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Abstract

We present a system which parses sen-
tences into Abstract Meaning Representa-
tions, improving state-of-the-art results for
this task by more than 5%. AMR graphs
represent semantic content using linguistic
properties such as semantic roles, coref-
erence, negation, and more. The AMR
parser does not rely on a syntactic pre-
parse, or heavily engineered features, and
uses five recurrent neural networks as the
key architectural components for inferring
AMR graphs.

1 Introduction

Semantic analysis is the process of extracting
meaning from text, revealing key ideas such as
”who did what to whom, when, how, and where?”,
and is considered to be one of the most complex
tasks in natural language processing. Historically,
an important consideration has been the definition
of the output of the task - how can the concepts
in a sentence be captured in a general, consistent
and expressive manner that facilitates downstream
semantic processing? Over the years many for-
malisms have been proposed as suitable target rep-
resentations including variants of first order logic,
semantic networks, and frame-based slot-filler no-
tations. Such representations have found a place
in many semantic applications but there is no clear
consensus as to the best representation. However,
with the rise of supervised machine learning tech-
niques, a new requirement has come to the fore:
the ability of human annotators to quickly and reli-
ably generate semantic representations as training
data.

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2012)1 was developed to provide

1http://amr.isi.edu/language.html

a computationally useful and expressive repre-
sentation that could be reliably generated by hu-
man annotators. Sentence meanings in AMR are
represented in the form of graphs consisting of
concepts (nodes) connected by labeled relations
(edges). AMR graphs include a number of tra-
ditional NLP representations including named en-
tities (Nadeau and Sekine, 2007), word senses
(Banerjee and Pedersen, 2002), coreference rela-
tions, and predicate-argument structures (Kings-
bury and Palmer, 2002; Palmer et al., 2005). More
recent innovations include wikification of named
entities and normalization of temporal expressions
(Verhagen et al., 2010; Strötgen and Gertz, 2010).
(2016) provides an insightful discussion of the re-
lationship between AMR and other formal repre-
sentations including first order logic.

The process of creating AMR’s for sentences is
called AMR Parsing and was first introduced in
(Flanigan et al., 2014). A key factor driving the de-
velopment of AMR systems has been the increas-
ing availability of training resources in the form
of corpora where each sentence is paired with a
corresponding AMR representation 2. A consis-
tent framework for evaluating AMR parsers was
defined by the Semeval-2016 Meaning Represen-
tation Parsing Task3. Standard training, develop-
ment and test splits for the AMR Annotation Re-
lease 1 corpus are provided, as well as an addi-
tional out-of-domain test dataset, for system com-
parisons. 4

Viewed as a structured prediction task, AMR
parsing poses some difficult challenges not faced
by other related language processing tasks includ-
ing part of speech tagging, syntactic parsing or se-

2See amr.isi.edu for information on currently available re-
sources

3http://alt.qcri.org/semeval2016/task8/#
4Available from LDC as

LDC2015E86 DEFT Phase 2 AMR Annotation R1 dataset.
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(a) An AMR graphical depiction of the meaning of the sen-
tence France plans further nuclear cooperation with nu-
merous countries . Concepts are represented as ovals, and
relations are the directed connections between them. Pred-
icate concepts are labelled with their PropBank sense, and
semantic roles are indicated by ”Arg” relations. Non-Arg
relations like name or mod are called ”Nargs” in this pa-
per. Note the shaded section, which shows an example of a
subgraph, containing related concepts and relations. In the
example, the subgraph represents ”France” which includes
the category country and a shortened link to the France wiki
page.
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(b) General Architecture for the AMR Parser, which creates
an AMR based on the words in a sentence. The 5 B-LSTM
networks infer structures of the AMR. For example, the SG
network infers subgraphs, which are mostly single concept,
like ”plan-01” or ”further”, but can also be like the more
complex shaded ”France” subgraph in the example. Other
B-LSTM networks are used to infer predicate argument re-
lations (Args), other relations (Nargs), attributes like ”TOP”
(Attr) and name categories like ”country” for France (Ncat).

Figure 1: An example Abstract Meaning Representation and the architecture of the AMR parser, which produces an AMR from
a sentence.

mantic role labeling. The prediction task in these
settings can be cast as per-token labeling tasks
(i.e. IOB tags) or as a sequence of discrete parser
actions, as in transition-based (shift-reduce) ap-
proaches to dependency parsing.

