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Abstract

Neural sequence-to-sequence models have
provided a viable new approach for ab-
stractive text summarization (meaning
they are not restricted to simply selecting
and rearranging passages from the origi-
nal text). However, these models have two
shortcomings: they are liable to reproduce
factual details inaccurately, and they tend
to repeat themselves. In this work we pro-
pose a novel architecture that augments the
standard sequence-to-sequence attentional
model in two orthogonal ways. First,
we use a hybrid pointer-generator network
that can copy words from the source text
via pointing, which aids accurate repro-
duction of information, while retaining the
ability to produce novel words through the
generator. Second, we use coverage to
keep track of what has been summarized,
which discourages repetition. We apply
our model to the CNN / Daily Mail sum-
marization task, outperforming the current
abstractive state-of-the-art by at least 2
ROUGE points.

1 Introduction

Summarization is the task of condensing a piece of
text to a shorter version that contains the main in-
formation from the original. There are two broad
approaches to summarization: extractive and ab-
stractive. Extractive methods assemble summaries
exclusively from passages (usually whole sen-
tences) taken directly from the source text, while
abstractive methods may generate novel words
and phrases not featured in the source text – as
a human-written abstract usually does. The ex-
tractive approach is easier, because copying large

Original Text (truncated): lagos, nigeria (cnn) a day after winning nige-
ria’s presidency, muhammadu buhari told cnn’s christiane amanpour that
he plans to aggressively fight corruption that has long plagued nigeria
and go after the root of the nation’s unrest. buhari said he’ll “rapidly give
attention” to curbing violence in the northeast part of nigeria, where the ter-
rorist group boko haram operates. by cooperating with neighboring nations
chad, cameroon and niger, he said his administration is confident it will
be able to thwart criminals and others contributing to nigeria’s instability.
for the first time in nigeria’s history, the opposition defeated the ruling party
in democratic elections. buhari defeated incumbent goodluck jonathan by
about 2 million votes, according to nigeria’s independent national electoral
commission. the win comes after a long history of military rule, coups
and botched attempts at democracy in africa’s most populous nation.

Baseline Seq2Seq + Attention: UNK UNK says his administration is confi-
dent it will be able to destabilize nigeria’s economy. UNK says his admin-
istration is confident it will be able to thwart criminals and other nigerians.
he says the country has long nigeria and nigeria’s economy.

Pointer-Gen: muhammadu buhari says he plans to aggressively fight cor-
ruption in the northeast part of nigeria. he says he’ll “rapidly give at-
tention” to curbing violence in the northeast part of nigeria. he says his
administration is confident it will be able to thwart criminals.

Pointer-Gen + Coverage: muhammadu buhari says he plans to aggressively
fight corruption that has long plagued nigeria. he says his administration is
confident it will be able to thwart criminals. the win comes after a long his-
tory of military rule, coups and botched attempts at democracy in africa’s
most populous nation.

Figure 1: Comparison of output of 3 abstrac-
tive summarization models on a news article. The
baseline model makes factual errors, a nonsen-
sical sentence and struggles with OOV words
muhammadu buhari. The pointer-generator model
is accurate but repeats itself. Coverage eliminates
repetition. The final summary is composed from
several fragments.

chunks of text from the source document ensures
baseline levels of grammaticality and accuracy.
On the other hand, sophisticated abilities that are
crucial to high-quality summarization, such as
paraphrasing, generalization, or the incorporation
of real-world knowledge, are possible only in an
abstractive framework (see Figure 5).

Due to the difficulty of abstractive summariza-
tion, the great majority of past work has been ex-
tractive (Kupiec et al., 1995; Paice, 1990; Sag-
gion and Poibeau, 2013). However, the recent suc-
cess of sequence-to-sequence models (Sutskever
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Figure 2: Baseline sequence-to-sequence model with attention. The model may attend to relevant words
in the source text to generate novel words, e.g., to produce the novel word beat in the abstractive summary
Germany beat Argentina 2-0 the model may attend to the words victorious and win in the source text.

et al., 2014), in which recurrent neural networks
(RNNs) both read and freely generate text, has
made abstractive summarization viable (Chopra
et al., 2016; Nallapati et al., 2016; Rush et al.,
2015; Zeng et al., 2016). Though these systems
are promising, they exhibit undesirable behavior
such as inaccurately reproducing factual details,
an inability to deal with out-of-vocabulary (OOV)
words, and repeating themselves (see Figure 1).

