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Abstract

An important problem in domain adapta-
tion is to quickly generalize to a new do-
main with limited supervision givenK ex-
isting domains. One approach is to re-
train a global model across all K + 1 do-
mains using standard techniques, for in-
stance Daumé III (2009). However, it is
desirable to adapt without having to re-
estimate a global model from scratch each
time a new domain with potentially new
intents and slots is added. We describe a
solution based on attending an ensemble
of domain experts. We assume K domain-
specific intent and slot models trained on
respective domains. When given domain
K + 1, our model uses a weighted combi-
nation of the K domain experts’ feedback
along with its own opinion to make predic-
tions on the new domain. In experiments,
the model significantly outperforms base-
lines that do not use domain adaptation
and also performs better than the full re-
training approach.

1 Introduction

An important problem in domain adaptation is to
quickly generalize to a new domain with limited
supervision given K existing domains. In spo-
ken language understanding, new domains of in-
terest for categorizing user utterances are added
on a regular basis1. For instance, we may

1A scenario frequently arising in practice is having a re-
quest for creating a new virtual domain targeting a specific
application. One typical use case is that of building natural
language capability through intent and slot modeling (with-
out actually building a domain classifier) targeting a specific
application.

add ORDERPIZZA domain and desire a domain-
specific intent and semantic slot tagger with a lim-
ited amount of training data. Training only on the
target domain fails to utilize the existing resources
in other domains that are relevant (e.g., labeled
data for PLACES domain with place name,
location as the slot types), but naively training
on the union of all domains does not work well
since different domains can have widely varying
distributions.

Domain adaptation offers a balance between
these extremes by using all data but simultane-
ously distinguishing domain types. A common
approach for adapting to a new domain is to re-
train a global model across all K + 1 domains us-
ing well-known techniques, for example the fea-
ture augmentation method of Daumé III (2009)
which trains a single model that has one domain-
invariant component along with K + 1 domain-
specific components each of which is specialized
in a particular domain. While such a global model
is effective, it requires re-estimating a model from
scratch on all K + 1 domains each time a new do-
main is added. This is burdensome particularly in
our scenario in which new domains can arise fre-
quently.

In this paper, we present an alternative solu-
tion based on attending an ensemble of domain
experts. We assume that we have already trained
K domain-specific models on respective domains.
Given a new domainK+1 with a small amount of
training data, we train a model on that data alone
but queries the K experts as part of the training
procedure. We compute an attention weight for
each of these experts and use their combined feed-
back along with the model’s own opinion to make
predictions. This way, the model is able to selec-
tively capitalize on relevant domains much like in
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standard domain adaptation but without explicitly
re-training on all domains together.

In experiments, we show clear gains in a do-
main adaptation scenario across 7 test domains,
yielding average error reductions of 44.97% for
intent classification and 32.30% for slot tagging
compared to baselines that do not use domain
adaptation. Moreover we have higher accuracy
than the full re-training approach of Kim et al.
(2016c), a neural analog of Daumé III (2009).

2 Related Work

2.1 Domain Adaptation

There is a venerable history of research on do-
main adaptation (Daume III and Marcu, 2006;
Daumé III, 2009; Blitzer et al., 2006, 2007; Pan
et al., 2011) which is concerned with the shift
in data distribution from one domain to another.
In the context of NLP, a particularly successful
approach is the feature augmentation method of
Daumé III (2009) whose key insight is that if we
partition the model parameters to those that handle
common patterns and those that handle domain-
specific patterns, the model is forced to learn from
all domains yet preserve domain-specific knowl-
edge. The method is generalized to the neu-
ral paradigm by Kim et al. (2016c) who jointly
use a domain-specific LSTM and also a global
LSTM shared across all domains. In the con-
text of SLU, Jaech et al. (2016) proposed K
domain-specific feedforward layers with a shared
word-level LSTM layer across domains; Kim
et al. (2016c) instead employed K + 1 LSTMs.
Hakkani-Tür et al. (2016) proposed to employ a
sequence-to-sequence model by introducing a fic-
titious symbol at the end of an utterance of which
tag represents the corresponding domain and in-
tent.