The first challenge is that AMR representations
are by design abstracted away from their associ-
ated surface forms. AMR corpora pair sentences
with their corresponding representations, without
providing an explicit annotation, or alignment,
that links the parts of the representation to their
corresponding elements of the sentence. Not sur-
prisingly, this complicates training, decoding and
evaluation.

The second challenge is the fact that, as noted
earlier, the AMR parsing task is an amalgam of
predicate identification and classification, entity
recognition, co-reference, word sense disambigua-

tion and semantic role labeling — each of which
relies on the others for successful analysis. The
architecture and system presented in the follow-
ing sections is largely motivated by these two chal-
lenges.

2 Related Work

2.1 AMR Parsers

Most current AMR parsers are constructed using
some form of supervised machine learning that ex-
ploits existing AMR corpora. In general, these
systems make use of features derived from vari-
ous forms of syntactic analysis, ranging from part-
of-speech tagging to more complex dependency or
phrase-structure analysis. Currently, most systems
fall into two classes: (1) systems that incremen-
tally transform a dependency parse into an AMR
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graph using transition-based systems (Wang et al.,
2015, 2016), and (2) graph-oriented approaches
that use syntactic features to score edges between
all concept pairs, and then use a maximum span-
ning connected subgraph (MSCG) algorithm to se-
lect edges that will constitute the graph (Flanigan
et al., 2014; Werling et al., 2015).

As expected, there are exceptions to these gen-
eral approaches. The largely rule-based approach
of (2015) converts logical forms from an exist-
ing semantic analyzer into AMR graphs. They
demonstrate the ability to use their existing system
to generate AMRs in German, French, Spanish
and Japanese without the need for a native AMR
corpus.

(2015) proposes a synchronous hyperedge re-
placement grammar solution, (2015) uses syntax-
based machine translation techniques to create tree
structures similar to AMR, while (2015) creates
logical form representations of sentences and then
converts these to AMR.

An exception to the use of heavily engineered
features is the deep learning approach of (2016),
which, following (Collobert et al., 2011), relies on
word embeddings and recurrent neural networks
to generate AMR graphs.

2.2 Bidirectional LSTM Neural Networks

Unlike relatively simple sequence processing tasks
like part-of-speech tagging and NER, semantic
analysis requires the ability to keep track of rel-
evant information that may be arbitrarily far away
from the words currently under consideration. Re-
current neural networks (RNNs) are a class of neu-
ral architecture that use a form of short-term mem-
ory in order to solve this semantic distance prob-
lem. Basic RNN systems have been enhanced
with the use of special memory cell units, referred
to as Long Short-Term Memory neural networks,
or LSTM’s (Hochreiter and Schmidhuber, 1997).
Such systems can effectively process information
dispersed over hundreds of words (Schmidhuber
et al., 2002; Gers et al., 2001).

Bidirectional LSTMs (B-LSTM) networks are
LSTMs that are connected so that both future and
past sequence context can be examined. (2015),
successfully used a bidirectional LSTM network
for semantic role labelling. We use the LSTM cell
as described in (Graves et al., 2013), configured in
a B-LSTM shown in Figure 2, as the core network
architecture in the system. Five B-LSTM Neural
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Figure 2: A general diagram of a B-LSTM network,
showing the feature input vectors xi, the forward layer
(f) and the reverse layer (r). The network generates vec-
tors of log likelihoods which are converted to probability
vectors and then joined together to form an array of prob-
abilities.

Networks comprise the parser.

3 Parser Overview

Our parser5 will be explained using this example
sentence: France plans further nuclear coopera-
tion with numerous countries .

A graphical depiction of an AMR for this sen-
tence is shown in Figure 1a.

Given an input sentence, the approach taken
in our AMR parser is similar to (Flanigan et al.,
2014) in that it consists of two subtasks: (1) dis-
cover the concepts (nodes and sub-graphs) present
in the sentence, and (2) determine the relations
(arcs) that connect the concepts (relations cap-
ture both traditional predicate-argument structures
(ARGs), as well as additional modifier relations
that capture notions including quantification, po-
larity, and cardinality.) Neither of these tasks is
straightforward in the AMR context. Among the
complications are the fact that individual words
may contribute to more than one node (as in the
case of France), parts of the graph may be “reen-
trant”, participating in relations with multiple con-
cepts, and predicate-argument and modifier rela-
tions can be introduced by arbitrary parts of the
input.

At a high level, our system takes an input sen-
tence in form of a vector of word embeddings

5source at https://github.com/BillFoland/daisyluAMR
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and uses a series of recurrent neural networks
to (1) discover the basic set of nodes and sub-
graphs that comprise the AMR, (2) discover the
set of predicate-argument relations among those
concepts, and (3) identifying any relevant modifier
relations that are present.

