
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1018–1028
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1094

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1018–1028
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1094

Don’t understand a measure? Learn it:
Structured Prediction for Coreference Resolution optimizing its measures

Iryna Haponchyk∗ and Alessandro Moschitti
∗DISI, University of Trento, 38123 Povo (TN), Italy

Qatar Computing Research Institute, HBKU, 34110, Doha, Qatar
{gaponchik.irina,amoschitti}@gmail.com

Abstract

An assential aspect of structured predic-
tion is the evaluation of an output struc-
ture against the gold standard. Especially
in the loss-augmented setting, the need of
finding the max-violating constraint has
severely limited the expressivity of effec-
tive loss functions. In this paper, we
trade off exact computation for enabling
the use of more complex loss functions for
coreference resolution (CR). Most note-
worthily, we show that such functions
can be (i) automatically learned also from
controversial but commonly accepted CR
measures, e.g., MELA, and (ii) success-
fully used in learning algorithms. The ac-
curate model comparison on the standard
CoNLL–2012 setting shows the benefit of
more expressive loss for Arabic and En-
glish data.

1 Introduction
In recent years, interesting structured predic-

tion methods have been developed for coref-
erence resolution (CR), e.g., (Fernandes et al.,
2014; Björkelund and Kuhn, 2014; Martschat and
Strube, 2015). These models are supposed to out-
put clusters but, to better control the exponential
nature of the problem, the clusters are converted
into tree structures. Although this simplifies the
problem, optimal solutions are associated with an
exponential set of trees, requiring to maximize
over such a set. This originated latent models (Yu
and Joachims, 2009) optimizing the so-called loss-
augmented objective functions.

In this setting, loss functions need to be factor-
izable together with the feature representations for
finding the max-violating constraints. The conse-
quence is that only simple loss functions, basically

just counting incorrect edges, were applied in pre-
vious work, giving up expressivity for simplicity.
This is a critical limitation as domain experts con-
sider more information than just counting edges.

In this paper, we study the use of more ex-
pressive loss functions in the structured predic-
tion framework for CR, although some findings
are clearly applicable to more general settings.
We attempted to optimize the complicated offi-
cial MELA measure1 (Pradhan et al., 2012) of
CR within the learning algorithm. Unfortunately,
MELA is the average of measures, among which
CEAFe has an excessive computational complex-
ity preventing its direct use. To solve this prob-
lem, we defined a model for learning MELA from
data using a fast linear regressor, which can be
then effectively used in structured prediction al-
gorithms. We defined features to learn such a loss
function, e.g., different link counts or aggregations
such as Precision and Recall. Moreover, we de-
signed methods for generating training data from
which our regression loss algorithm (RL) can gen-
eralize well and accurately predict MELA values
on unseen data.

Since RL is not factorizable2 over a mention
graph, we designed a latent structured percep-
tron (LSP) that can optimize non-factorizable loss
functions on CR graphs. We tested LSP using RL
and other traditional loss functions using the same
setting of the CoNLL–2012 Shared Task, thus en-
abling an exact comparison with previous work.
The results confirmed that RL can be effectively
learned and used in LSP, although the improve-
ment was smaller than expected, considering that
our RL provides the algorithm with a more accu-
rate feedback.

Thus, we analyzed the theory behind this pro-

1Received most consensus in the NLP community.
2We have not found yet a possible factorization.

1018

https://doi.org/10.18653/v1/P17-1094
https://doi.org/10.18653/v1/P17-1094


cess by also contributing to the definition of the
properties of loss optimality. These show that
the available loss functions, e.g., by Fernandes
et al.; Yu and Joachims, are enough for optimizing
MELA on the training set, at least when the data
is separable. Thus, in such conditions, we cannot
expect a very large improvement from RL.

To confirm such a conjecture, we tested the
models in a more difficult setting, in terms of sepa-
rability. We used different feature sets of a smaller
size and found out that in such conditions, RL re-
quires less epochs for converging and produces
better results than the other simpler loss functions.
The accuracy of RL-based model, using 16 times
less features, decreases by just 0.3 points, still im-
proving the state of the art in structured predic-
tion. Accordingly, in the Arabic setting, where the
available features are less discriminative, our ap-
proach highly improves the standard LSP.

2 Related Work
There is a number of works attempting to di-

rectly optimize coreference metrics. The solu-
tion proposed by Zhao and Ng (2010) consists in
finding an optimal weighting (by beam search) of
training instances, which would maximize the tar-
get coreference metric. Their models, optimiz-
ing MUC and B3, deliver a significant improve-
ment on the MUC and ACE corpora. Uryupina
et al. (2011) benefited from applying genetic algo-
rithms for the selection of features and architecture
configuration by multi-objective optimization of
MUC and the two CEAF variants. Our approach
is different in that the evaluation measure (its ap-
proximation) is injected directly into the learning
algorithm. Clark and Manning (2016) optimize B3

directly as well within a mention-ranking model.
For the efficiency reasons, they omit optimization
of CEAF, which we enable in this work.

SVMcluster – a structured output approach by
Finley and Joachims (2005) – enables optimiza-
tion to any clustering loss function (including non-
decomposable ones). The authors experimentally
show that optimizing particular loss functions re-
sults into a better classification accuracy in terms
of the same functions. However, these are in gen-
eral fast to compute, which is not the MELA case.

