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Abstract

Automatically evaluating the quality of di-
alogue responses for unstructured domains
is a challenging problem. Unfortunately,
existing automatic evaluation metrics are
biased and correlate very poorly with hu-
man judgements of response quality. Yet
having an accurate automatic evaluation
procedure is crucial for dialogue research,
as it allows rapid prototyping and testing of
new models with fewer expensive human
evaluations. In response to this challenge,
we formulate automatic dialogue evalua-
tion as a learning problem. We present an
evaluation model (ADEM) that learns to pre-
dict human-like scores to input responses,
using a new dataset of human response
scores. We show that the ADEM model’s
predictions correlate significantly, and at a
level much higher than word-overlap met-
rics such as BLEU, with human judge-
ments at both the utterance and system-
level. We also show that ADEM can gener-
alize to evaluating dialogue models unseen
during training, an important step for auto-
matic dialogue evaluation.

1 Introduction

Building systems that can naturally and meaning-
fully converse with humans has been a central goal
of artificial intelligence since the formulation of
the Turing test (Turing, 1950). Research on one
type of such systems, sometimes referred to as
non-task-oriented dialogue systems, goes back to
the mid-60s with Weizenbaum’s famous program
ELIZA: a rule-based system mimicking a Roge-
rian psychotherapist by persistently either rephras-
ing statements or asking questions (Weizenbaum,

∗ Indicates equal contribution.

Context of Conversation
Speaker A: Hey, what do you want to do tonight?
Speaker B: Why don’t we go see a movie?
Model Response
Nah, let’s do something active.
Reference Response
Yeah, the film about Turing looks great!

Figure 1: Example where word-overlap scores
fail for dialogue evaluation; although the model
response is reasonable, it has no words in common
with the reference response, and thus would be
given low scores by metrics such as BLEU.

1966). Recently, there has been a surge of inter-
est towards building large-scale non-task-oriented
dialogue systems using neural networks (Sordoni
et al., 2015b; Shang et al., 2015; Vinyals and Le,
2015; Serban et al., 2016a; Li et al., 2015). These
models are trained in an end-to-end manner to op-
timize a single objective, usually the likelihood
of generating the responses from a fixed corpus.
Such models have already had a substantial im-
pact in industry, including Google’s Smart Reply
system (Kannan et al., 2016), and Microsoft’s Xi-
aoice chatbot (Markoff and Mozur, 2015), which
has over 20 million users.

One of the challenges when developing such sys-
tems is to have a good way of measuring progress,
in this case the performance of the chatbot. The
Turing test provides one solution to the evaluation
of dialogue systems, but there are limitations with
its original formulation. The test requires live hu-
man interactions, which is expensive and difficult
to scale up. Furthermore, the test requires carefully
designing the instructions to the human interlocu-
tors, in order to balance their behaviour and ex-
pectations so that different systems may be ranked
accurately by performance. Although unavoidable,
these instructions introduce bias into the evaluation
measure. The more common approach of having
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humans evaluate the quality of dialogue system
responses, rather than distinguish them from hu-
man responses, induces similar drawbacks in terms
of time, expense, and lack of scalability. In the
case of chatbots designed for specific conversation
domains, it may also be difficult to find sufficient
human evaluators with appropriate background in
the topic (Lowe et al., 2015).

Despite advances in neural network-based mod-
els, evaluating the quality of dialogue responses
automatically remains a challenging and under-
studied problem in the non-task-oriented setting.
The most widely used metric for evaluating such
dialogue systems is BLEU (Papineni et al., 2002),
a metric measuring word overlaps originally devel-
oped for machine translation. However, it has been
shown that BLEU and other word-overlap metrics
are biased and correlate poorly with human judge-
ments of response quality (Liu et al., 2016). There
are many obvious cases where these metrics fail,
as they are often incapable of considering the se-
mantic similarity between responses (see Figure 1).
Despite this, many researchers still use BLEU to
evaluate their dialogue models (Ritter et al., 2011;
Sordoni et al., 2015b; Li et al., 2015; Galley et al.,
2015; Li et al., 2016a), as there are few alternatives
available that correlate with human judgements.
While human evaluation should always be used to
evaluate dialogue models, it is often too expensive
and time-consuming to do this for every model
specification (for example, for every combination
of model hyperparameters). Therefore, having an
accurate model that can evaluate dialogue response
quality automatically — what could be considered
an automatic Turing test — is critical in the quest
for building human-like dialogue agents.