A high level block diagram of the parser is
shown in Figure 1b. The parser extracts fea-
tures from the sentence which are processed by
a bidirectional LSTM network (B-LSTM) to cre-
ate a set of AMR subgraphs, which contain one
or two concepts as well as their internal relations
to each other. Features based on the sentence and
these subgraphs are then processed by a pair of
B-LSTM networks to compute the probabilities of
relations between all subgraphs. All subgraphs
are then connected using an iterative, greedy algo-
rithm to compute a single component graph, with
all subgraphs connected by relations. Separately,
another two B-LSTM networks compute attribute
and name categories, which are then appended to
the graph. Finally, the subgraphs are expanded
into the most probable AMR concept and relation
primitives to create the final AMR.

4 Detailed Parser Architecture

4.1 AMR Spans, Subgraphs, and Subgraph
Decoding

Mapping the words in a sentence to AMR concepts
is a critical first step in the parsing process, and
can influence the performance of all subsequent
processing. Although the most common mapping
is one word to one concept, a series of consecu-
tive words, or span, can also be associated with an
AMR concept. Likewise, a span of words can be
mapped to a small connected subgraph, such as
the single word span France which is mapped to a
subgraph composed of two concepts connected by
a name relation. (see the shaded section of Figure
1a).

Training corpora provide sentences which are
annotated by humans with AMR graphs, not nec-
essarily including a reference span to subgraph
mapping. An automatic AMR aligner can be used
to predict relationships between words and gold
AMR’s. We use the alignments produced by the
aligner of (2014), along with the words and refer-
ence AMR graphs, to identify a subgraph type to
associate with each span. Each word in the sen-
tence is then associated with an IOBES subgraph
type tag. We call the algorithm which defines span

to subgraph mapping the Expert Span Identifier,
and use it to train the SG Network.

A convenient development detail stems from
the fact that during the AMR creation process,
the identified subgraphs must be expanded into
individual concepts and relations. For example,
the subgraph type ”Named”, along with the span
France, must be expanded to create the concepts,
relations, and attributes shown in Figure 1a. A
Subgraph Expander algorithm implements this
task, which is essentially the inverse of the Ex-
pert Span Identifier. The Expert Span Identifier
and Subgraph Expander were developed by cas-
cading the two in a test configuration as shown in
Figure 3a.

4.2 Features

All input features for the five networks correspond
to the sequence of words in the input sentence,
and are presented to the networks as indices into
lookup tables. With the exception of pre-trained
word embeddings, these lookup tables are ran-
domly initialized prior to training and representa-
tions are created during the training process.

4.2.1 Word Embeddings

The use of distributed word representations gener-
ated from large text corpora is pervasive in mod-
ern NLP. We start with 300 dimension GloVe rep-
resentations (Pennington et al., 2014) trained on
the 840 billion word common crawl (Smith et al.,
2013). We added two binary dimensions: one for
out of vocabulary words, and one for padding, re-
sulting in vectors with a width of 302. These em-
beddings are mapped from the words in the sen-
tence, and are then trained using back propagation
just like other parameters in the network.

4.2.2 Wikifier

The AMR standard was expanded to include the
annotation of named entities with a canonical
form, using Wikipedia as the standard (see France
in Figure 1a). The wiki link associated with
this ”wikification” is expressed using the :wiki at-
tribute, which requires some kind of global exter-
nal knowledge of the Wikipedia ontology. We use
the University of Illinois Wikifier (Ratinov et al.,
2011; Cheng and Roth, 2013) to identify the :link
directly, and use the possible categories output
from the wikifier as feature inputs to the NCat Net-
work.
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(a) Expert System and Subgraph Expander Development.
The alignment between the words in the sentence and ele-
ments of the AMR is provided by an automatic aligner. The
expert system uses the sentence, reference AMR, and align-
ment to identify spans of words which are related to con-
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(b) SG Network Training. The SG Network uses just the
words in the sentence as input, and is trained to imitate the
output of the Expert System. This output defines spans of
words and their subgraph types, which are the nodes of the
AMR graph. Later stages of the system use this information
to infer other aspects of the AMR, like relations (edges).

Figure 3: SG Model Development Details.

Named Entity Recognition can be valuable in-
put to a parser, and state-of-the-art NER systems
can be created using convolutional neural net-
works (Collobert et al., 2011) or LSTM (Chiu
and Nichols, 2015) aided by information from
gazetteers. These gazetteers are large dictionaries
containing well known named entities (e.g., (Flo-
rian et al., 2003)).