While Finley and Joachims are compelled to
perform approximate inference to overcome the
intractability of finding an optimal clustering, the
latent variable structural approaches – SVM of Yu
and Joachims (2009) and perceptron of Fernan-

Figure 1: Latent tree used for structural learning

des et al. (2014) – render exact inference possi-
ble by introducing auxiliary graph structures. The
modeling of Fernandes et al. (also referred to as
the antecedent tree approach) is exploited in the
works of Björkelund and Kuhn (2014), Martschat
and Strube (2015), and Lassalle and Denis (2015).
Like us, the first couples such approach with ap-
proximate inference but for enabling the use of
non-local features. The current state-of-the-art
model of Wiseman et al. (2016) also employs a
greedy inference procedure as it has global fea-
tures from an RNN as a non-decomposable term
in the inference objective.

3 Structure Output Learning for CR
We consider online learning algorithms for link-

ing structured input and output patterns. More
formally, such algorithms find a linear mapping
f(x,y) = 〈w,Φ(x,y)〉, where f : X × Y → R,
w is a linear model, Φ(x,y) is a combined fea-
ture vector of input variables X and output vari-
ables Y . The predicted structure is derived with
the argmax

y∈Y
f(x,y). In the next sections, we show

how to learn w for CR using structured percep-
tron. Additionally, we provide a characterization
of effective loss functions for separable cases.

3.1 Modeling CR

In this framework, CR is essentially modeled as
a clustering problem, where an input-output exam-
ple is described by a tuple (x,y,h), x is a set of
entity mentions contained in a text document, y is
set of the corresponding mention clusters, and h
is a latent variable, i.e., an auxiliary structure that
can represent the clusters of y. For example, given
the following text:

Although (she)m1 was supported by (President
Obama)m2 , (Mrs. Clinton)m3 missed (her)m4

(chance)m5 , (which)m6 looked very good before
counting votes.

the clusters of the entity mentions are represented
by the latent tree in Figure 1, where its nodes are

1019



Algorithm 1 Latent Structured Perceptron
1: Input: X = {(xi,yi)}ni=1, w0, C, T
2: w← w0; t← 0
3: repeat
4: for i = 1, ..., n do
5: h∗i ← argmax

h∈H(xi,yi)

〈wt,Φ(xi,h)〉

6: ĥi ← argmax
h∈H(xi)

〈wt,Φ(xi,h)〉+C×∆(yi,h
∗
i ,h)

7: if ∆(yi,h
∗
i, ĥi) > 0 then

8: wt+1 ← wt + Φ(xi,h
∗
i )− Φ(xi, ĥi)

9: end if
10: end for
11: t← t + 1
12: until t < nT

13: w← 1
t

t∑
i=1

wi

return w

mentions and the subtrees connected to the addi-
tional root node form distinct clusters. The tree h
is called a latent variable as it is consistent with y,
i.e., it contains only links between mention nodes
that corefer or fall into the same cluster according
to y. Clearly, an exponential set of trees, H , can
be associated with one and the same clustering y.
Using only one tree to represent a clustering makes
the search for optimal mention clusters tractable.
In particular, structured prediction algorithms se-
lect h that maximizes the model learned at time t
as shown in the next section.

3.2 Latent Structured Perceptron (LSP)
The LSP model proposed by Sun et al. (2009)

and specialized for solving CR tasks by Fernandes
et al. (2012) is described by Alg. 1.

Given a training set {(xi,yi)}ni=1, initial w0
3,

a trade off parameter C, and the maximum num-
ber of epochs T , LSP iterates the following opera-
tions: Line 5 finds a latent tree h∗i that maximizes
〈wt,Φ(xi,h)〉 for the current example (xi,yi). It
basically finds the max ground truth tree with re-
spect to the current wt. Finding such max re-
quires an exploration over the tree set H(xi,yi),
which only contains arcs between mentions that
corefer according to the gold standard clustering
yi. Line 6 seeks for the max-violating tree ĥi in
H(xi), which is the set of all candidate trees using
any possible combination of arcs. Line 7 tests if
the produced tree ĥi has some mistakes with re-
spect to the gold clustering yi, using loss function
∆(yi,h

∗
i , ĥi). Note that some models define a loss

exploiting also the current best latent tree h∗i . If
the test is verified, the model is updated with the
vector Φ(xi,h

∗
i )− Φ(xi, ĥi).

3Either 0 or a random vector.

Fernandes et al. (2012) used exactly the di-
rected trees we showed as latent structures and
applied Edmonds’ spanning tree algorithm (Ed-
monds, 1967) for finding the max. Their model
achieved the best results in the CoNLL–2012
Shared Task, a challenge for CR systems (Prad-
han et al., 2012). Their selected loss function also
plays an important role as shown in the following.

3.3 Loss functions
When defining a loss, it is very important to pre-

serve the factorization of the model components
along the latent tree edges since this leads to effi-
cient maximization algorithms (see Section 5).

Fernandes et al. uses a loss function that (i)
compares a predicted tree ĥ against the gold tree
h∗ and (ii) factorizes over the edges in the way the
model does. Its equation is:

∆F (h∗, ĥ) =

M∑

i=1

1ĥ(i) 6=h∗(i)(1+r ·1h∗(i)=0), (1)

where h∗(i) and ĥ(i) output the parent of the men-
tion node i in the gold and predicted tree, respec-
tively, whereas 1h∗(i) 6=ĥ(i) just checks if the par-
ents are different, and if yes, penalty of 1 (or 1 + r
if the gold parent is the root) is added.

Yu and Joachims’s loss is based on undirected
tree without a root and on the gold clustering y. It
is computed as:

∆Y J(y, ĥ) = n(y)− k(y) +
∑

e∈ĥ
l(y, e), (2)

where n(y) is the number of graph nodes, k(y) is
the number of clusters in y, and l(y, e) assigns−1
to any edge e that connects nodes from the same
cluster in y, and r otherwise.