To make progress towards this goal, we make
the simplifying assumption that a ‘good’ chatbot
is one whose responses are scored highly on ap-
propriateness by human evaluators. We believe
this is sufficient for making progress as current
dialogue systems often generate inappropriate re-
sponses. We also find empirically that asking
evaluators for other metrics results in either low
inter-annotator agreement, or the scores are highly
correlated with appropriateness (see supp. mate-
rial). Thus, we collect a dataset of appropriateness
scores to various dialogue responses, and we use
this dataset to train an automatic dialogue evalu-
ation model (ADEM). The model is trained in a
semi-supervised manner using a hierarchical recur-

# Examples 4104
# Contexts 1026
# Training examples 2,872
# Validation examples 616
# Test examples 616
κ score (inter-annotator 0.63
correlation)

Table 1: Statistics of the dialogue response evalua-
tion dataset. Each example is in the form (context,
model response, reference response, human score).

rent neural network (RNN) to predict human scores.
We show that ADEM scores correlate significantly
with human judgement at both the utterance-level
and system-level. We also show that ADEM can of-
ten generalize to evaluating new models, whose
responses were unseen during training, making
ADEM a strong first step towards effective auto-
matic dialogue response evaluation.1

2 Data Collection

To train a model to predict human scores to dia-
logue responses, we first collect a dataset of human
judgements (scores) of Twitter responses using the
crowdsourcing platform Amazon Mechanical Turk
(AMT).2 The aim is to have accurate human scores
for a variety of conversational responses — con-
ditioned on dialogue contexts — which span the
full range of response qualities. For example, the
responses should include both relevant and irrel-
evant responses, both coherent and non-coherent
responses and so on. To achieve this variety, we use
candidate responses from several different models.
Following (Liu et al., 2016), we use the following
4 sources of candidate responses: (1) a response
selected by a TF-IDF retrieval-based model, (2) a
response selected by the Dual Encoder (DE) (Lowe
et al., 2015), (3) a response generated using the hier-
archical recurrent encoder-decoder (HRED) model
(Serban et al., 2016a), and (4) human-generated
responses. It should be noted that the human-
generated candidate responses are not the reference
responses from a fixed corpus, but novel human
responses that are different from the reference. In
addition to increasing response variety, this is nec-
essary because we want our evaluation model to
learn to compare the reference responses to the
candidate responses. We provide the details of our

1Code and trained model parameters are available online:
https://github.com/mike-n-7/ADEM.

2All data collection was conducted in accordance with the
policies of the host institutions’ ethics board.
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AMT experiments in the supplemental material, in-
cluding additional experiments suggesting that sev-
eral other metrics are currently unlikely to be useful
for building evaluation models. Note that, in order
to maximize the number of responses obtained with
a fixed budget, we only obtain one evaluation score
per dialogue response in the dataset.

To train evaluation models on human judge-
ments, it is crucial that we obtain scores of re-
sponses that lie near the distribution produced by
advanced models. This is why we use the Twitter
Corpus (Ritter et al., 2011), as such models are
pre-trained and readily available. Further, the set
of topics discussed is quite broad — as opposed to
the very specific Ubuntu Dialogue Corpus (Lowe
et al., 2015) — and therefore the model may also
be suited to other chit-chat domains. Finally, since
it does not require domain specific knowledge (e.g.
technical knowledge), it should be easy for AMT
workers to annotate.