All these methods require one to re-train a
model from scratch to make it learn the correlation
and invariance between domains. This becomes
difficult to scale when there is a new domain com-
ing in at high frequency. We address this problem
by proposing a method that only calls K trained
domain experts; we do not have to re-train these
domain experts. This gives a clear computational
advantage over the feature augmentation method.

2.2 Spoken Language Understanding

Recently, there has been much investment on the
personal digital assistant (PDA) technology in in-

dustry (Sarikaya, 2015; Sarikaya et al., 2016). Ap-
ples Siri, Google Now, Microsofts Cortana, and
Amazons Alexa are some examples of personal
digital assistants. Spoken language understanding
(SLU) is an important component of these exam-
ples that allows natural communication between
the user and the agent (Tur, 2006; El-Kahky et al.,
2014). PDAs support a number of scenarios in-
cluding creating reminders, setting up alarms, note
taking, scheduling meetings, finding and consum-
ing entertainment (i.e. movie, music, games), find-
ing places of interest and getting driving directions
to them (Kim et al., 2016a).

Naturally, there has been an extensive line of
prior studies for domain scaling problems to eas-
ily scale to a larger number of domains: pre-
training (Kim et al., 2015c), transfer learning (Kim
et al., 2015d), constrained decoding with a sin-
gle model (Kim et al., 2016a), multi-task learn-
ing (Jaech et al., 2016), neural domain adap-
tation (Kim et al., 2016c), domainless adapta-
tion (Kim et al., 2016b), a sequence-to-sequence
model (Hakkani-Tür et al., 2016), adversary do-
main training (Kim et al., 2017) and zero-shot
learning(Chen et al., 2016; Ferreira et al., 2015).

There are also a line of prior works on enhanc-
ing model capability and features: jointly mod-
eling intent and slot predictions (Jeong and Lee,
2008; Xu and Sarikaya, 2013; Guo et al., 2014;
Zhang and Wang, 2016; Liu and Lane, 2016a,b),
modeling SLU models with web search click logs
(Li et al., 2009; Kim et al., 2015a) and enhancing
features, including representations (Anastasakos
et al., 2014; Sarikaya et al., 2014; Celikyilmaz
et al., 2016, 2010; Kim et al., 2016d) and lexicon
(Liu and Sarikaya, 2014; Kim et al., 2015b).

3 Method

We use an LSTM simply as a mapping φ : Rd ×
Rd′ → Rd′ that takes an input vector x and a state
vector h to output a new state vector h′ = φ(x, h).
See Hochreiter and Schmidhuber (1997) for a de-
tailed description. At a high level, the individ-
ual model consists of builds on several ingredients
shown in Figure 1: character and word embed-
ding, a bidirectional LSTM (BiLSTM) at a charac-
ter layer, a BiLSTM at word level, and feedfoward
network at the output.
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Figure 1: The overall network architecture of the individual model.

3.1 Individual Model Architecture
Let C denote the set of character types and W
the set of word types. Let ⊕ denote the vector
concatenation operation. A wildly successful ar-
chitecture for encoding a sentence (w1 . . . wn) ∈
Wn is given by bidirectional LSTMs (BiLSTMs)
(Schuster and Paliwal, 1997; Graves, 2012). Our
model first constructs a network over an utterance
closely following Lample et al. (2016). The model
parameters Θ associated with this BiLSTM layer
are

• Character embedding ec ∈ R25 for each c ∈
C

• Character LSTMs φCf , φ
C
b : R25×R25 → R25

• Word embedding ew ∈ R100 for each w ∈ W

• Word LSTMs φWf , φ
W
b : R150×R100 → R100

Letw1 . . . wn ∈ W denote a word sequence where
word wi has character wi(j) ∈ C at position j.
First, the model computes a character-sensitive
word representation vi ∈ R150 as

fCj = φCf
(
ewi(j), f

C
j−1
)

∀j = 1 . . . |wi|
bCj = φCb

(
ewi(j), b

C
j+1

)
∀j = |wi| . . . 1

vi = fC|wi| ⊕ b
C
1 ⊕ ewi

for each i = 1 . . . n.2 Next, the model computes

fWi = φWf
(
vi, f

W
i−1
)

∀i = 1 . . . n

bWi = φWb
(
vi, b

W
i+1

)
∀i = n . . . 1

and induces a character- and context-sensitive
word representation hi ∈ R200 as

hi = fWi ⊕ bWi (1)

for each i = 1 . . . n. These vectors can be used to
perform intent classification or slot tagging on the
utterance.

