [wi, ..., wj ] in the
second pass, every predicted entity outside this
segment is substituted by its entity type predicted
from the first pass. For example, in the first pass,
a sentence like “Google has also recruited Fei-Fei
Li, director of the AI lab at Stanford University.”
is predicted as: “<ORG> has also recruited Fei-
Fei Li, director of the AI lab at<ORG>.” In 2nd-
pass FOFE-NER, when examining the segment
“Fei-Fei Li”, the predicted entity types <ORG>
are used to replace the actual named entities. The
2nd-pass FOFE-NER model is trained on the out-
puts of the first pass, where all detected entities are
replaced by their predicted types as above.

During inference, the results returned by the
1st-pass model are substituted in the same way.
The scores for each hypothesis from 1st-pass
model and 2nd-pass model are linear interpolated
and then decoded by either highest-first or longest-
first to generate the final results of 2nd-pass
FOFE-NER.

Obviously, 2nd-pass FOFE-NER may capture
the semantic roles of other entities while filtering
out unwanted constructs and sparse combonations.
On the other hand, it enables longer context expan-
sion, since FOFE memorizes contextual informa-
tion in an unselective decaying fashion.

7 Experiments

In this section, we evaluate the effectiveness of
our proposed methods on several popular NER
and MD tasks, including CoNLL 2003 NER
task and TAC-KBP2015 and TAC-KBP2016 Tri-
lingual Entity Discovery and Linking (EDL) tasks.
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We have made our codes available at https://
github.com/xmb-cipher/fofe-ner for
readers to reproduce the results in this paper.

7.1 CoNLL 2003 NER task

The CoNLL-2003 dataset (Sang and Meulder,
2003) consists of newswire from the Reuters
RCV1 corpus tagged with four types of non-
nested named entities: location (LOC), organi-
zation (ORG), person (PER), and miscellaneous
(MISC).

The top 100,000 words, are kept as vocabulary,
including punctuations. For the case-sensitive em-
bedding, an OOV is mapped to <unk> if it con-
tains no upper-case letter and <UNK> other-
wise. We perform grid search on several hyper-
parameters using a held-out dev set. Here we
summarize the set of hyper-parameters used in
our experiments: i) Learning rate: initially set
to 0.128 and is multiplied by a decay factor each
epoch so that it reaches 1/16 of the initial value
at the end of the training; ii) Network struc-
ture: 3 fully-connected layers of 512 nodes with
ReLU activation, randomly initialized based on
a uniform distribution between −

√
6

Ni+No
and

√
6

Ni+No
(Glorot et al., 2011); iii) Character em-

beddings: 64 dimensions, randomly initialized.
iv) mini-batch: 512; v) Dropout rate: initially set
to 0.4, slowly decreased during training until it
reaches 0.1 at the end. vi) Number of epochs: 128;
vii)Embedding matrices case-sensitive and case-
insensitive word embeddings of 256 dimensions,
trained from Reuters RCV1; viii) We stick to the
official data train-dev-test partition. ix) Forgetting
factor α = 0.5. 1

We have investigated the performance of our
method on the CoNLL-2003 dataset by using dif-
ferent combinations of the FOFE features (both
word-level and character-level). The detailed
comparison results are shown in Table 1. In Table
2, we have compared our best performance with
some top-performing neural network systems on
this task. As we can see from Table 2, our system
(highest-first decoding) yields very strong perfor-
mance (90.85 in F1 score) in this task, outperform-
ing most of neural network models reported on this

1The choice of the forgetting factor α is empirical. We’ve
evaluatedα = 0.5, 0.6, 0.7, 0.8 on a development set in some
early experiments. It turns out that α = 0.5 is the best. As a
result, α = 0.5 is used for all NER/MD tasks throughout this
paper.

dataset. More importantly, we have not used any
hand-crafted features in our systems, and all fea-
tures (either word or char level) are automatically
derived from the data. Highest-first and longest-
first perform similarly. In (Chiu and Nichols,
2016)2, a slightly better performance (91.62 in F1

score) is reported but a customized gazetteer is
used in theirs.