In this paper we present an architecture that
addresses these three issues in the context of
multi-sentence summaries. While most recent ab-
stractive work has focused on headline genera-
tion tasks (reducing one or two sentences to a
single headline), we believe that longer-text sum-
marization is both more challenging (requiring
higher levels of abstraction while avoiding repe-
tition) and ultimately more useful. Therefore we
apply our model to the recently-introduced CNN/
Daily Mail dataset (Hermann et al., 2015; Nallap-
ati et al., 2016), which contains news articles (39
sentences on average) paired with multi-sentence
summaries, and show that we outperform the state-
of-the-art abstractive system by at least 2 ROUGE
points.

Our hybrid pointer-generator network facili-
tates copying words from the source text via point-
ing (Vinyals et al., 2015), which improves accu-
racy and handling of OOV words, while retaining
the ability to generate new words. The network,
which can be viewed as a balance between extrac-
tive and abstractive approaches, is similar to Gu
et al.’s (2016) CopyNet and Miao and Blunsom’s
(2016) Forced-Attention Sentence Compression,

that were applied to short-text summarization. We
propose a novel variant of the coverage vector (Tu
et al., 2016) from Neural Machine Translation,
which we use to track and control coverage of the
source document. We show that coverage is re-
markably effective for eliminating repetition.

2 Our Models

In this section we describe (1) our baseline
sequence-to-sequence model, (2) our pointer-
generator model, and (3) our coverage mechanism
that can be added to either of the first two models.
The code for our models is available online.1

2.1 Sequence-to-sequence attentional model

Our baseline model is similar to that of Nallapati
et al. (2016), and is depicted in Figure 2. The to-
kens of the article wi are fed one-by-one into the
encoder (a single-layer bidirectional LSTM), pro-
ducing a sequence of encoder hidden states hi. On
each step t, the decoder (a single-layer unidirec-
tional LSTM) receives the word embedding of the
previous word (while training, this is the previous
word of the reference summary; at test time it is
the previous word emitted by the decoder), and
has decoder state st . The attention distribution at

is calculated as in Bahdanau et al. (2015):

et
i = vT tanh(Whhi +Wsst +battn) (1)

at = softmax(et) (2)

where v, Wh, Ws and battn are learnable parame-
ters. The attention distribution can be viewed as

1www.github.com/abisee/pointer-generator
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Figure 3: Pointer-generator model. For each decoder timestep a generation probability pgen ∈ [0,1] is
calculated, which weights the probability of generating words from the vocabulary, versus copying words
from the source text. The vocabulary distribution and the attention distribution are weighted and summed
to obtain the final distribution, from which we make our prediction. Note that out-of-vocabulary article
words such as 2-0 are included in the final distribution. Best viewed in color.

a probability distribution over the source words,
that tells the decoder where to look to produce the
next word. Next, the attention distribution is used
to produce a weighted sum of the encoder hidden
states, known as the context vector h∗t :

h∗t = ∑i at
ihi (3)

The context vector, which can be seen as a fixed-
size representation of what has been read from the
source for this step, is concatenated with the de-
coder state st and fed through two linear layers to
produce the vocabulary distribution Pvocab:

Pvocab = softmax(V ′(V [st ,h∗t ]+b)+b′) (4)

where V , V ′, b and b′ are learnable parameters.
Pvocab is a probability distribution over all words
in the vocabulary, and provides us with our final
distribution from which to predict words w:

P(w) = Pvocab(w) (5)

During training, the loss for timestep t is the neg-
ative log likelihood of the target word w∗t for that
timestep:

losst =− logP(w∗t ) (6)

and the overall loss for the whole sequence is:

loss =
1
T ∑T

t=0 losst (7)