In our experiments, we adopt both loss func-
tions, however, in contrast to Fernandes et al., we
always measure ∆F against the gold label y and
not against the current h∗, i.e., in the way it is done
by Martschat and Strube (2015), who employ an
equivalent LSP model in their work.

3.4 On optimality of simple loss functions
The above loss functions are rather simple and

mainly based on counting the number of mistaken
edges. Below, we show that such simple loss func-
tions achieve training data separation (if it exists)
of a general task measure reaching its max on their
0 mistakes. The latter is a desirable characteristic
of many measures used in CR and NLP research.

1020



Proposition 1 (Sufficient condition for optimal-
ity of loss functions for learning graphs). Let
∆(y,h∗, ĥ) ≥ 0 be a simple, edge-factorizable
loss function, which is also monotone in the num-
ber of edge errors, and let µ(y, ĥ) be any graph-
based measure maximized by no edge errors.
Then, if the training set is linearly separable LSP
optimizing ∆ converges to the µ optimum.

Proof. If the data is linearly separable the percep-
tron converges ⇒ ∆(yi,h

∗
i, ĥi) = 0, ∀xi. The

loss is factorizable, i.e.,

∆(yi,h
∗
i, ĥi) =

∑

e∈ĥi

l(yi,h
∗
i, e), (3)

where l(·) is an edge loss function. Thus,∑
e∈ĥi

l(yi,h
∗
i, e) = 0. The latter equation and

monotonicity imply l(yi,h
∗
i, e) = 0,∀e ∈ ĥi,

i.e., there are no edge mistakes, otherwise by fix-
ing such edges, we would have a smaller ∆, i.e.,
negative, contradicting the initial positiveness hy-
pothesis. Thus, no edge mistake in any xi implies
that µ(y, ĥ) is maximized on the training set.

Corollary 1. ∆F (h∗, ĥ) and ∆Y J(y, ĥ) are both
optimal loss functions for graphs.

Proof. Equations 1 and 2 show that both are 0
when applied to a clustering with no mistake
on the edges. Additionally, for each edge mis-
take more, both loss functions increase, implying
monotonicity. Thus, they satisfy all the assump-
tions of Proposition 1.

The above characteristic suggests that ∆F and
∆Y J can optimize any measure that reasonably
targets no mistakes as its best outcome. Clearly,
this property does not guarantee loss functions to
be suitable for a given task measure, e.g., the latter
may have different max points and behave rather
discontinuously. However, a common practice in
NLP is to optimize the maximum of a measure,
e.g., in case of Precision and Recall, or Accuracy,
therefore, loss functions able to at least achieve
such an optimum are preferable.

4 Automatically learning a loss function
How to measure a complex task such as CR has

generated a long and controversial discussion in
the research community. While such a debate is
progressing, the most accepted and used measure
is the so-called Mention, Entity, and Link Average
(MELA) score. As it will be clear from the de-
scription below, MELA is not easily interpretable

and not robust to the mention identification ef-
fect (Moosavi and Strube, 2016). Thus, loss func-
tions showing the optimality property may not be
enough to optimize it. Our proposal is to use a
version of MELA transformed in a loss function
optimized by an LSP algorithm with inexact in-
ference. However, the computational complexity
of the measure prevents to carry out an effective
learning. Our solution is thus to learn MELA with
a fast linear regressor, which also produces a con-
tinuos version of the measure.

4.1 Measures for CR

MELA is the unweighted average of MUC (Vi-
lain et al., 1995), B3 (Bagga and Baldwin, 1998)
and CEAFe (CEAF variant with entity-based sim-
ilarity) (Luo, 2005; Cai and Strube, 2010) scores,
having heterogeneous nature.

MUC is based on the number of correctly pre-
dicted links between mentions. The number of
links required for obtaining the key entity set K
is
∑

ki∈K(|ki|−1), where ki are key entities in K
(cardinality of each entity minus one). MUC recall
computes what fraction of these were predicted,
and the predicted were as many as

∑
ki∈K(|ki| −

|p(ki)|) =
∑

ki∈K(|ki|−1− (|p(ki)|−1)), where
p(ki) is a partition of the key entity ki formed by
intersecting it with the corresponding response en-
tities rj ∈ R, s.t., ki∩ rj 6= ∅. This number equals
to the number of the key links minus the number
of missing links, required to unite the parts of the
partition p(ki) to obtain ki.

B3 computes Precision and Recall individually
for each mention. For mention m: Recallm =
|kmi ∩rmj |
|kmi |

, where kmi and rmj , subscripted with m,
denote, correspondingly, the key and response en-
tities into which m falls. The over-document Re-
call is then an average of these taken with respect
to the number of the key mentions. The MUC
and B3 Precision is computed by interchanging the
roles of the key and response entities.

CEAFe computes similarity between key and
system entities after finding an optimal alignment
between them. Using ψ(ki, rj) =

2|ki∩rj |
|ki|+|rj | as the

entity similarity measure, it finds an optimal one-
to-one map g∗ : K → R, which maps every key
entity to a response entity, maximazing an overall
similarity Ψ(g) =

∑
ki∈K ψ(ki, g(ki)) of the ex-

ample. This is solved as a bipartite matching prob-
lem by the Kuhn-Munkres algorithm. Then Preci-

1021



Algorithm 2 Finding a Max-violating Spanning
Tree
1: Input: training example (x,y); graph G(x) with ver-

tices V denoting mentions; set of the incoming candidate
edges, E(v), v ∈ V ; weight vector w

2: h∗ ← ∅
3: for v ∈ V do
4: e∗ = argmax

e∈E(v)

〈w, e〉+ C × l(y, e)

5: h∗ = h∗ ∪ e∗

6: end for
7: return max-violating tree h∗

8: (clustering y∗ is induced by the tree h∗)

sion and Recall are Ψ(g∗)∑
rj∈R

ψ(rj ,rj)
and Ψ(g∗)∑

ki∈K
ψ(ki,ki)

,

respectively.
MELA computation is rather expensive mostly

because of CEAFe. Its complexity is bounded
by O(Ml2 log l) (Luo, 2005), where M and l
are, correspondingly, the maximum and minimum
number of entities in y and ŷ. Computing CEAFe
is especially slow for the candidate outputs ŷ with
a low quality of prediction, i.e, when l is big, and
the coherence with the gold y is scarse.