Rather than add gazetteer features to our sys-
tem, we make use of the NER information already
calculated and provided by the Univ. of Illinois
Wikifier. We then encode the classified named en-
tities output from the wikifier as feature embed-
dings, which are used by the SG Network.

4.2.3 AMR Subgraph (SG) Network

The features used as input to the SG network are:

• word: 45Kx302, the word embeddings
• suffix: 430x5, embeddings based on the final

two letters of each word.
• caps: 5x5, embeddings based on the capital-

ization pattern of the word.
• NER: 5x5, embeddings indexed by NER

from the Wikifier, ’O’, ’LOC’, ’ORG’, ’PER’
or ’MISC’.

The SG Network produces probabilities for 46
BIOES tagged subgraph types, and the highest
probability tag is chosen for each word, as shown
for the example sentence in Table 1.

4.2.4 Predicate Argument Relations (Args)
Network

The AMR concepts (nodes) are connected by rela-
tions (arcs). We found it convenient to distinguish
predicate argument relations, or ”Args” from other
relations, which we call ”Nargs”. For example,
see ARG0 and ARG1 relations in Figure 1a are
”Args”, compared with the name, degree, mod, or
quant relations which are ”Nargs”.

The Args Network is run once for each predi-
cate subgraph, and produces a matrix Pargs which
defines the probability (prior to the identification
of any relations6) of a type of predicate argument
relation from a predicate subgraph to any other SG
identified subgraph. (For example, see ARG0 and
ARG1 relations in Figure 1a.) The matrix has di-
mensions 5 by s, where 5 is the number of predi-
cate arg relations identified by the network, and s
is the total number of subgraphs identified by the
SG Network for the sentence.

The Args features, calculated for each source
predicate subgraph, are:

• Word, Suffix and Caps as in the SG network.
• SG: 46x5, indexed by the SG network identi-

fied subgraph.
• PredWords[5], 45Kx302: The word embed-

dings of the word and surrounding 2 words
associated with the source predicate sub-
graph.

6relation probabilities change as hard decisions are made,
see section 4.3
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words BIOES Prob kind

France S Named 0.995 Named subgraph
plans S Pred-01 0.997 plan-01
further S NonPred 0.931 further
nuclear S NonPred 0.990 nucleus
cooperation S Pred-01 0.986 cooperate-01
with O 1.000 O
numerous S NonPred 0.982 numerous
countries S NonPred 0.860 country
. O 0.999 O

Table 1: SG Network Example Output

feature width

Word[france] 302
Suffix[ce] 5
Caps[firstUp] 5
SG[S Named] 10
Word[further] 302
Word[nuclear] 302
Word[cooperation] 302
Word[with] 302
Word[numerous] 302
SG[S NonPred] 10
SG[S NonPred] 10
SG[S Pred-01] 10
SG[O] 10
SG[S NonPred] 10
Distance[4] 5

Table 2: Args Network Features for the word France
while evaluating outgoing args for the word cooperation,
associated with predicate cooperate-01

• PredSG[5], 46x10: The SG embedding of
the word and surrounding 2 words associated
with the source predicate subgraph.

• regionMark: 21x5, indexed by the distance in
words between the word and the word asso-
ciated with the source predicate subgraph.

Table 2 shows an example feature set for one
subgraph while evaluating a predicate subgraph.

4.2.5 Non-Predicate Relations (Nargs)
Network

The Nargs Network uses features similar to the
Args network. It is run once for each subgraph,
and produces a matrix Pnargs which defines the
probability of a type of relation from a subgraph
to any other subgraph, prior to the identification
of any relations.7 The matrix has dimensions 43
by s, where 43 is the number of non-arg relations
identified by the network, and s is the total number
of subgraphs identified by the SG Network for the
sentence.

4.2.6 Attributes (Attr) Network
The Attr Network determines a primary attribute
for each subgraph, if any.8 This network is sim-
plified to detect only one attribute (there could be

7Degree, mod, or quant are examples of Narg relations in
Figure 1a.

8(TOP: plan-01) and (op1: france) are attribute examples
shown in Figure 1a.

many) per subgraph, and only computes probabili-
ties for the two most common attributes: TOP and
polarity. Note that subgraph expansion also identi-
fies many attributes, for example the words associ-
ated with named entities, or the normalized quan-
tity and date representations. A known shortcom-
ing of this network is that the TOP and polarity at-
tributes are not mutually exclusive, but noting that
the cooccurrence of the two does not occur in the
training data, we chose to avoid adding a separate
network to allow the prediction of both attributes
for a single subgraph.