2.2 Pointer-generator network
Our pointer-generator network is a hybrid between
our baseline and a pointer network (Vinyals et al.,
2015), as it allows both copying words via point-
ing, and generating words from a fixed vocabulary.
In the pointer-generator model (depicted in Figure
3) the attention distribution at and context vector
h∗t are calculated as in section 2.1. In addition, the
generation probability pgen ∈ [0,1] for timestep t is
calculated from the context vector h∗t , the decoder
state st and the decoder input xt :

pgen = σ(wT
h∗h
∗
t +wT

s st +wT
x xt +bptr) (8)

where vectors wh∗ , ws, wx and scalar bptr are learn-
able parameters and σ is the sigmoid function.
Next, pgen is used as a soft switch to choose be-
tween generating a word from the vocabulary by
sampling from Pvocab, or copying a word from the
input sequence by sampling from the attention dis-
tribution at . For each document let the extended
vocabulary denote the union of the vocabulary,
and all words appearing in the source document.
We obtain the following probability distribution
over the extended vocabulary:

P(w) = pgenPvocab(w)+(1− pgen)∑i:wi=w at
i (9)

Note that if w is an out-of-vocabulary (OOV)
word, then Pvocab(w) is zero; similarly if w does
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not appear in the source document, then ∑i:wi=w at
i

is zero. The ability to produce OOV words is
one of the primary advantages of pointer-generator
models; by contrast models such as our baseline
are restricted to their pre-set vocabulary.

The loss function is as described in equations
(6) and (7), but with respect to our modified prob-
ability distribution P(w) given in equation (9).

2.3 Coverage mechanism
Repetition is a common problem for sequence-
to-sequence models (Tu et al., 2016; Mi et al.,
2016; Sankaran et al., 2016; Suzuki and Nagata,
2016), and is especially pronounced when gener-
ating multi-sentence text (see Figure 1). We adapt
the coverage model of Tu et al. (2016) to solve the
problem. In our coverage model, we maintain a
coverage vector ct , which is the sum of attention
distributions over all previous decoder timesteps:

ct = ∑t−1
t ′=0 at ′ (10)

Intuitively, ct is a (unnormalized) distribution over
the source document words that represents the de-
gree of coverage that those words have received
from the attention mechanism so far. Note that c0

is a zero vector, because on the first timestep, none
of the source document has been covered.

The coverage vector is used as extra input to the
attention mechanism, changing equation (1) to:

et
i = vT tanh(Whhi +Wsst +wcct

i +battn) (11)

where wc is a learnable parameter vector of same
length as v. This ensures that the attention mecha-
nism’s current decision (choosing where to attend
next) is informed by a reminder of its previous
decisions (summarized in ct). This should make
it easier for the attention mechanism to avoid re-
peatedly attending to the same locations, and thus
avoid generating repetitive text.

We find it necessary (see section 5) to addition-
ally define a coverage loss to penalize repeatedly
attending to the same locations:

covlosst = ∑i min(at
i,c

t
i) (12)

Note that the coverage loss is bounded; in particu-
lar covlosst ≤∑i at

i = 1. Equation (12) differs from
the coverage loss used in Machine Translation. In
MT, we assume that there should be a roughly one-
to-one translation ratio; accordingly the final cov-
erage vector is penalized if it is more or less than 1.

Our loss function is more flexible: because sum-
marization should not require uniform coverage,
we only penalize the overlap between each atten-
tion distribution and the coverage so far – prevent-
ing repeated attention. Finally, the coverage loss,
reweighted by some hyperparameter λ , is added to
the primary loss function to yield a new composite
loss function:

losst =− logP(w∗t )+λ ∑i min(at
i,c

t
i) (13)

3 Related Work

Neural abstractive summarization. Rush et al.
(2015) were the first to apply modern neural net-
works to abstractive text summarization, achiev-
ing state-of-the-art performance on DUC-2004
and Gigaword, two sentence-level summarization
datasets. Their approach, which is centered on the
attention mechanism, has been augmented with re-
current decoders (Chopra et al., 2016), Abstract
Meaning Representations (Takase et al., 2016), hi-
erarchical networks (Nallapati et al., 2016), vari-
ational autoencoders (Miao and Blunsom, 2016),
and direct optimization of the performance metric
(Ranzato et al., 2016), further improving perfor-
mance on those datasets.