Finally, B3 and CEAFe are strongly influenced
by the mention identification effect (Moosavi and
Strube, 2016). Thus, ∆F and ∆Y J may output
identical values for different clusterings that can
have a big gap in terms of MELA.

4.2 Features for learning measures
As computational reasons prevent to use MELA

in LSP (see our inexact search algorithm in Sec-
tion 5), we study methods for approximating it
with a linear regressor. For this purpose, we define
nine features, which count either exact or simpli-
fied versions of Precision, Recall and F1 of each
of the three metric-components of MELA. Clearly,
neither ∆F nor ∆Y J provide the same values.

Apart from the computational complexity, the
difficulty of evaluating the quality of the predicted
clustering ŷ during training is also due to the fact
that CR is carried out on automatically detected
mentions, while it needs to be compared against
a gold standard clustering of a gold mention set.
However, we can use simple information about au-
tomatic mentions and how they relate to gold men-
tions and gold clusters. In particular, we use four
numbers: (i) correctly detected automatic men-
tions, (ii) links they have in the gold standard, (iii)
gold mentions, and (iv) gold links. The last one
enables the precise computation of Precision, Re-
call and F1-measure values of MUC; the required
partitions p(ki) of key entities are also available at

training time as they contain only automatic men-
tions. These are the first three features that we de-
sign. Likewise for B3, the feature values can be
derived using (ii) and (iii).

For computing CEAFe heuristics, we do not
perform cluster alignment to find an optimal
Ψ(g∗). Instead of Ψ(g∗), which can be rewrit-
ten as

∑
m∈K∩R

2
|kmi |+|g∗(kmi )| if summing up over

the mentions not the entities, we simply use Ψ̃ =∑
m∈K∩R

2
|kmi |+|rmj |

, pretending that for each m

its key kmi and response rmj entities are aligned.∑
rj∈R ψ(rj , rj) and

∑
ki∈K ψ(ki, ki) in the de-

nominators of the Precision and Recall are the
number of predicted and gold clusters, corre-
spondingly. The imprecision of the CEAFe related
features is expected to be leveraged when put to-
gether with the exact B3 and MUC values into the
regression learning using the exact MELA values
(implicitly exact CEAFe values as well).

4.3 Generating training and test data
The features described above can be used to

characterize the clustering variables ŷ. For gen-
erating training data, we collected all the max-
violating ŷ produced during LSPF (using ∆F )
learning and associate them with their correct
MELA scores from the scorer. This way, we can
have both training and test data for our regressor.
In our experiments, for the generation purpose, we
decided to run LSPF on each document separately
to obtain more variability in ŷ’s. We use a simple
linear SVM to learn a model wρ. Considering that
MELA(y, ŷ) score lies in the interval [100, 0], a
simple approximation of the loss could be:

∆ρ(y, ŷ) = 100−wρ · φ(y, ŷ). (4)

Below, we show its improved version and an LSP
for learning with it based on inexact search.

5 Learning with learned loss functions
Our experiments will demonstrate that ∆ρ can

be accurately learned from data. However, the fea-
tures we used for this are not factorizable over the
edges of the latent trees. Thus, we design a new
LSP algorithm that can use our learned loss in an
approximated max search.

5.1 A general inexact algorithm for CR
If the loss function can be factorized over tree

edges (see Equation 3) the max-violating con-
straint in Line 6 of Alg. 1 can be efficiently found
by exact decoding, e.g., using Edmonds’ algo-
rithm as in Fernandes et al. (2014) or Kruskal’s as

1022



Algorithm 3 Inexact Inference of a Max-violating
Spanning Tree with a Global Loss
1: Input: training example (x,y); graph G(x) with ver-

tices V denoting mentions; set of the incoming candidate
edges, E(v), v ∈ V ; w, ground truth tree h∗

2: ĥ← ∅
3: score← 0
4: repeat
5: prev score = score
6: score = 0
7: for v ∈ V do
8: h = ĥ \ e(v)
9: ê = argmax

e∈E(v)

〈w, e〉+ C ×∆(y,h∗,h ∪ e)

10: ĥ = h ∪ ê
11: score = score + 〈w, ê〉
12: end for
13: score = score + ∆(y,h∗, ĥ)
14: until score = prev score

15: return max-violating tree ĥ

in Yu and Joachims (2009). The candidate graph,
by construction, does not contain cycles, and the
inference by Edmonds’ algorithm does technically
the same as the ”best-left-link” inference algo-
rithm by Chang et al. (2012). This can be schemat-
ically represented in Alg. 2.

When we deal with ∆ρ, Alg. 2 cannot be
longer applied as our new loss function is non-
factorizable. Thus, we designed a greedy solution,
Alg. 3, which still uses the spanning tree algo-
rithm, though, it is not guaranteed to deliver the
max-violating constraint. However, finding even
a suboptimal solution optimizing a more accurate
loss function may achieve better performance both
in terms of speed and accuracy.