3 Technical Background

3.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a type of
neural network with time-delayed connections be-
tween the internal units. This leads to the formation
of a hidden state ht, which is updated for every in-
put: ht = f(Whhht−1 +Wihxt), where Whh and
Wih are parameter matrices, f is a non-linear acti-
vation function such as tanh, and xt is the input at
time t. The hidden state allows for RNNs to better
model sequential data, such as language.

In this paper, we consider RNNs augmented with
long-short term memory (LSTM) units (Hochre-
iter and Schmidhuber, 1997). LSTMs add a set of
gates to the RNN that allow it to learn how much
to update the hidden state. LSTMs are one of the
most well-established methods for dealing with
the vanishing gradient problem in recurrent net-
works (Hochreiter, 1991; Bengio et al., 1994).

3.2 Word-Overlap Metrics

One of the most popular approaches for automati-
cally evaluating the quality of dialogue responses
is by computing their word overlap with the ref-
erence response. In particular, the most popular
metrics are the BLEU and METEOR scores used
for machine translation, and the ROUGE score used
for automatic summarization. While these metrics
tend to correlate with human judgements in their
target domains, they have recently been shown to

highly biased and correlate very poorly with human
judgements for dialogue response evaluation (Liu
et al., 2016). We briefly describe BLEU here, and
provide a more detailed summary of word-overlap
metrics in the supplemental material.

BLEU BLEU (Papineni et al., 2002) analyzes the
co-occurrences of n-grams in the reference and the
proposed responses. It computes the n-gram preci-
sion for the whole dataset, which is then multiplied
by a brevity penalty to penalize short translations.
For BLEU-N , N denotes the largest value of n-
grams considered (usually N = 4).

Drawbacks One of the major drawbacks of
word-overlap metrics is their failure in capturing
the semantic similarity (and other structure) be-
tween the model and reference responses when
there are few or no common words. This problem
is less critical for machine translation; since the
set of reasonable translations of a given sentence
or document is rather small, one can reasonably
infer the quality of a translated sentence by only
measuring the word-overlap between it and one (or
a few) reference translations. However, in dialogue,
the set of appropriate responses given a context is
much larger (Artstein et al., 2009); in other words,
there is a very high response diversity that is un-
likely to be captured by word-overlap comparison
to a single response.

Further, word-overlap scores are computed di-
rectly between the model and reference responses.
As such, they do not consider the context of the
conversation. While this may be a reasonable as-
sumption in machine translation, it is not the case
for dialogue; whether a model response is an ade-
quate substitute for the reference response is clearly
context-dependent. For example, the two responses
in Figure 1 are equally appropriate given the con-
text. However, if we simply change the context to:

“Have you heard of any good movies recently?”,
the model response is no longer relevant while the
reference response remains valid.

4 An Automatic Dialogue Evaluation
Model (ADEM)

To overcome the problems of evaluation with word-
overlap metrics, we aim to construct a dialogue
evaluation model that: (1) captures semantic sim-
ilarity beyond word overlap statistics, and (2) ex-
ploits both the context and the reference response
to calculate its score for the model response. We
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Figure 2: The ADEM model, which uses a hierarchical encoder to produce the context embedding c.

call this evaluation model ADEM.
ADEM learns distributed representations of the

context, model response, and reference response
using a hierarchical RNN encoder. Given the dia-
logue context c, reference response r, and model
response r̂, ADEM first encodes each of them into
vectors (c, r̂, and r, respectively) using the RNN
encoder. Then, ADEM computes the score using a
dot-product between the vector representations of
c, r, and r̂ in a linearly transformed space: :

score(c, r, r̂) = (cTM r̂+ rTN r̂− α)/β (1)

where M,N ∈ Rn are learned matrices initialized
to the identity, and α, β are scalar constants used to
initialize the model’s predictions in the range [1, 5].
The model is shown in Figure 2.