However, large-scale datasets for summariza-
tion of longer text are rare. Nallapati et al. (2016)
adapted the DeepMind question-answering dataset
(Hermann et al., 2015) for summarization, result-
ing in the CNN/Daily Mail dataset, and provided
the first abstractive baselines. The same authors
then published a neural extractive approach (Nal-
lapati et al., 2017), which uses hierarchical RNNs
to select sentences, and found that it significantly
outperformed their abstractive result with respect
to the ROUGE metric. To our knowledge, these
are the only two published results on the full data-
set.

Prior to modern neural methods, abstractive
summarization received less attention than extrac-
tive summarization, but Jing (2000) explored cut-
ting unimportant parts of sentences to create sum-
maries, and Cheung and Penn (2014) explore sen-
tence fusion using dependency trees.

Pointer-generator networks. The pointer net-
work (Vinyals et al., 2015) is a sequence-to-
sequence model that uses the soft attention dis-
tribution of Bahdanau et al. (2015) to produce
an output sequence consisting of elements from
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the input sequence. The pointer network has been
used to create hybrid approaches for NMT (Gul-
cehre et al., 2016), language modeling (Merity
et al., 2016), and summarization (Gu et al., 2016;
Gulcehre et al., 2016; Miao and Blunsom, 2016;
Nallapati et al., 2016; Zeng et al., 2016).

Our approach is close to the Forced-Attention
Sentence Compression model of Miao and Blun-
som (2016) and the CopyNet model of Gu et al.
(2016), with some small differences: (i) We cal-
culate an explicit switch probability pgen, whereas
Gu et al. induce competition through a shared soft-
max function. (ii) We recycle the attention distri-
bution to serve as the copy distribution, but Gu et
al. use two separate distributions. (iii) When a
word appears multiple times in the source text, we
sum probability mass from all corresponding parts
of the attention distribution, whereas Miao and
Blunsom do not. Our reasoning is that (i) calcu-
lating an explicit pgen usefully enables us to raise
or lower the probability of all generated words or
all copy words at once, rather than individually,
(ii) the two distributions serve such similar pur-
poses that we find our simpler approach suffices,
and (iii) we observe that the pointer mechanism
often copies a word while attending to multiple oc-
currences of it in the source text.

Our approach is considerably different from
that of Gulcehre et al. (2016) and Nallapati et al.
(2016). Those works train their pointer compo-
nents to activate only for out-of-vocabulary words
or named entities (whereas we allow our model to
freely learn when to use the pointer), and they do
not mix the probabilities from the copy distribu-
tion and the vocabulary distribution. We believe
the mixture approach described here is better for
abstractive summarization – in section 6 we show
that the copy mechanism is vital for accurately
reproducing rare but in-vocabulary words, and in
section 7.2 we observe that the mixture model en-
ables the language model and copy mechanism to
work together to perform abstractive copying.

Coverage. Originating from Statistical Ma-
chine Translation (Koehn, 2009), coverage was
adapted for NMT by Tu et al. (2016) and Mi et al.
(2016), who both use a GRU to update the cov-
erage vector each step. We find that a simpler
approach – summing the attention distributions to
obtain the coverage vector – suffices. In this re-
spect our approach is similar to Xu et al. (2015),
who apply a coverage-like method to image cap-

tioning, and Chen et al. (2016), who also incorpo-
rate a coverage mechanism (which they call ‘dis-
traction’) as described in equation (11) into neural
summarization of longer text.

Temporal attention is a related technique that
has been applied to NMT (Sankaran et al., 2016)
and summarization (Nallapati et al., 2016). In
this approach, each attention distribution is di-
vided by the sum of the previous, which effec-
tively dampens repeated attention. We tried this
method but found it too destructive, distorting the
signal from the attention mechanism and reducing
performance. We hypothesize that an early inter-
vention method such as coverage is preferable to
a post hoc method such as temporal attention – it
is better to inform the attention mechanism to help
it make better decisions, than to override its de-
cisions altogether. This theory is supported by the
large boost that coverage gives our ROUGE scores
(see Table 1), compared to the smaller boost given
by temporal attention for the same task (Nallapati
et al., 2016).