Intent Classification We can predict the intent
of the utterance using (h1 . . . hn) ∈ R200 in (1)
as follows. Let I denote the set of intent types.
We introduce a single-layer feedforward network
gi : R200 → R|I| whose parameters are denoted
by Θi. We compute a |I|-dimensional vector

µi = gi

(
n∑

i=1

hi

)

and define the conditional probability of the cor-
rect intent τ as

p(τ |h1 . . . hn) ∝ exp
(
µiτ
)

(2)

2For simplicity, we assume some random initial state vec-
tors such as fC0 and bC|wi|+1 when we describe LSTMs.
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The intent classification loss is given by the nega-
tive log likelihood:

Li
(
Θ,Θi

)
= −

∑

l

log p
(
τ (l)|h(l)

)
(3)

where l iterates over intent-annotated utterances.

Slot Tagging We predict the semantic slots of
the utterance using (h1 . . . hn) ∈ R200 in (1) as
follows. Let S denote the set of semantic types and
L the set of corresponding BIO label types 3 that
is, L = {B-e : e ∈ E}∪{I-e : e ∈ E}∪{O}. We
add a transition matrix T ∈ R|L|×|L| and a single-
layer feedforward network gt : R200 → R|L| to
the network; denote these additional parameters
by Θt. The conditional random field (CRF) tag-
ging layer defines a joint distribution over label
sequences of y1 . . . yn ∈ L of w1 . . . wn as

p(y1 . . .yn|h1 . . . hn)

∝ exp

(
n∑

i=1

Tyi−1,yi × gtyi(hi)
)

(4)

The tagging loss is given by the negative log like-
lihood:

Lt
(
Θ,Θt

)
= −

∑

l

log p
(
y(l)|h(l)

)
(5)

where l iterates over tagged sentences in the data.
Alternatively, we can optimize the local loss:

Lt−loc
(
Θ,Θt

)
= −

∑

l

∑

i

log p
(
y
(l)
i |h

(l)
i

)

(6)

where p(yi|hi) ∝ exp
(
gtyi(hi)

)
.

4 Method

4.1 Domain Attention Architecture

Now we assume that for each of theK domains we
have an individual model described in Section 3.1.
Denote these domain experts by Θ(1) . . .Θ(K).
We now describe our model for a new domain
K + 1. Given an utterance w1 . . . wn, it uses a
BiLSTM layer to induce a feature representation
h1 . . . hn as specified in (1). It further invokes K
domain experts Θ(1) . . .Θ(K) on this utterance to
obtain the feature representations h(k)1 . . . h

(k)
n for

3For example, to/O San/B-Source Fran-
cisco/I-Source airport/O.

Figure 2: The overall network architecture of the
domain attention, which consists of three compo-
nents: (1) K domain experts + 1 target BiLSTM
layer to induce a feature representation, (2) K do-
main experts + 1 target feedfoward layer to out-
put pre-trained label embedding (3) a final feedfor-
ward layer to output an intent or slot. We have two
separate attention mechanisms to combine feed-
back from domain experts.

k = 1 . . .K. For each word wi, the model com-
putes an attention weight for each domain k =
1 . . .K domains as

qdot
i,k = h>i h

(k) (7)

in the simplest case. We also experiment with the
bilinear function

qbi
i,k = h>i Bh

(k) (8)

where B is an additional model parameter, and
also the feedforward function

qfeed
i,k = W tanh

(
Uh>i + V h(k) + b1

)
+ b2 (9)

where U, V,W, b1, b2 are additional model param-
eters. The final attention weights a(1)i . . . a

(1)
i are

obtained by using a softmax layer

ai,k =
exp(qi,k)∑K
k=1 exp(qi,k)

(10)

The weighted combination of the experts’ feed-
back is given by

hexperts
i =

K∑

k=1

ai,kh
(k)
i (11)
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and the model makes predictions by using
h̄1 . . . h̄n where

h̄i = hi ⊕ hexperts
i (12)

These vectors replace the original feature vectors
hi in defining the intent or tagging losses.

4.2 Domain Attention Variants

We also consider two variants of the domain atten-
tion architecture in Section 4.1.