7.2 KBP2015 EDL Task

Given a document collection in three languages
(English, Chinese and Spanish), the KBP2015 tri-
lingual EDL task (Ji et al., 2015) requires to auto-
matically identify entities (including nested enti-
ties) from a source collection of textual documents
in multiple languages as in Table 3, and classify
them into one of the following pre-defined five
types: Person (PER), Geo-political Entity (GPE),
Organization (ORG), Location (LOC) and Facility
(FAC). The corpus consists of news articles and
discussion forum posts published in recent years,
related but non-parallel across languages.

Three models are trained and evaluated inde-
pendently. Unless explicitly listed, hyperparam-
eters follow those used for CoNLL2003 as de-
scribed in section 7.1 and 2nd-pass model is not
used. Three sets of word embeddings of 128
dimensions are derived from English Gigaword
(Parker et al., 2011), Chinese Gigaword (Graff and
Chen, 2005) and Spanish Gigaword (Mendonca
et al., 2009) respectively. Some language-specific
modifications are made:
• Chinese: Because Chinese segmentation is

not reliable, we label Chinese at character
level. The analogous roles of case-sensitive
word-embedding and case-sensitive word-
embedding are played by character embed-
ding and word-embedding in which the char-
acter appears. Neither Char FOFE features
nor Char CNN features are used for Chinese.

• Spanish: Character set of Spanish is a su-
per set of that of English. When build-
ing character-level features, we use the mod
function to hash each character’s UTF8 en-
coding into a number between 0 (inclusive)
and 128 (exclusive).

As shown in Table 4, our FOFE-based local de-
tection method has obtained fairly strong perfor-

2In their work, they have used a combination of training-
set and dev-set to train the model, differing from all other
systems (including ours) in Table 2.
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FEATURE P R F1

word-level

case-insensitive
context FOFE incl. word fragment 86.64 77.04 81.56
context FOFE excl. word fragment 53.98 42.17 47.35
BoW of word fragment 82.92 71.85 76.99

case-sensitive
context FOFE incl. word fragment 88.88 79.83 84.12
context FOFE excl. word fragment 50.91 42.46 46.30
BoW of word fragment 85.41 74.95 79.84

char-level
Char FOFE of word fragment 67.67 52.78 59.31
Char CNN of word fragment 78.93 69.49 73.91

all case-insensitive features 90.11 82.75 86.28
all case-sensitive features 90.26 86.63 88.41
all word-level features 92.03 86.08 88.96
all word-level & Char FOFE features 91.68 88.54 90.08
all word-level & Char CNN features 91.80 88.58 90.16
all word-level & all char-level features 93.29 88.27 90.71
all features + dev set + 5-fold cross-validation 92.58 89.31 90.92
all features + 2nd-pass 92.13 89.61 90.85
all features + 2nd-pass + dev set + 5-fold cross-validation 92.62 89.77 91.17

Table 1: Effect of various FOFE feature combinations on the CoNLL2003 test data.

algorithm word char gaz cap pos F1
CNN-BLSTM-CRF (Collobert et al., 2011) 3 7 3 3 7 89.59
BLSTM-CRF (Huang et al., 2015) 3 3 3 3 3 90.10
BLSTM-CRF (Rondeau and Su, 2016) 3 7 3 3 3 89.28
BLSTM-CRF, char-CNN (Chiu and Nichols, 2016) 3 3 3 7 7 91.62
Stack-LSTM-CRF, char-LSTM (Lample et al., 2016) 3 3 7 7 7 90.94
this work 3 3 7 7 7 90.85

Table 2: Performance (F1 score) comparison among various neural models reported on the CoNLL
dataset, and the different features used in these methods.

English Chinese Spanish ALL
Train 168 147 129 444
Eval 167 167 166 500

Table 3: Number of Documents in KBP2015

2015 track best ours
P R F1 P R F1

Trilingual 75.9 69.3 72.4 78.3 69.9 73.9
English 79.2 66.7 72.4 77.1 67.8 72.2
Chinese 79.2 74.8 76.9 79.3 71.7 75.3
Spanish 78.4 72.2 75.2 79.9 71.8 75.6

Table 4: Entity Discovery Performance of our
method on the KBP2015 EDL evaluation data,
with comparison to the best systems in KBP2015
official evaluation.

mance in the KBP2015 dataset. The overall trilin-
gual entity discovery performance is slightly bet-
ter than the best systems participated in the official
KBP2015 evaluation, with 73.9 vs. 72.4 as mea-
sured by F1 scores. Outer and inner decodings are
longest-first and highest-first respectively.