4.2.7 Named Category (NCat) Network

The NCat Network uses features similar to the SG
Network, along with the suggested categories (up
to eight) from the Wikifier, and produces prob-
abilities for each of 68 :instance roles, or cate-
gories, for named entities identified in the training
set AMR’s.

• Word, Suffix and Caps as in the SG network.
• WikiCat[8]: 108 x 5, indexed by suggested

categories from the Wikifier.

4.3 Relation Resolution

The generated Pargs and Pnargs for each SG iden-
tified subgraph are processed to determine the
most likely relation connections, using the con-
straints:
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1. AMR’s are single component graphs without
cycles.

2. AMR’s are simple directed graphs, a max of
one relation between any two subgraphs is al-
lowed.

3. Outgoing predicate relations are limited to
one of each kind (i.e. can’t have two ARG0’s)

We initialize a graph description with all the
subgraphs identified by the SG network. Prob-
abilities for all possible edges are represented in
the Pargs and Pnargs matrices. The Subgraphs are
connected to one another by applying a greedy al-
gorithm, which repeatedly selects the most proba-
ble edge from the Pargs and Pnargs matrices and
adds the edge to the graph description. After an
edge is selected to be added to the graph, we ad-
just Pargs and Pnargs based on the constraints
(hard decisions change the probabilities), and re-
peat adding edges until all remaining edge proba-
bilities are below a threshold. (The optimum value
of this threshold, 0.55, was found by experiment-
ing with the development data set). From then on,
only the most probable edges which span graph
components are chosen, until the graph contains a
single component.

Expressed as a step by step procedure, we
first define pconnect as the probability threshold at
which to require graph component spanning, and
we repeat the following, until any two subgraphs
in the graph are connected by at least one path.

1. Select the most probable outgoing relation
from any of the identified subgraph probabil-
ity matrices. Denote this probability as pr.

2. If pr < pconnect, keep selecting most proba-
ble relations until a component spanning con-
nection is found.

3. Add the selected relation to the graph. If a
cycle is created, reverse the relation direction
and label.

4. Eliminate impossible relations based on the
constraints and re-normalize the affected
Pargs and Pnargs matrices.

4.4 AMR Construction
AMR Construction converts the connected sub-
graph AMR into the final AMR graph form, with
proper concepts, relations, and root, as follows:

1. The TOP attribute occurs exactly once in
each AMR, so the subgraph with highest TOP
probability produced by the Attr network is

identified. The AMR graph is adjusted so that
it is rooted with the most probable TOP sub-
graph. After graph adjustment, new cycles
are sometimes created, which are removed by
using -of relation reversal.

2. The subgraphs identified by the SG network,
which were considered to be single nodes
during relation resolution, are expanded to
basic AMR concepts and relations to form a
concept/relation AMR graph representation,
using the Subgraph Expander component de-
veloped as shown in Figure 3b. When a sub-
graph contains two concepts, the choice of
connecting to parent or child within the sub-
graph is made based on training data statistics
of each relation type (Arg or Narg) for each
subgraph type.

3. Nationalities are normalized (e.g. French to
France).

4. A very basic coreference resolution is per-
formed by merging all concepts representing
”I” into a single concept. Coreference reso-
lution was otherwise ignored due to develop-
ment time constraints.

5 Experimental Setup

Semantic graph comparison can be tricky because
direct graph alignment fails in the presence of just
a few miscompares. A practical graph comparison
program called Smatch (Cai and Knight, 2013) is
used to consistently evaluate AMR parsers. The
smatch python script provides an F1 evaluation
metric for whole-sentence semantic graph analysis
by comparing sets of triples which describe por-
tions of the graphs, and uses a hill climbing algo-
rithm for efficiency.

All networks, including SG, were trained us-
ing stochastic gradient descent (SGD) with a
fixed learning rate. We tried sentence level log-
likelihood, which trains a viterbi decoder, as a
training objective, but found no improvement over
word-level likelihood (cross entropy). After all
LSTM and linear layers, we added dropout to
minimize overfitting (Hinton et al., 2012) and
batch normalization to reduce sensitivity to learn-
ing rates and initialization (Ioffe and Szegedy,
2015).