Label Embedding In addition to the state vec-
tors h(1) . . . h(K) produced by K experts, we fur-
ther incorporate their final (discrete) label predic-
tions using pre-trained label embeddings. We in-
duce embeddings ey for labels y from all domains
using the method of Kim et al. (2015d). At the i-th
word, we predict the most likely label y(k) under
the k-th expert and compute an attention weight as

q̄dot
i,k = h>i e

y(k) (13)

Then we compute an expectation over the experts’
predictions

āi,k =
exp(q̄i,k)∑K
k=1 exp(q̄i,k)

(14)

hlabel
i =

K∑

k=1

āi,ke
y(k)

i (15)

and use it in conjunction with h̄i. Note that this
makes the objective a function of discrete decision
and thus non-differentiable, but we can still opti-
mize it in a standard way treating it as learning a
stochastic policy.

Selective Attention Instead of computing atten-
tion over all K experts, we only consider the top
K ′ ≤ K that predict the highest label scores. We
only compute attention over these K ′ vectors. We
experiment with various values of K ′

5 Experiments

In this section, we describe the set of experi-
ments conducted to evaluate the performance of
our model. In order to fully assess the contri-
bution of our approach, we also consider several
baselines and variants besides our primary expert
model.

Domain |I| |S| Description
EVENTS 10 12 Buy event tickets
FITNESS 10 9 Track health
M-TICKET 8 15 Buy movie tickets
ORDERPIZZA 19 27 Order pizza
REMINDER 19 20 Remind task

TAXI 8 13 Find/book an cab
TV 7 5 Control TV

Table 1: The number of intent types (|I|), the num-
ber of slot types (|S|), and a short description of
the test domains.

Overlapping
Domain Intents Slots
EVENTS 70.00% 75.00%
FITNESS 30.00% 77.78%
M-TICKET 37.50% 100.00%

ORDERPIZZA 47.37% 74.07%
REMINDER 68.42% 85.00%

TAXI 50.00% 100.00%
TV 57.14% 60.00%
AVG 51.49% 81.69%

Table 2: The overlapping percentage of intent
types and slot types with experts or source do-
mains.

5.1 Test domains and Tasks

To test the effectiveness of our proposed approach,
we apply it to a suite of 7 Microsoft Cortana do-
mains with 2 separate tasks in spoken language un-
derstanding: (1) intent classification and (2) slot
(label) tagging. The intent classification task is
a multi-class classification problem with the goal
of determining to which one of the |I| intents a
user utterance belongs within a given domain. The
slot tagging task is a sequence labeling problem
with the goal of identifying entities and chunk-
ing of useful information snippets in a user utter-
ance. For example, a user could say “reserve a
table at joeys grill for thursday at seven pm for
five people”. Then the goal of the first task would
be to classify this utterance as “make reservation”
intent given the places domain, and the goal of
the second task would be to tag “joeys grill” as
restaurant, “thursday” as date, “seven pm”
as time, and “five” as number people.

The short descriptions on the 7 test domains are
shown in Table 1. As the table shows, the test
domains have different granularity and diverse se-
mantics. For each personal assistant test domain,
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we only used 1000 training utterances to simulate
scarcity of newly labeled data. The amount of de-
velopment and test utterance was 100 and 10k re-
spectively.

The similarities of test domains, represented
by overlapping percentage, with experts or source
domains are represented in Table 2. The in-
tent overlapping percentage ranges from 30% on
FITNESS domain to 70% on EVENTS, which av-
erages out at 51.49%. And the slots for test do-
mains overlaps more with those of source domains
ranging from 60% on TV domain to 100% on both
M-TICKET and TAXI domains, which averages
out at 81.69%.

5.2 Experimental Setup

Category |D| Example
Trans. 4 BUS, FLIGHT
Time 4 ALARM, CALENDAR
Media 5 MOVIE, MUSIC
Action 5 HOMEAUTO, PHONE
Loc. 3 HOTEL, BUSINESS
Info 4 WEATHER, HEALTH

TOTAL 25

Table 3: Overview of experts or source domains:
Domain categories which have been created based
on the label embeddings. These categorizations
are solely for the purpose of describing domains
because of the limited space and they are com-
pletely unrelated to the model. The number of
sentences in each domain is in the range of 50k
to 660k and the number of unique intents and slots
are 200 and 500 respectively. In total, we have 25
domain-specific expert models. For the average
performance, intent accuracy is 98% and slot F1
score is 96%.