7.3 KBP2016 EDL task
In KBP2016, the trilingual EDL task is extended
to detect nominal mentions of all 5 entity types for
all three languages. In our experiments, for sim-
plicity, we treat nominal mention types as some
extra entity types and detect them along with
named entities together with a single model.

7.3.1 Data Description
No official training set is provided in KBP2016.
We make use of three sets of training data:
• Training and evaluation data in KBP2015:

as described in 7.2
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LANG
NAME NOMINAL OVERALL 2016 BEST

P R F1 P R F1 P R F1 P R F1
ENG 0.898 0.789 0.840 0.554 0.336 0.418 0.836 0.680 0.750 0.846 0.710 0.772
CMN 0.848 0.702 0.768 0.414 0.258 0.318 0.789 0.625 0.698 0.789 0.737 0.762
SPA 0.835 0.778 0.806 0.000 0.000 0.000 0.835 0.602 0.700 0.839 0.656 0.736
ALL 0.893 0.759 0.821 0.541 0.315 0.398 0.819 0.639 0.718 0.802 0.704 0.756

Table 5: Official entity discovery performance of our methods on KBP2016 trilingual EDL track. Neither
KBP2015 nor in-house data labels nominal mentions. Nominal mentions in Spanish are totally ignored
since no training data is found for them.

training data P R F1

KBP2015 0.836 0.598 0.697
KBP2015 + WIKI 0.837 0.628 0.718
KBP2015 + in-house 0.836 0.680 0.750

Table 6: Our entity discovery official performance
(English only) in KBP2016 is shown as a compar-
ison of three models trained by different combina-
tions of training data sets.

• Machine-labeled Wikipedia (WIKI): When
terms or names are first mentioned in a
Wikipedia article they are often linked to the
corresponding Wikipedia page by hyperlinks,
which clearly highlights the possible named
entities with well-defined boundary in the
text. We have developed a program to au-
tomatically map these hyperlinks into KBP
annotations by exploring the infobox (if ex-
isting) of the destination page and/or examin-
ing the corresponding Freebase types. In this
way, we have created a fairly large amount of
weakly-supervised trilingual training data for
the KBP2016 EDL task. Meanwhile, a gaze-
teer is created and used in KBP2016.

• In-house dataset: A set of 10,000 English
and Chinese documents is manually labeled
using some annotation rules similar to the
KBP 2016 guidelines.

We split the available data into training, valida-
tion and evaluation sets in a ratio of 90:5:5. The
models are trained for 256 epochs if the in-house
data is not used, and 64 epochs otherwise.

7.3.2 Effect of various training data
In our first set of experiments, we investigate the
effect of using different training data sets on the fi-
nal entity discovery performance. Different train-
ing runs are conducted on different combinations
of the aforementioned data sources. In Table 6, we
have summarized the official English entity dis-

covery results from several systems we submit-
ted to KBP2016 EDL evaluation round I and II.
The first system, using only the KBP2015 data to
train the model, has achieved 0.697 in F1 score
in the official KBP2016 English evaluation data.
After adding the weakly labeled data, WIKI, we
can see the entity discovery performance is im-
proved to 0.718 in F1 score. Moreover, we can
see that it yields even better performance by us-
ing the KBP2015 data and the in-house data sets
to train our models, giving 0.750 in F1 score.

7.3.3 The official trilingual EDL
performance in KBP2016

The official best results of our system are sum-
marized in Table 5. We have broken down the
system performance according to different lan-
guages and categories of entities (named or nom-
inal). Our system, achieving 0.718 in F1 score
in the KBP2016 trilingual EDL track, ranks sec-
ond among all participants. Note that our result
is produced by a single system while the top sys-
tem is a combination of two different models, each
of which is based on 5-fold cross-validation (Liu
et al., 2016).

8 Conclusion

In this paper, we propose a novel solution to NER
and MD by applying FFNN on top of FOFE fea-
tures. This simple local-detection based approach
has achieved almost state-of-the-art performance
on various NER and MD tasks, without using any
external knowledge or feature engineering.
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