For each of the five networks, we used the
LDC2015E86 training split to train parameters,
and periodically interrupted training to run the dev
split (forward) in order to monitor performance.
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The model parameters which resulted in best dev
performance were saved as the final model. The
test split was used as the ”in domain” data set to
assess the fully assembled parser. The inferred
AMR’s were then evaluated using the smatch pro-
gram to produce an F1 score.

An evaluation dataset was provided for Semeval
2016 task 8, which is significantly different from
the LDC2015E86 split dataset. ((2016) describes
the eval dataset as ”quite difficult to parse, particu-
larly due to creative approaches to word represen-
tation in the web forum portion”).

6 Results

We report the statistics for smatch results of the
”test” and ”eval” datasets for 12 trained systems
in Table 3. The top five scores for Semeval 2016
task 8, representing the previous state-of-the-art,
are shown for context. With a smatch score of be-
tween 0.651 and 0.654, and a mean of 0.652, our
system improves the state-of-the-art AMR parser
performance by between 5.07% and 5.55%, and
by a mean of 5.22%. The best performing systems
for in-domain (dev and test) data correlated well
with the best ones for the out-of-domain (eval)
data, although the scores for the eval dataset were
lower overall.

6.1 Individual Network Results

The word spans tagged by the SG network are
used to determine the features for the other net-
works. In particular, every span identified as a
predicate will trigger the system to evaluate the
Args network in order to determine the probabil-
ities of outgoing predicate ARG relations. Like-
wise, all spans identified as subgraphs (other than
named subgraphs) will lead to a Nargs network
evaluation to determine outgoing non-Arg rela-
tions. The SG network identifies predicates with
0.93 F1, named subgraphs with 0.91 F1, and all
other subgraphs with 0.94 F1.

The Args network identifies ARG0 and ARG1
relations with 0.73 F1, but identification of ARG2,
ARG3, and ARG4 drops down to (0.53, 0.20, and
0.43). It is difficult for the system to generalize
among these relation tags because they differ sig-
nificantly between predicates.

7 Conclusion and Future Work

We have shown that B-LSTM neural networks can
be used as the basis for a graph based semantic

parser. Our AMR parser effectively exploits the
ability of B-LSTM networks to learn to selectively
extract information from words separated by long
distances in a sentence, and to build up higher
level representations by rejecting or remembering
important information during sequence process-
ing. There are changes which could be made to
eliminate all pre-processing and to further improve
parser performance.

Eliminating the need for syntactic pre-parsing
is valuable since a syntactic parser takes up sig-
nificant time and computational resources, and er-
rors in the generated syntax will propagate into an
AMR parser. Our approach avoids both of these
problems, while generating high quality results.

Wikification tasks are generally independent
from parsing, but wiki links are a requirement for
the latest AMR specification. Since our preferred
wikifier application generates NER information,
we used the generated NER tags as input to the
SG network. But it would also be fairly easy
to add gazetteer information to the network fea-
tures in order to remove the need for NER pre-
processing. Therefore, the wikification subtask is
the only portion of the parser which requires any
pre-processing at all. Incorporating wikification
gazetteers as B-LSTM features might allow a per-
formant, fully self contained parser to be created.

Sense disambiguation is not a very generaliz-
able task, senses other than 01 and 02 for dif-
ferent predicates may differ from each other in
ways which are very difficult to discern. A better
approach to disambiguation is to consider predi-
cates separately, solving for a set of coefficients
for each verb found in the training set. A gen-
eral set of model parameters could then be used
to handle unseen examples. Likewise, high level
ARGs like ARG2 and ARG3 don’t generalize very
well among different predicates, and ARG infer-
ence accuracy could be improved with predicate-
specific network parameters for the most common
cases.

The alignment between concepts and words is
not a reliable, direct mapping: some concepts can-
not be grounded to words, some are ambiguous,
and automatic aligners tend to have high error
rates relative to human aligning judgements. Im-
provements in the quality of the alignment in train-
ing data would improve parsing results.
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System Description Test F1 Eval (OOD) F1

Our Parser
(summary of 12 trained systems)

mean 0.707 0.652
min 0.706 0.651
max 0.709 0.654

RIGA (Barzdins and Gosko, 2016) 0.6720 0.6196
Brandeis/cemantix.org/RPI (Wang et al., 2016) 0.6670 0.6195
CU-NLP (Foland Jr and Martin, 2016) 0.6610 0.6060
ICL-HD (Brandt et al., 2016) 0.6200 0.6005
UCL+Sheffield (Goodman et al., 2016) 0.6370 0.5983

Table 3: Smatch F1 results for our parser and top 5 parsers from semeval 2016 task 8.
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