We reformulate Step 4 of Alg. 2, where a max-
violating incoming edge ê is identified for a ver-
tex v. The new max-violating inference objective
contains now a global loss measured on the par-
tial structure ĥ built up to now plus a candidate
edge e for a vertex v in consideration (Line 10 of
Alg. 3). On a high level, this resembles the infer-
ence procedure of Wiseman et al. (2016), who use
it for optimizing global features coming from an
RNN. Differently though, after processing all the
vertices, we repeat the procedure until the score of
ĥ no longer improves.

Note that Björkelund and Kuhn (2014) perform
inexact search on the same latent tree structures to
extend the model to non-local features. In contrast
to our approach, they use beam search and accu-
mulate the early updates.

In addition to the design of an algorithm en-
abling the use of our ∆ρ, there are other intricacies

Samples # examples MSE SCCTrain Test
S1 S2 6, 011 2.650 99.68
S2 S1 5, 496 2.483 99.70

Table 1: Accuracy of the loss regressor on two different sets
of examples generated from different documents samples.

caused by the lack of factorization that need to be
taken into account (see the next section).

5.2 Approaching factorization properties
The ∆ρ defined by Equation 4 approximately

falls into the interval [0, 100]. However, the sim-
ple optimal loss functions, ∆F and ∆Y J , output
a value dependent on the size of the input train-
ing document in terms of edges (as they factorize
in terms of edges). Since this property cannot be
learned from MELA by our regression algorithm,
we calibrate our loss with respect to the number of
correctly predicted mentions, c, in that document,
obtaining ∆′ρ = c

100∆ρ.
Finally, another important issue is connected to

the fact that on the way as we incrementally con-
struct a max-violating tree according to Alg. 3, ∆ρ

decreases (and MELA grows), as we add more
mentions to the output, traversing the tree nodes
v. Thus, to equalize the contribution of the loss
among the candidate edges of different nodes, we
also scale the loss of the candidate edges of the
node v having order i in the document, accord-
ing to the formula ∆′′ρ = i

|V |∆
′
ρ. This can be

interpreted as giving more weight to the hard-to-
classify instances – an important issue alleviated
by Zhao and Ng (2010). Towards the end of the
document, the probability of correctly predicting
an incoming edge for a node generally decreases,
as increases the number of hypotheses.

6 Experiments
In our experiments, we first show that our re-

gressor for learning MELA approximates it rather
accurately. Then, we examine the impact of our
∆ρ on state-of-the-art systems in comparison with
other loss functions. Finally, we show that the im-
pact of our model is amplified when learning in
smaller feature spaces.

6.1 Setup
Data We conducted our experiments on En-

glish and Arabic parts of the corpus from CoNLL
2012-Shared Task4. The English data contains
2,802, 343, and 348 documents in the training,

4conll.cemantix.org/2012/data.html

1023



101 102 103

2

4

6

8

10

12

number of training examples

M
SE

101 102 103

98.8

99.0

99.2

99.4

99.6

99.8

number of training examples

SC
C

Figure 2: Regressor Learning curves.

dev. and test parts, respectively. The Arabic data
includes 359, 44, and 44 documents for training,
dev. and test sets, respectively.
Models We implement our version of LSP,
where LSPF , LSPY J , and LSPρ use the loss func-
tions, ∆F , ∆Y J , and ∆ρ, defined in Section 3.3
and 5.2, respectively. We used cort5 – coref-
erence toolkit by Martschat and Strube (2015)
both to preprocess the English data and to extract
candidate mentions and features (the basic set).
For Arabic, we used mentions and features from
BART6 (Uryupina et al., 2012). We extended the
initial feature set for Arabic with the feature com-
binations proposed by Durrett and Klein (2013),
those permitted by the available initial features.
Parametrization All the perceptron models re-
quire tuning of a regularization parameter C.
LSPF and LSPY J – also tuning of a specific
loss parameter r. We select the parameters on
the entire dev. set by training on 100 random
documents from the training set. We pick up
C ∈ {1.0, 100.0, 1000.0, 2000.0}, the r val-
ues for LSPF from the interval [0.5, 2.5] with
step 0.5, and the r values for LSPY J – from
{0.05, 0.1, 0.5}. Ultimately, for English, we used
C = 1000.0 in all the models; r = 1.0 in LSPF
and r = 0.1 in LSPY J . And wider ranges of pa-
rameter values were considered for Arabic, due to
the lower mention detection rate: C = 1000.0,
r = 6.0 for LSPF , C = 1000.0, r = 0.01 for
LSPY J , and C = 5000.0 – for LSPρ. A standard
previous work setting for the number of epochs T
of LSP is 5 (Martschat and Strube, 2015). Fernan-
des et al. (2014) noted that T = 50 was sufficient
for convergence. We selected the best T from 1 to
50 on the dev. set.
Evaluation measure We used MUC, B3, CEAFe
and their average MELA for evaluation, computed
by the version 8 of the official CoNLL scorer.

5http://smartschat.de/software
6http://www.bart-coref.org/

Model Selected (N = 1M ) All (N ∼ 16.8M )
Dev. Test Tbest Dev. Test Tbest

LSPF 63.72 62.19 49 64.05 63.05 41
LSPY J 63.72 62.44 29 64.32 62.76 13
LSPρ 64.12 63.09 27 64.30 63.37 18

M&S AT – – – 62.31 61.24 5
M&S MR – – – 63.52 62.47 5
B&K – – – 62.52 61.63 –
Fer – – – 60.57 60.65 –

Table 2: Results of our and previous work models evaluated
on the dev. and test sets following the exact CoNLL-2012 En-
glish setting, using all training documents with All and 1M
features. Tbest is evaluated on the dev. set.