4 Dataset

We use the CNN/Daily Mail dataset (Hermann
et al., 2015; Nallapati et al., 2016), which con-
tains online news articles (781 tokens on average)
paired with multi-sentence summaries (3.75 sen-
tences or 56 tokens on average). We used scripts
supplied by Nallapati et al. (2016) to obtain the
same version of the the data, which has 287,226
training pairs, 13,368 validation pairs and 11,490
test pairs. Both the dataset’s published results
(Nallapati et al., 2016, 2017) use the anonymized
version of the data, which has been pre-processed
to replace each named entity, e.g., The United Na-
tions, with its own unique identifier for the exam-
ple pair, e.g., @entity5. By contrast, we operate
directly on the original text (or non-anonymized
version of the data),2 which we believe is the fa-
vorable problem to solve because it requires no
pre-processing.

5 Experiments

For all experiments, our model has 256-
dimensional hidden states and 128-dimensional
word embeddings. For the pointer-generator mod-
els, we use a vocabulary of 50k words for both
source and target – note that due to the pointer net-
work’s ability to handle OOV words, we can use

2at www.github.com/abisee/pointer-generator
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ROUGE METEOR
1 2 L exact match + stem/syn/para

abstractive model (Nallapati et al., 2016)* 35.46 13.30 32.65 - -
seq-to-seq + attn baseline (150k vocab) 30.49 11.17 28.08 11.65 12.86
seq-to-seq + attn baseline (50k vocab) 31.33 11.81 28.83 12.03 13.20
pointer-generator 36.44 15.66 33.42 15.35 16.65
pointer-generator + coverage 39.53 17.28 36.38 17.32 18.72
lead-3 baseline (ours) 40.34 17.70 36.57 20.48 22.21
lead-3 baseline (Nallapati et al., 2017)* 39.2 15.7 35.5 - -
extractive model (Nallapati et al., 2017)* 39.6 16.2 35.3 - -

Table 1: ROUGE F1 and METEOR scores on the test set. Models and baselines in the top half are
abstractive, while those in the bottom half are extractive. Those marked with * were trained and evaluated
on the anonymized dataset, and so are not strictly comparable to our results on the original text. All our
ROUGE scores have a 95% confidence interval of at most ±0.25 as reported by the official ROUGE
script. The METEOR improvement from the 50k baseline to the pointer-generator model, and from the
pointer-generator to the pointer-generator+coverage model, were both found to be statistically significant
using an approximate randomization test with p < 0.01.

a smaller vocabulary size than Nallapati et al.’s
(2016) 150k source and 60k target vocabularies.
For the baseline model, we also try a larger vocab-
ulary size of 150k.

Note that the pointer and the coverage mecha-
nism introduce very few additional parameters to
the network: for the models with vocabulary size
50k, the baseline model has 21,499,600 parame-
ters, the pointer-generator adds 1153 extra param-
eters (wh∗ , ws, wx and bptr in equation 8), and cov-
erage adds 512 extra parameters (wc in equation
11).

Unlike Nallapati et al. (2016), we do not pre-
train the word embeddings – they are learned
from scratch during training. We train using Ada-
grad (Duchi et al., 2011) with learning rate 0.15
and an initial accumulator value of 0.1. (This
was found to work best of Stochastic Gradient
Descent, Adadelta, Momentum, Adam and RM-
SProp). We use gradient clipping with a maximum
gradient norm of 2, but do not use any form of reg-
ularization. We use loss on the validation set to
implement early stopping.

During training and at test time we truncate the
article to 400 tokens and limit the length of the
summary to 100 tokens for training and 120 to-
kens at test time.3 This is done to expedite train-
ing and testing, but we also found that truncating
the article can raise the performance of the model

3The upper limit of 120 is mostly invisible: the beam
search algorithm is self-stopping and almost never reaches
the 120th step.