The matrices M and N can be interpreted as
linear projections that map the model response r̂
into the space of contexts and reference responses,
respectively. The model gives high scores to re-
sponses that have similar vector representations to
the context and reference response after this projec-
tion. The model is end-to-end differentiable; all the
parameters can be learned by backpropagation. In
our implementation, the parameters θ = {M,N}
of the model are trained to minimize the squared
error between the model predictions and the human
score, with L2-regularization:

L =
∑

i=1:K

[score(ci, ri, r̂i)− humani]2 + γ||θ||2

(2)
where γ is a scalar constant. The simplicity of our
model leads to both accurate predictions and fast
evaluation (see supp. material), which is important
to allow rapid prototyping of dialogue systems.

The hierarchical RNN encoder in our model con-
sists of two layers of RNNs (El Hihi and Bengio,
1995; Sordoni et al., 2015a). The lower-level RNN,
the utterance-level encoder, takes as input words

from the dialogue, and produces a vector output
at the end of each utterance. The context-level en-
coder takes the representation of each utterance
as input and outputs a vector representation of the
context. This hierarchical structure is useful for
incorporating information from early utterances in
the context (Serban et al., 2016a). Following pre-
vious work, we take the last hidden state of the
context-level encoder as the vector representation
of the input utterance or context. The parameters of
the RNN encoder are pretrained and are not learned
from the human scores.

An important point is that the ADEM procedure
above is not a dialogue retrieval model: the funda-
mental difference is that ADEM has access to the
reference response. Thus, ADEM can compare a
model’s response to a known good response, which
is significantly easier than inferring response qual-
ity from solely the context.

Pre-training with VHRED We would like an
evaluation model that can make accurate predic-
tions from few labeled examples, since these exam-
ples are expensive to obtain. We therefore employ
semi-supervised learning, and use a pre-training
procedure to learn the parameters of the encoder.
In particular, we train the encoder as part of a neu-
ral dialogue model; we attach a third decoder RNN
that takes the output of the encoder as input, and
train it to predict the next utterance of a dialogue
conditioned on the context.

The dialogue model we employ for pre-training
is the latent variable hierarchical recurrent encoder-
decoder (VHRED) model (Serban et al., 2016b),
shown in Figure 3. The VHRED model is an exten-
sion of the original hierarchical recurrent encoder-
decoder (HRED) model (Serban et al., 2016a) with
a turn-level stochastic latent variable. The dialogue
context is encoded into a vector using our hierarchi-
cal encoder, and the VHRED then samples a Gaus-
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Figure 3: The VHRED model used for pre-training. The hierarchical structure of the RNN encoder is
shown in the red box around the bottom half of the figure. After training using the VHRED procedure, the
last hidden state of the context-level encoder is used as a vector representation of the input text.

sian variable that is used to condition the decoder
(see supplemental material for further details). Af-
ter training VHRED, we use the last hidden state
of the context-level encoder, when c, r, and r̂ are
fed as input, as the vector representations for c, r,
and r̂, respectively. We use representations from
the VHRED model as it produces more diverse and
coherent responses compared to HRED.

5 Experiments

5.1 Experimental Procedure

In order to reduce the effective vocabulary size, we
use byte pair encoding (BPE) (Gage, 1994; Sen-
nrich et al., 2015), which splits each word into
sub-words or characters. We also use layer normal-
ization (Ba et al., 2016) for the hierarchical encoder,
which we found worked better at the task of dia-
logue generation than the related recurrent batch
normalization (Ioffe and Szegedy, 2015; Cooij-
mans et al., 2016). To train the VHRED model,
we employed several of the same techniques found
in (Serban et al., 2016b) and (Bowman et al., 2016):
we drop words in the decoder with a fixed rate of
25%, and we anneal the KL-divergence term lin-
early from 0 to 1 over the first 60,000 batches. We
use Adam as our optimizer (Kingma and Ba, 2014).