In testing our approach, we consider a domain
adaptation (DA) scenario, where a target domain
has a limited training data and the source domain
has a sufficient amount of labeled data. We further
consider a scenario, creating a new virtual domain
targeting a specific scenario given a large inven-
tory of intent and slot types and underlying models
build for many different applications and scenar-
ios. One typical use case is that of building natural
language capability through intent and slot model-
ing (without actually building a domain classifier)
targeting a specific application. Therefore, our ex-
perimental settings are rather different from previ-

ously considered settings for domain adaptation in
two aspects:

• Multiple source domains: In most previous
works, only a pair of domains (source vs. tar-
get) have been considered, although they can
be easily generalized to K > 2. Here, we
experiment with K = 25 domains shown in
Table 3.

• Variant output: In a typical setting for do-
main adaptation, the label space is invariant
across all domains. Here, the label space can
be different in different domains, which is
a more challenging setting. See Kim et al.
(2015d) for details of this setting.

For this DA scenario, we test whether our ap-
proach can effectively make a system to quickly
generalize to a new domain with limited supervi-
sion given K existing domain experts shown in 3
.

In summary, our approach is tested with 7 Mi-
crosoft Cortana personal assistant domains across
2 tasks of intent classification and slot tagging.
Below shows more detail of our baselines and vari-
ants used in our experiments.

Baselines: All models below use same underly-
ing architecture described in Section 3.1

• TARGET: a model trained on a targeted do-
main without DA techniques.

• UNION: a model trained on the union of a tar-
geted domain and 25 domain experts.

• DA: a neural domain adaptation method of
Kim et al. (2016c) which trains domain spe-
cific K LSTMs with a generic LSTM on all
domain training data.

Domain Experts (DE) variants: All models be-
low are based on attending on an ensemble of
25 domain experts (DE) described in Section 4.1,
where a specific set of intent and slots models are
trained for each domain. We have two feedback
from domain experts: (1) feature representation
from LSTM, and (2) label embedding from feed-
foward described in Section 4.1 and Section 4.2,
respectively.

• DEB: DE without domain attention mecha-
nism. It uses the unweighted combination of
first feedback from experts like bag-of-word
model.
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• DE1: DE with domain attention with the
weighted combination of the first feedbacks
from experts.

• DE2: DE1 with additional weighted combina-
tion of second feedbacks.

• DES2: DE2 with selected attention mecha-
nism, described in Section 4.2.

In our experiments, all the models were imple-
mented using Dynet (Neubig et al., 2017) and
were trained using Stochastic Gradient Descent
(SGD) with Adam (Kingma and Ba, 2015)—an
adaptive learning rate algorithm. We used the ini-
tial learning rate of 4× 10−4 and left all the other
hyper parameters as suggested in Kingma and Ba
(2015). Each SGD update was computed with-
out a minibatch with Intel MKL (Math Kernel Li-
brary)4. We used the dropout regularization (Sri-
vastava et al., 2014) with the keep probability of
0.4 at each LSTM layer.

To encode user utterances, we used bidirec-
tional LSTMs (BiLSTMs) at the character level
and the word level, along with 25 dimensional
character embedding and 100 dimensional word
embedding. The dimension of both the input and
output of the character LSTMs were 25, and the
dimensions of the input and output of the word
LSTMs were 1505 and 100, respectively. The di-
mension of the input and output of the final feed-
forward network for intent, and slot were 200 and
the number of their corresponding task. Its activa-
tion was rectified linear unit (ReLU).

To initialize word embedding, we used word
embedding trained from (Lample et al., 2016). In
the following sections, we report intent classifica-
tion results in accuracy percentage and slot results
in F1-score. To compute slot F1-score, we used
the standard CoNLL evaluation script6

5.3 Results

We show our results in the DA setting where we
had a sufficient labeled dataset in the 25 source
domains shown in Table 3, but only 1000 labeled
data in the target domain. The performance of the
baselines and our domain experts DE variants are
shown in Table 4. The top half of the table shows

4https://software.intel.com/en-us/articles/intelr-mkl-and-
c-template-libraries

5We concatenated last two outputs from the character
LSTM and word embedding, resulting in 150 (25+25+100)

6http://www.cnts.ua.ac.be/conll2000/chunking/output.html

the results of intent classification and the results of
slot tagging is in the bottom half.