6.2 Learning loss functions

For learning MELA, we generated training and
test examples from LSPF according to the proce-
dure described in Section 4.3. In the first experi-
ment, we trained the wρ model on a set of exam-
ples S1, generated from a sample of 100 English
documents and tested on a set of examples S2, gen-
erated from another sample of the same size, and
vice versa. The results in Table 1 show that with
just 5, 000/6, 000, the Mean Squared Error (MSE)
is roughly between ∼ 2.4 − 2.7: these are rather
small numbers considering that the regression out-
put values in the interval [0, 100]. Squared Cor-
relation Coefficient (SCC) reaches a correlation
of about 99.7%, demonstrating that our regression
approach is effective in estimating MELA.

Additionally, Figure 2 shows the regression
learning curves evaluated with MSE and SCC. The
former rapidly decreases and, with about 1, 000
examples, reaches a plateau of around 2.3. The lat-
ter shows a similar behaviour, approaching a cor-
relation of about 99.8% with real MELA.

6.3 State of the art and model comparison

We first experimented with the standard CoNLL
setting to compare the LSP accuracy in terms of
MELA using the three different loss functions,
i.e., LSPF , LSPY J and LSPρ. In particular, we
used all the documents of the training set and all
N ∼ 16.8M features from cort, and tested on the
both dev. and test sets. The results are reported in
Columns All of Table 2.

We note first that our ∆ρ is effective as it stays
on a par with ∆F and ∆Y J on the dev. set. This
is interesting as Corollary 1 shows that such func-
tions can optimize MELA, the reported values re-
fer to the optimal epoch numbers. Also, LSPρ im-
proves the other models on the test set by 0.3 per-
cent points (statistical significant at the 93% level
of confidence).

1024



0 25 50 75 100

42

44

46

48

number of epochs, T

M
E

L
A

N = 10K

0 25 50 75 100

54

56

58

60

number of epochs, T

M
E

L
A

N = 100K

0 25 50 75 100
56

58

60

62

number of epochs, T

M
E

L
A

N = 300K

0 25 50 75 100

58

60

62

64

number of epochs, T

M
E

L
A

N = 500K

0 25 50 75 100

60

62

64

number of epochs, T

M
E

L
A

N = 1M

0 25 50 75 100

60

62

64

number of epochs, T

M
E

L
A

N = 1.5M

0 25 50 75 100

61

62

63

64

number of epochs, T

M
E

L
A

All (N ∼ 16.8M )

104 105 106 107
45

50

55

60

65

number of features,N

M
E
L
A

All on the Test Set

LSPF LSPY J LSPρ

Figure 3: Results of LSP models on the dev. set using different number of features, N . The last plot reports MELA score on
the test set of the models using the optimal number of epochs tuned on the dev. set.

#Feat. Model Test Set
MUC B3 CEAFe MELA

All LSPF 72.66 59.94 56.54 63.05
LSPY J 72.18 59.31 55.82 62.76
LSPρ 72.34 60.36 57.40 63.37

LSPF 71.95 59.03 55.59 62.19
1M LSPY J 72.35 59.54 56.38 62.44

LSPρ 72.09 60.11 57.07 63.09

Table 3: Results on the test set using the same setting of
Table 2 and the measures composing MELA.

Secondly, all the three models improve the state
of the art on CR using LSP, i.e., by Martschat
and Strube (2015) using antecedent trees (M&S
AT) or mention ranking (M&S MR), Björkelund
and Kuhn (2014) using a global feature model
(B&K) and Fernandes et al. (2014) (Fer). Noted
that all the LSP models were trained on the train-
ing set only, without retraining on the training and
dev. sets together, thus our scores can be improved.

Thirdly, Table 3 shows the breakdown of the
MELA results in terms of its components on the
test set. Interestingly, LSPρ is noticeably better in
terms of B3 and CEAFe, while LSP with simple
losses, as expected, deliver higher MUC score.

Finally, the overall improvement of ∆ρ is not
impressive. This mainly depends on the optimal-
ity of the competing loss functions, which in a set-
ting of ∼ 16.8M features, satisfy the separability
condition of Proposition 1.

6.4 Learning in more challenging conditions

In these experiments, we verify the hypothesis
that when the optimality property is partially or

totally missing ∆ρ is more visibly superior to ∆F

and ∆Y J . As we do not want to degrade their ef-
fectiveness, the only condition dependent on the
setting is the data inseparability or at least harder
to be separated. These conditions can be obtained
by reducing the size of the feature space. How-
ever, since we aim at testing conditions, where ∆ρ

is practically useful, we filter out less important
features, preserving the model accuracy (at least
when the selection is not extremely harsh). For
this purpose, we use a feature selection approach
using a basic binary classifier trained to discrimi-
nate between correct and incorrect mention pairs.
It is typically used in non structured CR methods
and has a nice property of using the same fea-
tures of LSP (we do not use global features in our
study). We carried out a selection using the abso-
lute values of the model weights of the classifier
for ranking features and then selecting those hav-
ing higher rank (Haponchyk and Moschitti, 2017).

The MELA produced by our models using all
the training data is presented in Figure 3. The
first 7 plots show learning curves in terms of LSP
epochs for different feature sets with increasing
size N , evaluated on the dev. set. We note that:
firstly, the fewer features are available, the better
LSPρ curves are than those of LSPF and LSPY J
in terms of accuracy and convergence speed. The
intuition is that finding a separation of the training
set (generalizing well) becomes more challenging
(e.g., with 10k features, the data is not linearly sep-

1025



arable) thus a loss function which is closer to the
real measure provides some advantages.