When training ADEM, we also employ a sub-
sampling procedure based on the model response
length. In particular, we divide the training exam-
ples into bins based on the number of words in a

response and the score of that response. We then
over-sample from bins across the same score to
ensure that ADEM does not use response length to
predict the score. This is because humans have a
tendency to give a higher rating to shorter responses
than to longer responses (Serban et al., 2016b), as
shorter responses are often more generic and thus
are more likely to be suitable to the context. Indeed,
the test set Pearson correlation between response
length and human score is 0.27.

For training VHRED, we use a context em-
bedding size of 2000. However, we found the
ADEM model learned more effectively when this
embedding size was reduced. Thus, after train-
ing VHRED, we use principal component analysis
(PCA) (Pearson, 1901) to reduce the dimensional-
ity of the context, model response, and reference
response embeddings to n. We found experimen-
tally that n = 50 provided the best performance.

When training our models, we conduct early
stopping on a separate validation set. For the eval-
uation dataset, we split the train/ validation/ test
sets such that there is no context overlap (i.e. the
contexts in the test set are unseen during training).

5.2 Results

Utterance-level correlations We first present
new utterance-level correlation results3 for existing

3We present both the Spearman correlation (computed on
ranks, depicts monotonic relationships) and Pearson correla-
tion (computed on true values, depicts linear relationships)
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(a) BLEU-2 (b) ROUGE (c) ADEM

Figure 4: Scatter plot showing model against human scores, for BLEU-2 and ROUGE on the full dataset,
and ADEM on the test set. We add Gaussian noise drawn from N (0, 0.3) to the integer human scores to
better visualize the density of points, at the expense of appearing less correlated.

Full dataset Test set
Metric Spearman Pearson Spearman Pearson
BLEU-2 0.039 (0.013) 0.081 (<0.001) 0.051 (0.254) 0.120 (<0.001)
BLEU-4 0.051 (0.001) 0.025 (0.113) 0.063 (0.156) 0.073 (0.103)
ROUGE 0.062 (<0.001) 0.114 (<0.001) 0.096 (0.031) 0.147 (<0.001)
METEOR 0.021 (0.189) 0.022 (0.165) 0.013 (0.745) 0.021 (0.601)
T2V 0.140 (<0.001) 0.141 (<0.001) 0.140 (<0.001) 0.141 (<0.001)
VHRED -0.035 (0.062) -0.030 (0.106) -0.091 (0.023) -0.010 (0.805)

Validation set Test set
C-ADEM 0.338 (<0.001) 0.355 (<0.001) 0.366 (<0.001) 0.363 (<0.001)
R-ADEM 0.404 (<0.001) 0.404 (<0.001) 0.352 (<0.001) 0.360 (<0.001)
ADEM (T2V) 0.252 (<0.001) 0.265 (<0.001) 0.280 (<0.001) 0.287 (<0.001)
ADEM 0.410 (<0.001) 0.418 (<0.001) 0.428 (<0.001) 0.436 (<0.001)

Table 2: Correlation between metrics and human judgements, with p-values shown in brackets. ‘ADEM

(T2V)’ indicates ADEM with tweet2vec embeddings (Dhingra et al., 2016), and ‘VHRED’ indicates the
dot product of VHRED embeddings (i.e. ADEM at initialization). C- and R-ADEM represent the ADEM

model trained to only compare the model response to the context or reference response, respectively. We
compute the baseline metric scores (top) on the full dataset to provide a more accurate estimate of their
scores (as they are not trained on a training set).

word-overlap metrics, in addition to results with
embedding baselines and ADEM, in Table 2. The
baseline metrics are evaluated on the entire dataset
of 4,104 responses to provide the most accurate
estimate of the score. 4 We measure the correlation
for ADEM on the validation and test sets, which
constitute 616 responses each.