The baseline which trained only on the target
domain (TARGET) shows a reasonably good per-
formance, yielding on average 87.7% on the in-
tent classification and 83.9% F1-score on the slot
tagging. Simply training a single model with ag-
gregated utterance across all domains (UNION)
brings the performance down to 77.4% and 75.3%.
Using DA approach of Kim et al. (2016c) shows
a significant increase in performance in all 7 do-
mains, yielding on average 90.3% intent accuracy
and 86.2%.

The DE without domain attention (DEB) shows
similar performance compared to DA. Using DE
model with domain attention (DE1) shows an-
other increase in performance, yielding on aver-
age 90.9% intent accuracy and 86.9%. The per-
formance increases again when we use both fea-
ture representation and label embedding (DE2),
yielding on average 91.4% and 88.2% and observe
nearly 93.6% and 89.1% when using selective at-
tention (DES2). Note that DES2 selects the appro-
priate number of experts per layer by evaluation
on a development set.

The results show that our expert variant ap-
proach (DES2) achieves a significant performance
gain in all 7 test domains, yielding average er-
ror reductions of 47.97% for intent classification
and 32.30% for slot tagging. The results suggest
that our expert approach can quickly generalize to
a new domain with limited supervision given K
existing domains by having only a handful more
data of 1k newly labeled data points. The poor
performance of using the union of both source
and target domain data might be due to the rela-
tively very small size of the target domain data,
overwhelmed by the data in the source domain.
For example, a word such as “home” can be la-
beled as place type under the TAXI domain,
but in the source domains can be labeled as ei-
ther home screen under the PHONE domain or
contact name under the CALENDAR domain.

5.4 Training Time

The Figure 3 shows the time required for training
DES2 and DA of Kim et al. (2016c). The training
time for DES2 stays almost constant as the number
of source domains increases. However, the train-
ing time for DA grows exponentially in the num-
ber of source domains. Specifically, when trained
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Task Domain TARGET UNION DA DEB DE1 DE2 DES2

Intent

EVENTS 88.3 78.5 89.9 93.1 92.5 92.7 94.5
FITNESS 88.0 77.7 92.0 92.0 91.2 91.8 94.0
M-TICKET 88.2 79.2 91.9 94.4 91.5 92.7 93.4
ORDERPIZZA 85.8 76.6 87.8 89.3 89.4 90.8 92.8
REMINDER 87.2 76.3 91.2 90.0 90.5 90.2 93.1

TAXI 87.3 76.8 89.3 89.9 89.6 89.2 93.7
TV 88.9 76.4 90.3 81.5 91.5 92.0 94.0

AVG 87.7 77.4 90.3 90.5 90.9 91.4 93.6

Slot

EVENTS 84.8 76.1 87.1 87.4 88.1 89.4 90.2
FITNESS 84.0 75.6 86.4 86.3 87.0 88.1 88.9
M-TICKET 84.2 75.6 86.4 86.1 86.8 88.4 89.7
ORDERPIZZA 82.3 73.6 84.2 84.4 85.0 86.3 87.1
REMINDER 83.5 75.0 85.9 86.3 87.0 88.3 89.2

TAXI 83.0 74.6 85.6 85.5 86.3 87.5 88.6
TV 85.4 76.7 87.7 87.6 88.3 89.3 90.1

AVG 83.9 75.3 86.2 86.2 86.9 88.2 89.1

Table 4: Intent classification accuracy (%) and slot tagging F1-score (%) of our baselines and variants of
DE. The numbers in boldface indicate the best performing methods.

Figure 3: Comparison of training time between
our DES2 model and DA model of Kim et al.
(2016c) as the number of domains increases. The
horizontal axis means the number of domains, the
vertical axis is training time per epoch in seconds.
Here we use CALENDAR as the target domain,
which has 1k training data.

with 1 source or expert domain, both took around a
minute per epoch on average. When training with
full 25 source domains, DES2 took 3 minutes per
epoch while DA took 30 minutes per epoch. Since
we need to iterate over all 25+1 domains to re-train
the global model, the net training time ratio could
be over 250.
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Figure 4: Learning curves in accuracy across all
seven test domains as the number of expert do-
mains increases.