(see section 7.1 for more details). For training,
we found it efficient to start with highly-truncated
sequences, then raise the maximum length once
converged. We train on a single Tesla K40m GPU
with a batch size of 16. At test time our summaries
are produced using beam search with beam size 4.

We trained both our baseline models for about
600,000 iterations (33 epochs) – this is similar
to the 35 epochs required by Nallapati et al.’s
(2016) best model. Training took 4 days and 14
hours for the 50k vocabulary model, and 8 days 21
hours for the 150k vocabulary model. We found
the pointer-generator model quicker to train, re-
quiring less than 230,000 training iterations (12.8
epochs); a total of 3 days and 4 hours. In par-
ticular, the pointer-generator model makes much
quicker progress in the early phases of training.
To obtain our final coverage model, we added the
coverage mechanism with coverage loss weighted
to λ = 1 (as described in equation 13), and trained
for a further 3000 iterations (about 2 hours). In
this time the coverage loss converged to about 0.2,
down from an initial value of about 0.5. We also
tried a more aggressive value of λ = 2; this re-
duced coverage loss but increased the primary loss
function, thus we did not use it.

We tried training the coverage model without
the loss function, hoping that the attention mech-
anism may learn by itself not to attend repeatedly
to the same locations, but we found this to be inef-
fective, with no discernible reduction in repetition.
We also tried training with coverage from the first
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iteration rather than as a separate training phase,
but found that in the early phase of training, the
coverage objective interfered with the main objec-
tive, reducing overall performance.

6 Results

6.1 Preliminaries

Our results are given in Table 1. We evalu-
ate our models with the standard ROUGE metric
(Lin, 2004b), reporting the F1 scores for ROUGE-
1, ROUGE-2 and ROUGE-L (which respectively
measure the word-overlap, bigram-overlap, and
longest common sequence between the reference
summary and the summary to be evaluated). We
obtain our ROUGE scores using the pyrouge

package.4 We also evaluate with the METEOR
metric (Denkowski and Lavie, 2014), both in ex-
act match mode (rewarding only exact matches
between words) and full mode (which addition-
ally rewards matching stems, synonyms and para-
phrases).5

In addition to our own models, we also report
the lead-3 baseline (which uses the first three sen-
tences of the article as a summary), and compare
to the only existing abstractive (Nallapati et al.,
2016) and extractive (Nallapati et al., 2017) mod-
els on the full dataset. The output of our models is
available online.6

Given that we generate plain-text summaries but
Nallapati et al. (2016; 2017) generate anonymized
summaries (see Section 4), our ROUGE scores
are not strictly comparable. There is evidence
to suggest that the original-text dataset may re-
sult in higher ROUGE scores in general than the
anonymized dataset – the lead-3 baseline is higher
on the former than the latter. One possible expla-
nation is that multi-word named entities lead to
a higher rate of n-gram overlap. Unfortunately,
ROUGE is the only available means of compar-
ison with Nallapati et al.’s work. Nevertheless,
given that the disparity in the lead-3 scores is
(+1.1 ROUGE-1, +2.0 ROUGE-2, +1.1 ROUGE-
L) points respectively, and our best model scores
exceed Nallapati et al. (2016) by (+4.07 ROUGE-
1, +3.98 ROUGE-2, +3.73 ROUGE-L) points, we
may estimate that we outperform the only previous
abstractive system by at least 2 ROUGE points all-
round.

4pypi.python.org/pypi/pyrouge/0.1.3
5www.cs.cmu.edu/~alavie/METEOR
6www.github.com/abisee/pointer-generator
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Figure 4: Coverage eliminates undesirable repe-
tition. Summaries from our non-coverage model
contain many duplicated n-grams while our cover-
age model produces a similar number as the ref-
erence summaries.