We also conduct an analysis of the response data
from (Liu et al., 2016), where the pre-processing
is standardized by removing ‘<first speaker>’ to-
kens at the beginning of each utterance. The results
are detailed in the supplemental material. We can
observe from both this data, and the new data in
Table 2, that the correlations for the word-overlap
metrics are even lower than estimated in previous

scores.
4Note that our word-overlap correlation results in Table

2 are also lower than those presented in (Galley et al., 2015).
This is because Galley et al. measure corpus-level correlation,
i.e. correlation averaged across different subsets (of size 100)
of the data, and pre-filter for high-quality reference responses.

studies (Liu et al., 2016; Galley et al., 2015). In
particular, this is the case for BLEU-4, which has
frequently been used for dialogue response evalu-
ation (Ritter et al., 2011; Sordoni et al., 2015b; Li
et al., 2015; Galley et al., 2015; Li et al., 2016a).

We can see from Table 2 that ADEM correlates
far better with human judgement than the word-
overlap baselines. This is further illustrated by the
scatterplots in Figure 4. We also compare with
ADEM using tweet2vec embeddings (Dhingra et al.,
2016). In this case, instead of using the VHRED
pre-training method presented in Section 4, we use
off-the-shelf embeddings for c, r, and r̂, and fine-
tuneM andN on our dataset. These tweet2vec em-
beddings are computed at the character-level with
a bidirectional GRU on a Twitter dataset for hash-
tag prediction (Dhingra et al., 2016). We find that
they obtain reasonable but inferior performance
compared to using VHRED embeddings.
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Figure 5: Scatterplots depicting the system-level correlation results for ADEM, BLEU-2, BLEU-4,and
ROUGE on the test set. Each point represents the average scores for the responses from a dialogue model
(TFIDF, DE, HRED, human). Human scores are shown on the horizontal axis, with normalized metric
scores on the vertical axis. The ideal metric has a perfectly linear relationship.

System-level correlations We show the system-
level correlations for various metrics in Table 3,
and present it visually in Figure 5. Each point in
the scatterplots represents a dialogue model; hu-
mans give low scores to TFIDF and DE responses,
higher scores to HRED and the highest scores to
other human responses. It is clear that existing
word-overlap metrics are incapable of capturing
this relationship for even 4 models. This renders
them completely deficient for dialogue evaluation.
However, ADEM produces almost the same model
ranking as humans, achieving a significant Pearson
correlation of 0.954.5 Thus, ADEM correlates well
with humans both at the response and system level.

Generalization to previously unseen models
When ADEM is used in practice, it will take as
input responses from a new model that it has not
seen during training. Thus, it is crucial that ADEM

correlates with human judgements for new models.
We test ADEM’s generalization ability by perform-
ing a leave-one-out evaluation. For each dialogue
model that was the source of response data for
training ADEM (TF-IDF, Dual Encoder, HRED, hu-
mans), we conduct an experiment where we train
on all model responses except those from the cho-
sen model, and test only on the model that was
unseen during training.

The results are given in Table 4. We observe
that the ADEM model is able to generalize for all
models except the Dual Encoder. This is partic-
ularly surprising for the HRED model; in this
case, ADEM was trained only on responses that
were written by humans (from retrieval models
or human-generated), but is able to generalize to
responses produced by a generative neural net-
work model. When testing on the entire test set,

5For comparison, BLEU achieves a system-level correla-
tion of 0.99 on 5 models in the translation domain (Papineni
et al., 2002).

Metric Pearson
BLEU-1 -0.079 (0.921)
BLEU-2 0.308 (0.692)
BLEU-3 -0.537 (0.463)
BLEU-4 -0.536 (0.464)
ROUGE 0.268 (0.732)
ADEM 0.954 (0.046)

Table 3: System-level correlation, with the p-value
in brackets.

the model achieves comparable correlations to the
ADEM model that was trained on 25% less data
selected at random.

Qualitative Analysis To illustrate some
strengths and weaknesses of ADEM, we show
human and ADEM scores for each of the responses
to various contexts in Table 5. There are several
instances where ADEM predicts accurately: in
particular, ADEM is often very good at assigning
low scores to poor responses. This seen in the first
two contexts, where most of the responses given a
score of 1 from humans are given scores less than 2
by ADEM. The single exception in response (4) for
the second context seems somewhat appropriate
and should perhaps have been scored higher by the
human evaluator. There are also several instances
where the model assigns high scores to suitable
responses, as in the first two contexts.