Secondly, when using all features, LSPρ is still
overall better than the other models but clearly the
latter can achieve the same MELA on the dev. set.

Thirdly, the last plot shows the MELA produced
by LSP models on the test set, when trained with
the best epoch derived from the dev. set (previous
plots). We observe that LSPρ is constantly better
than the other models, though decreasing its effect
as the feature number increases.

Next, in Column 1 (Selected) of Table 2, we
report the model MELA using 1 million features.
We note that LSPρ improves the other models by
at least 0.6 percent points, achieving the same ac-
curacy as the best of its competitors, i.e., LSPF ,
using all the features.

Finally, ∆ρ does not satisfy Proposition 1,
therefore, generally, we do not know if it can op-
timize any µ-type measure over graphs. How-
ever, being learned to optimize MELA, it clearly
separates data maximizing such a measure. We
empirically verified this by checking the MELA
score obtained on the training set: we found that
LSPρ always optimizes MELA, iterating for fewer
epochs than the other loss functions.

6.5 Generalization to other languages

Here, we test the effectiveness of the proposed
method on Arabic using all available data and fea-
tures. The results in Table 4 reveal an indisputable
superiority of LSPρ over the counterparts optimiz-
ing simple loss functions. They support the results
of the previous section as we had to deal with the
insufficiency of the expert-based features for Ara-
bic. In such an uneasy case, LSPρ was able to im-
prove over LSPF by more than 4.7 points.

We also tested the loss model wρ trained for
the experiments on the English data (resp. setting
All of Section 6.3) in LSPρ on Arabic. This cor-
responds to LSPENρ model. Notably, it performs
even better, 1.5 points more, than LSPρ using a
loss learned from Arabic examples. This suggests
a nice property of data invariance of ∆ρ. The im-
provement delivered by the ”English” wρ is due
to the fact that it was trained on the data which
is richer: (i) quantitatively, since coming from al-
most 8 times more training documents in compar-
ison to Arabic and (ii) qualitatively, in a sense of
diversity with respect to the RL target value. In-
deed, the Arabic data is much less separable than

Model All (N ∼ 395K)
Dev. Test Tbest

LSPF 31.20 33.19 10
LSPY J 27.70 28.51 13
LSPρ 36.91 37.91 6
LSPENρ 38.47 39.56 12

Uryupina et al., 2012 – 37.54 –
B&K 46.67 48.72 –
Fer – 45.18 –

Table 4: Results of our and baseline models evaluated on
the dev. and test sets following the exact CoNLL-2012 Arabic
setting, using all training documents. Tbest is evaluated on
the dev. set.

the English data and this prevents to have exam-
ples where MELA values are higher.

7 Conclusions
In this paper, we studied the use of complex loss

functions in structured prediction for CR. Given
the scale of our investigation, we limited our study
to LSP, which is anyway considered state of the
art. We derived several findings: (i) for the first
time, up to our knowledge, we showed that a com-
plex measure, such as MELA, can be learned by
a linear regressor (RL) with high accuracy and ef-
fective generalization. (ii) The latter was essential
for designing a new LSP based on inexact search
and RL. (iii) We showed that an automatically
learned loss can be optimized and provides state-
of-the-art performance in a real setting, including
thousands of documents and millions of features,
such as CoNLL–2012 Shared Task. (iv) We de-
fined a property of optimal loss functions for CR,
which shows that in separable cases, such losses
are enough to get the state of the art. However, as
soon as separability becomes more complex sim-
ple loss functions lose optimality and RL becomes
more accurate and faster. (v) Our MELA approxi-
mation provides a loss that is data invariant which,
once learned, can be optimized in LSP on different
datasets and in different languages.

Our study opens several future directions, rang-
ing from defining algorithms based on automati-
cally learned loss functions to learning more ef-
fective measures from expert examples.

Acknowledgements
We would like to thank Olga Uryupina for pro-
viding us with the preprocessed data from BART
for Arabic. This work has been supported by the
EC project CogNet, 671625 (H2020-ICT-2014-2,
Research and Innovation action). Many thanks to
the anonymous reviewers for their valuable sug-
gestions.

1026



References
Amit Bagga and Breck Baldwin. 1998. Algorithms

for scoring coreference chains. In Proceedings of
the Linguistic Coreference Workshop at the First In-
ternational Conference on Language Resources and
Evaluation. Granada, Spain, pages 563–566.

Anders Björkelund and Jonas Kuhn. 2014. Learn-
ing structured perceptrons for coreference resolu-
tion with latent antecedents and non-local features.
In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Baltimore, Maryland, pages 47–57.
http://www.aclweb.org/anthology/P/P14/P14-1005.

Jie Cai and Michael Strube. 2010. Evaluation metrics
for end-to-end coreference resolution systems. In
Proceedings of the 11th Annual Meeting of the
Special Interest Group on Discourse and Dia-
logue. Association for Computational Linguistics,
Stroudsburg, PA, USA, SIGDIAL ’10, pages 28–36.
http://dl.acm.org/citation.cfm?id=1944506.1944511.

Kai-Wei Chang, Rajhans Samdani, Alla Rozovskaya,
Mark Sammons, and Dan Roth. 2012. Illinois-
coref: The ui system in the conll-2012 shared
task. In Joint Conference on EMNLP and
CoNLL - Shared Task. Association for Computa-
tional Linguistics, Jeju Island, Korea, pages 113–
117. http://www.aclweb.org/anthology/W12-4513.

Kevin Clark and Christopher D. Manning. 2016. Im-
proving coreference resolution by learning entity-
level distributed representations. In Proceed-
ings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, pages 643–653.
http://www.aclweb.org/anthology/P16-1061.