6.2 Observations

We find that both our baseline models perform
poorly with respect to ROUGE and METEOR, and
in fact the larger vocabulary size (150k) does not
seem to help. Even the better-performing baseline
(with 50k vocabulary) produces summaries with
several common problems. Factual details are fre-
quently reproduced incorrectly, often replacing an
uncommon (but in-vocabulary) word with a more-
common alternative. For example in Figure 1,
the baseline model appears to struggle with the
rare word thwart, producing destabilize instead,
which leads to the fabricated phrase destabilize
nigeria’s economy. Even more catastrophically,
the summaries sometimes devolve into repetitive
nonsense, such as the third sentence produced by
the baseline model in Figure 1. In addition, the
baseline model can’t reproduce out-of-vocabulary
words (such as muhammadu buhari in Figure 1).
Further examples of all these problems are pro-
vided in the supplementary material.

Our pointer-generator model achieves much
better ROUGE and METEOR scores than the
baseline, despite many fewer training epochs. The
difference in the summaries is also marked: out-
of-vocabulary words are handled easily, factual
details are almost always copied correctly, and
there are no fabrications (see Figure 1). However,
repetition is still very common.

Our pointer-generator model with coverage im-
proves the ROUGE and METEOR scores further,
convincingly surpassing the best abstractive model
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Article: smugglers lure arab and african migrants by offer-
ing discounts to get onto overcrowded ships if people bring
more potential passengers, a cnn investigation has revealed.
(...)
Summary: cnn investigation uncovers the business inside
a human smuggling ring.

Article: eyewitness video showing white north charleston
police officer michael slager shooting to death an unarmed
black man has exposed discrepancies in the reports of the
first officers on the scene. (...)
Summary: more questions than answers emerge in con-
troversial s.c. police shooting.

Figure 5: Examples of highly abstractive reference
summaries (bold denotes novel words).

of Nallapati et al. (2016) by several ROUGE
points. Despite the brevity of the coverage train-
ing phase (about 1% of the total training time),
the repetition problem is almost completely elimi-
nated, which can be seen both qualitatively (Figure
1) and quantitatively (Figure 4). However, our best
model does not quite surpass the ROUGE scores
of the lead-3 baseline, nor the current best extrac-
tive model (Nallapati et al., 2017). We discuss this
issue in section 7.1.

7 Discussion

7.1 Comparison with extractive systems

It is clear from Table 1 that extractive systems tend
to achieve higher ROUGE scores than abstractive,
and that the extractive lead-3 baseline is extremely
strong (even the best extractive system beats it by
only a small margin). We offer two possible ex-
planations for these observations.

Firstly, news articles tend to be structured with
the most important information at the start; this
partially explains the strength of the lead-3 base-
line. Indeed, we found that using only the first 400
tokens (about 20 sentences) of the article yielded
significantly higher ROUGE scores than using the
first 800 tokens.

Secondly, the nature of the task and the ROUGE
metric make extractive approaches and the lead-
3 baseline difficult to beat. The choice of con-
tent for the reference summaries is quite subjective
– sometimes the sentences form a self-contained
summary; other times they simply showcase a few
interesting details from the article. Given that the
articles contain 39 sentences on average, there are
many equally valid ways to choose 3 or 4 high-
lights in this style. Abstraction introduces even
more options (choice of phrasing), further decreas-

ing the likelihood of matching the reference sum-
mary. For example, smugglers profit from des-
perate migrants is a valid alternative abstractive
summary for the first example in Figure 5, but
it scores 0 ROUGE with respect to the reference
summary. This inflexibility of ROUGE is exac-
erbated by only having one reference summary,
which has been shown to lower ROUGE’s relia-
bility compared to multiple reference summaries
(Lin, 2004a).

Due to the subjectivity of the task and thus
the diversity of valid summaries, it seems that
ROUGE rewards safe strategies such as select-
ing the first-appearing content, or preserving orig-
inal phrasing. While the reference summaries do
sometimes deviate from these techniques, those
deviations are unpredictable enough that the safer
strategy obtains higher ROUGE scores on average.
This may explain why extractive systems tend to
obtain higher ROUGE scores than abstractive, and
even extractive systems do not significantly ex-
ceed the lead-3 baseline.