One drawback we observed is that ADEM tends
to be too conservative when predicting response
scores. This is the case in the third context, where
the model assigns low scores to most of the re-
sponses that a human rated highly. This behaviour
is likely due to the squared error loss used to train
ADEM; since the model receives a large penalty for
incorrectly predicting an extreme value, it learns to
predict scores closer to the average human score.
We provide many more experiments, including in-
vestigation of evaluation speed, learning curves,
data efficiency, a failure analysis, and the primary
source of improvement over word-overlap metrics
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Test on full dataset Test on removed model responses
Data Removed Spearman Pearson Spearman Pearson
TF-IDF 0.406 (<0.001) 0.409 (<0.001) 0.186 (0.021) 0.196 (0.015)
Dual Encoder 0.364 (<0.001) 0.373 (<0.001) 0.026 (0.749) 0.027 (0.736)
HRED 0.393 (<0.001) 0.396 (<0.001) 0.151 (0.060) 0.148 (<0.070)
Human 0.292 (<0.001) 0.298 (<0.001) 0.216 (<0.010) 0.148 (<0.070)
Average 0.364 0.369 0.145 0.130
25% at random 0.378 (<0.001) 0.384 (<0.001) — —

Table 4: Correlation for ADEM when various model responses are removed from the training set. The
left two columns show performance on the entire test set, and the right two columns show performance
on responses only from the dialogue model not seen during training. The last row (25% at random)
corresponds to the ADEM model trained on all model responses, but with the same amount of training data
as the model above (i.e. 25% less data than the full training set).

Context Reference response Model responses Human
score

ADEM
score

photo to see my television debut go to -
some. some on <url> - hehe <url>→
it really was you? i thought ppl were rec-
ognizing someone who looked like you!
were the oysters worth the wait?

yeah it was me . haha i
’d kinda forgotten about
it it was filmed a while
ago

1) i’m not sure. i just don’t know what to do with it.
2) you heard the horsepower productions remix of lee scratch

perry’s ‘exercising’ off his ‘mighty upsetter’ album?
3) you wont chug a fuzzy peach navel
4) they were!

3
1

1
5

1.602
1.513

1.744
3.274

just beat call of duty!! → want a cookie?
→ yes!! → come get it

im in kenmore at the
moment

1) i’m gonna get a new phone some moro
2) no way man.
3) wow i just got a free pizza coupon! get yours

before theres no more! <url>
4) i’m going to go to the mall.

1
5
1

1

1.848
4.265
0.921

2.634
am i out of twitter jail yet? testing →
yeah. i posted bail → thanks. i am a
right chatter tweetbox on sundays. same
happened last sunday lol

any news on meeting
our user ? i go to the
us on friday and i don
’t want to miss anything
arranged

1) i’m not sure if i’m going to be able to get it.
2) good to see another mac user in the leadership ranks
3) awww poor baby hope u get to feeling better soon. maybe
some many work days at piedmont
4) did you tweet too much?

3
4

2
5

1.912
1.417

1.123
2.539

Table 5: Examples of scores given by the ADEM model.

in the supplemental material.

6 Related Work

Related to our approach is the literature on novel
methods for the evaluation of machine translation
systems, especially through the WMT evaluation
task (Callison-Burch et al., 2011; Machácek and
Bojar, 2014; Stanojevic et al., 2015). In particu-
lar, (Albrecht and Hwa, 2007; Gupta et al., 2015)
have proposed to evaluate machine translation sys-
tems using Regression and Tree-LSTMs respec-
tively. Their approach differs from ours as, in the
dialogue domain, we must additionally condition
our score on the context of the conversation, which
is not necessary in translation.