5.5 Learning Curve

We also measured the performance of our methods
as a function of the number of domain experts. For
each test domain, we consider all possible sizes
of experts ranging from 1 to 25 and we then take
the average of the resulting performances obtained
from the expert sets of all different sizes. Figure 4
shows the resulting learning curves for each test
domain. The overall trend is clear: as the more ex-
pert domains are added, the more the test perfor-
mance improves. With ten or more expert domains
added, our method starts to get saturated achiev-
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Figure 5: Heatmap visualizing attention weights.

ing more than 90% in accuracy across all seven
domains.

5.6 Attention weights
From the heatmap shown in Figure 5, we can see
that the attention strength generally agrees with
common sense. For example, the M-TICKET and
TAXI domain selected MOVIE and PLACES as
their top experts, respectively.

5.7 Oracle Expert

Domain TARGET DE2 Top 1
ALARM 70.1 98.2 ALARM (.99)
HOTEL 65.2 96.9 HOTEL (.99)

Table 5: Intent classification accuracy with an or-
acle expert in the expert pool.

The results in Table 5 show the intent classi-
fication accuracy of DE2 when we already have
the same domain expert in the expert pool. To
simulate such a situation, we randomly sampled
1,000, 100, and 100 utterances from each domain
as training, development and test data, respec-
tively. In both ALARM and HOTEL domains, the
trained models only on the 1,000 training utter-
ances (TARGET) achieved only 70.1%and 65.2%
in accuracy, respectively. Whereas, with our
method (DE2) applied, we reached almost the
full training performance by selectively paying at-
tention to the oracle expert, yielding 98.2% and
96.9%, respectively. This result again confirms
that the behavior of the trained attention network
indeed matches the semantic closeness between
different domains.

5.8 Selective attention
The results in Table 6 examines how the intent pre-
diction accuracy of DES2 varies with respect to the

Domain Top 1 Top 3 Top 5 Top 25
EVENTS 98.1 98.8 99.2 96.4

TV 81.4 82.0 81.7 80.9
AVG 89.8 90.4 90.5 88.7

Table 6: Accuracies of DES2 using different num-
ber of experts.

number of experts in the pool. The rationale be-
hind DES2 is to alleviate the downside of soft at-
tention, namely distributing probability mass over
all items even if some are bad items. To deal with
such issues, we apply a hard cut-off at top k do-
mains. From the result, a threshold at top 3 or 5
yielded better results than that of either 1 or 25 ex-
perts. This matches our common sense that their
are only a few of domains that are close enough to
be of help to a test domain. Thus it is advisable to
find the optimal k value through several rounds of
experiments on a development dataset.

6 Conclusion

In this paper, we proposed a solution for scal-
ing domains and experiences potentially to a large
number of use cases by reusing existing data la-
beled for different domains and applications. Our
solution is based on attending an ensemble of do-
main experts. When given a new domain, our
model uses a weighted combination of domain
experts’ feedback along with its own opinion to
make prediction on the new domain. In both in-
tent classification and slot tagging tasks, the model
significantly outperformed baselines that do not
use domain adaptation and also performed better
than the full re-training approach. This approach
enables creation of new virtual domains through
a weighted combination of domain experts’ feed-
back reducing the need to collect and annotate the
similar intent and slot types multiple times for dif-
ferent domains. Future work can include an exten-
sion of domain experts to take into account dialog
history aiming for a holistic framework that can
handle contextual interpretation as well.
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Hal Daumé III. 2009. Frustratingly easy domain adap-
tation. arXiv preprint arXiv:0907.1815 .

Hal Daume III and Daniel Marcu. 2006. Domain adap-
tation for statistical classifiers. Journal of Artificial
Intelligence Research 26:101–126.

Ali El-Kahky, Derek Liu, Ruhi Sarikaya, Gokhan Tur,
Dilek Hakkani-Tur, and Larry Heck. 2014. Ex-
tending domain coverage of language understand-
ing systems via intent transfer between domains us-
ing knowledge graphs and search query click logs.
IEEE, Proceedings of the ICASSP.

Emmanuel Ferreira, Bassam Jabaian, and Fabrice
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