Greg Durrett and Dan Klein. 2013. Easy victories and
uphill battles in coreference resolution. In In Pro-
ceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing.

Jack Edmonds. 1967. Optimum branchings. Journal
of research of National Bureau of standards pages
233–240.

Eraldo Rezende Fernandes, Cı́cero Nogueira dos
Santos, and Ruy Luiz Milidiú. 2012. Latent
structure perceptron with feature induction
for unrestricted coreference resolution. In
Joint Conference on EMNLP and CoNLL -
Shared Task. Association for Computational
Linguistics, Jeju Island, Korea, pages 41–48.
http://www.aclweb.org/anthology/W12-4502.

Eraldo Rezende Fernandes, Cı́cero Nogueira dos San-
tos, and Ruy Luiz Milidiú. 2014. Latent trees for
coreference resolution. Computational Linguistics
40(4):801–835.

Thomas Finley and Thorsten Joachims. 2005.
Supervised clustering with support vector ma-
chines. In ICML ’05: Proceedings of the 22nd
international conference on Machine learning.
ACM, New York, NY, USA, pages 217–224.
https://doi.org/10.1145/1102351.1102379.

Iryna Haponchyk and Alessandro Moschitti. 2017. A
practical perspective on latent structured predic-
tion for coreference resolution. In Proceedings
of the 15th Conference of the European Chapter
of the Association for Computational Linguistics:
Volume 2, Short Papers. Association for Computa-
tional Linguistics, Valencia, Spain, pages 143–149.
http://www.aclweb.org/anthology/E17-2023.

Emmanuel Lassalle and Pascal Denis. 2015.
Joint anaphoricity detection and corefer-
ence resolution with constrained latent struc-
tures. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence.
AAAI Press, AAAI’15, pages 2274–2280.
http://dl.acm.org/citation.cfm?id=2886521.2886637.

Xiaoqiang Luo. 2005. On coreference resolution per-
formance metrics. In Proceedings of the Con-
ference on Human Language Technology and Em-
pirical Methods in Natural Language Process-
ing. Association for Computational Linguistics,
Stroudsburg, PA, USA, HLT ’05, pages 25–32.
https://doi.org/10.3115/1220575.1220579.

Sebastian Martschat and Michael Strube. 2015. La-
tent structures for coreference resolution. Transac-
tions of the Association for Computational Linguis-
tics 3:405–418.

Nafise Sadat Moosavi and Michael Strube. 2016.
Which coreference evaluation metric do you trust?
a proposal for a link-based entity aware metric.
In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Berlin, Germany, pages 632–642.
http://www.aclweb.org/anthology/P16-1060.

Sameer Pradhan, Alessandro Moschitti, Nian-
wen Xue, Olga Uryupina, and Yuchen Zhang.
2012. Conll-2012 shared task: Modeling mul-
tilingual unrestricted coreference in ontonotes.
In Joint Conference on EMNLP and CoNLL
- Shared Task. Association for Computational
Linguistics, Jeju Island, Korea, page 1–40.
http://www.aclweb.org/anthology/W12-4501.

Xu Sun, Takuya Matsuzaki, Daisuke Okanohara,
and Jun’ichi Tsujii. 2009. Latent variable
perceptron algorithm for structured classifi-
cation. In Proceedings of the 21st Interna-
tional Jont Conference on Artifical Intelligence.
Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, IJCAI’09, pages 1236–1242.
http://dl.acm.org/citation.cfm?id=1661445.1661643.

Olga Uryupina, Alessandro Moschitti, and Mas-
simo Poesio. 2012. Bart goes multilingual:

1027



The unitn/essex submission to the conll-
2012 shared task. In Joint Conference on
EMNLP and CoNLL - Shared Task. Associa-
tion for Computational Linguistics, Strouds-
burg, PA, USA, CoNLL ’12, pages 122–128.
http://dl.acm.org/citation.cfm?id=2391181.2391198.

Olga Uryupina, Sriparna Saha, Asif Ekbal, and
Massimo Poesio. 2011. Multi-metric optimization
for coreference: The unitn/iitp/essex submission
to the 2011 conll shared task. In Proceedings
of the Fifteenth Conference on Computational
Natural Language Learning: Shared Task. Associ-
ation for Computational Linguistics, Stroudsburg,
PA, USA, CONLL Shared Task ’11, pages 61–65.
http://dl.acm.org/citation.cfm?id=2132936.2132944.

Marc Vilain, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman. 1995. A model-
theoretic coreference scoring scheme. In Proceed-
ings of the 6th Message Understanding Conference.
pages 45–52.

Sam Wiseman, Alexander M. Rush, and Stuart M.
Shieber. 2016. Learning global features for coref-
erence resolution. In NAACL HLT 2016, The
2016 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, San Diego Cali-
fornia, USA, June 12-17, 2016. pages 994–1004.
http://aclweb.org/anthology/N/N16/N16-1114.pdf.

Chun-Nam John Yu and Thorsten Joachims. 2009.
Learning structural svms with latent variables.
In Proceedings of the 26th Annual International
Conference on Machine Learning. ACM, New
York, NY, USA, ICML ’09, pages 1169–1176.
https://doi.org/10.1145/1553374.1553523.

Shanheng Zhao and Hwee Tou Ng. 2010. Maximum
metric score training for coreference resolution. In
Proceedings of the 23rd International Conference
on Computational Linguistics (Coling 2010). Coling
2010 Organizing Committee, Beijing, China, pages
1308–1316. http://www.aclweb.org/anthology/C10-
1147.

1028


	Don't understand a measure? Learn it: Structured Prediction for Coreference Resolution optimizing its measures