There has also been related work on estimating
the quality of responses in chat-oriented dialogue
systems. (DeVault et al., 2011) train an automatic
dialogue policy evaluation metric from 19 struc-
tured role-playing sessions, enriched with para-
phrases and external referee annotations. (Gandhe
and Traum, 2016) propose a semi-automatic eval-
uation metric for dialogue coherence, similar to
BLEU and ROUGE, based on ‘wizard of Oz’ type

data.6 (Xiang et al., 2014) propose a framework to
predict utterance-level problematic situations in a
dataset of Chinese dialogues using intent and sen-
timent factors. Finally, (Higashinaka et al., 2014)
train a classifier to distinguish user utterances from
system-generated utterances using various dialogue
features, such as dialogue acts, question types, and
predicate-argument structures.

Several recent approaches use hand-crafted re-
ward features to train dialogue models using rein-
forcement learning (RL). For example, (Li et al.,
2016b) use features related to ease of answering
and information flow, and (Yu et al., 2016) use
metrics related to turn-level appropriateness and
conversational depth. These metrics are based on
hand-crafted features, which only capture a small
set of relevant aspects; this inevitably leads to sub-
optimal performance, and it is unclear whether such
objectives are preferable over retrieval-based cross-
entropy or word-level maximum log-likelihood ob-
jectives. Furthermore, many of these metrics are
computed at the conversation-level, and are not
available for evaluating single dialogue responses.

6In ‘wizard of Oz’ scenarios, humans play the role of the
dialogue system, usually unbeknown to the interlocutors.
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The metrics that can be computed at the response-
level could be incorporated into our framework, for
example by adding a term to equation 1 consisting
of a dot product between these features and a vector
of learned parameters.

There has been significant work on evaluation
methods for task-oriented dialogue systems, which
attempt to solve a user’s task such as finding a
restaurant. These methods include the PARADISE
framework (Walker et al., 1997) and MeMo (Möller
et al., 2006), which consider a task completion
signal. PARADISE in particular is perhaps the
first work on learning an automatic evaluation func-
tion for dialogue, accomplished through linear re-
gression. However, PARADISE requires that one
can measure task completion and task complexity,
which are not available in our setting.

7 Discussion

We use the Twitter Corpus to train our models as it
contains a broad range of non-task-oriented conver-
sations and it has been used to train many state-of-
the-art models. However, our model could easily
be extended to other general-purpose datasets, such
as Reddit, once similar pre-trained models become
publicly available. Such models are necessary even
for creating a test set in a new domain, which will
help us determine if ADEM generalizes to related di-
alogue domains. We leave investigating the domain
transfer ability of ADEM for future work.

The evaluation model proposed in this paper
favours dialogue models that generate responses
that are rated as highly appropriate by humans. It is
likely that this property does not fully capture the
desired end-goal of chatbot systems. For example,
one issue with building models to approximate hu-
man judgements of response quality is the problem
of generic responses. Since humans often provide
high scores to generic responses due to their appro-
priateness for many given contexts (Shang et al.,
2016), a model trained to predict these scores will
exhibit the same behaviour. An important direc-
tion for future work is modifying ADEM such that
it is not subject to this bias. This could be done,
for example, by censoring ADEM’s representations
(Edwards and Storkey, 2016) such that they do
not contain any information about length. Alterna-
tively, one can combine this with an adversarial
evaluation model (Kannan and Vinyals, 2017; Li
et al., 2017) that assigns a score based on how easy
it is to distinguish the dialogue model responses

from human responses. In this case, a model that
generates generic responses will easily be distin-
guishable and obtain a low score.

An important direction of future research is
building models that can evaluate the capability of
a dialogue system to have an engaging and mean-
ingful interaction with a human. Compared to eval-
uating a single response, this evaluation is arguably
closer to the end-goal of chatbots. However, such
an evaluation is extremely challenging to do in a
completely automatic way. We view the evaluation
procedure presented in this paper as an important
step towards this goal; current dialogue systems are
incapable of generating responses that are rated as
highly appropriate by humans, and we believe our
evaluation model will be useful for measuring and
facilitating progress in this direction.
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