To explore this issue further, we evaluated our
systems with the METEOR metric, which rewards
not only exact word matches, but also matching
stems, synonyms and paraphrases (from a pre-
defined list). We observe that all our models re-
ceive over 1 METEOR point boost by the inclu-
sion of stem, synonym and paraphrase matching,
indicating that they may be performing some ab-
straction. However, we again observe that the
lead-3 baseline is not surpassed by our models.
It may be that news article style makes the lead-
3 baseline very strong with respect to any metric.
We believe that investigating this issue further is
an important direction for future work.

7.2 How abstractive is our model?

We have shown that our pointer mechanism makes
our abstractive system more reliable, copying fac-
tual details correctly more often. But does the ease
of copying make our system any less abstractive?

Figure 6 shows that our final model’s sum-
maries contain a much lower rate of novel n-grams
(i.e., those that don’t appear in the article) than the
reference summaries, indicating a lower degree of
abstraction. Note that the baseline model produces
novel n-grams more frequently – however, this
statistic includes all the incorrectly copied words,
UNK tokens and fabrications alongside the good
instances of abstraction.
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Figure 6: Although our best model is abstractive,
it does not produce novel n-grams (i.e., n-grams
that don’t appear in the source text) as often as
the reference summaries. The baseline model
produces more novel n-grams, but many of these
are erroneous (see section 7.2).

Article: andy murray (...) is into the semi-finals of the mi-
ami open , but not before getting a scare from 21 year-old
austrian dominic thiem, who pushed him to 4-4 in the sec-
ond set before going down 3-6 6-4, 6-1 in an hour and three
quarters. (...)
Summary: andy murray defeated dominic thiem 3-6 6-4,
6-1 in an hour and three quarters.

Article: (...) wayne rooney smashes home during manch-
ester united ’s 3-1 win over aston villa on saturday. (...)
Summary: manchester united beat aston villa 3-1 at old
trafford on saturday.

Figure 7: Examples of abstractive summaries pro-
duced by our model (bold denotes novel words).

In particular, Figure 6 shows that our final
model copies whole article sentences 35% of the
time; by comparison the reference summaries do
so only 1.3% of the time. This is a main area for
improvement, as we would like our model to move
beyond simple sentence extraction. However, we
observe that the other 65% encompasses a range of
abstractive techniques. Article sentences are trun-
cated to form grammatically-correct shorter ver-
sions, and new sentences are composed by stitch-
ing together fragments. Unnecessary interjections,
clauses and parenthesized phrases are sometimes
omitted from copied passages. Some of these abil-
ities are demonstrated in Figure 1, and the supple-
mentary material contains more examples.

Figure 7 shows two examples of more impres-
sive abstraction – both with similar structure. The
dataset contains many sports stories whose sum-
maries follow the X beat Y 〈score〉 on 〈day〉 tem-

plate, which may explain why our model is most
confidently abstractive on these examples. In gen-
eral however, our model does not routinely pro-
duce summaries like those in Figure 7, and is not
close to producing summaries like in Figure 5.

The value of the generation probability pgen
also gives a measure of the abstractiveness of our
model. During training, pgen starts with a value
of about 0.30 then increases, converging to about
0.53 by the end of training. This indicates that
the model first learns to mostly copy, then learns
to generate about half the time. However at test
time, pgen is heavily skewed towards copying, with
a mean value of 0.17. The disparity is likely
due to the fact that during training, the model re-
ceives word-by-word supervision in the form of
the reference summary, but at test time it does
not. Nonetheless, the generator module is use-
ful even when the model is copying. We find
that pgen is highest at times of uncertainty such
as the beginning of sentences, the join between
stitched-together fragments, and when producing
periods that truncate a copied sentence. Our mix-
ture model allows the network to copy while si-
multaneously consulting the language model – en-
abling operations like stitching and truncation to
be performed with grammaticality. In any case,
encouraging the pointer-generator model to write
more abstractively, while retaining the accuracy
advantages of the pointer module, is an exciting
direction for future work.

8 Conclusion

In this work we presented a hybrid pointer-
generator architecture with coverage, and showed
that it reduces inaccuracies and repetition. We ap-
plied our model to a new and challenging long-
text dataset, and significantly outperformed the
abstractive state-of-the-art result. Our model ex-
hibits many abstractive abilities, but attaining
higher levels of abstraction remains an open re-
search question.
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