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Abstract

Most methods to learn bilingual word em-
beddings rely on large parallel corpora,
which is difficult to obtain for most lan-
guage pairs. This has motivated an ac-
tive research line to relax this requirement,
with methods that use document-aligned
corpora or bilingual dictionaries of a few
thousand words instead. In this work, we
further reduce the need of bilingual re-
sources using a very simple self-learning
approach that can be combined with any
dictionary-based mapping technique. Our
method exploits the structural similarity of
embedding spaces, and works with as little
bilingual evidence as a 25 word dictionary
or even an automatically generated list of
numerals, obtaining results comparable to
those of systems that use richer resources.

1 Introduction

Multilingual word embeddings have attracted a lot
of attention in recent times. In addition to having a
direct application in inherently crosslingual tasks
like machine translation (Zou et al., 2013) and
crosslingual entity linking (Tsai and Roth, 2016),
they provide an excellent mechanism for transfer
learning, where a model trained in a resource-rich
language is transferred to a less-resourced one, as
shown with part-of-speech tagging (Zhang et al.,
2016), parsing (Xiao and Guo, 2014) and docu-
ment classification (Klementiev et al., 2012).

Most methods to learn these multilingual word
embeddings make use of large parallel corpora
(Gouws et al., 2015; Luong et al., 2015), but there
have been several proposals to relax this require-
ment, given its scarcity in most language pairs. A
possible relaxation is to use document-aligned or
label-aligned comparable corpora (Søgaard et al.,

2015; Vulić and Moens, 2016; Mogadala and Ret-
tinger, 2016), but large amounts of such corpora
are not always available for some language pairs.

An alternative approach that we follow here is
to independently train the embeddings for each
language on monolingual corpora, and then learn
a linear transformation to map the embeddings
from one space into the other by minimizing the
distances in a bilingual dictionary, usually in the
range of a few thousand entries (Mikolov et al.,
2013a; Artetxe et al., 2016). However, dictio-
naries of that size are not readily available for
many language pairs, specially those involving
less-resourced languages.

In this work, we reduce the need of large bilin-
gual dictionaries to much smaller seed dictionar-
ies. Our method can work with as little as 25 word
pairs, which are straightforward to obtain assum-
ing some basic knowledge of the languages in-
volved. The method can also work with trivially
generated seed dictionaries of numerals (i.e. 1-1,
2-2, 3-3, 4-4...) making it possible to learn bilin-
gual word embeddings without any real bilingual
data. In either case, we obtain very competitive re-
sults, comparable to other state-of-the-art methods
that make use of much richer bilingual resources.

The proposed method is an extension of exist-
ing mapping techniques, where the dictionary is
used to learn the embedding mapping and the em-
bedding mapping is used to induce a new dictio-
nary iteratively in a self-learning fashion (see Fig-
ure 1). In spite of its simplicity, our analysis of
the implicit optimization objective reveals that the
method is exploiting the structural similarity of in-
dependently trained embeddings.

We analyze previous work in Section 2. Section
3 describes the self-learning framework, while
Section 4 presents the experiments. Section 5 an-
alyzes the underlying optimization objective, and
Section 6 presents an error analysis.
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Figure 1: A general schema of the proposed self-learning framework. Previous works learn a mapping
W based on the seed dictionary D, which is then used to learn the full dictionary. In our proposal we use
the new dictionary to learn a new mapping, iterating until convergence.

2 Related work

We will first focus on bilingual embedding map-
pings, which are the basis of our proposals, and
then on other unsupervised and weakly supervised
methods to learn bilingual word embeddings.

2.1 Bilingual embedding mappings

Methods to induce bilingual mappings work by in-
dependently learning the embeddings in each lan-
guage using monolingual corpora, and then learn-
ing a transformation from one embedding space
into the other based on a bilingual dictionary.

The first of such methods is due to Mikolov
et al. (2013a), who learn the linear transformation
that minimizes the sum of squared Euclidean dis-
tances for the dictionary entries. The same opti-
mization objective is used by Zhang et al. (2016),
who constrain the transformation matrix to be or-
thogonal. Xing et al. (2015) incorporate length
normalization in the training of word embeddings
and maximize the cosine similarity instead, en-
forcing the orthogonality constraint to preserve the
length normalization after the mapping. Finally,
Lazaridou et al. (2015) use max-margin optimiza-
tion with intruder negative sampling.

Instead of learning a single linear transforma-
tion from the source language into the target lan-
guage, Faruqui and Dyer (2014) use canonical cor-
relation analysis to map both languages to a shared
vector space. Lu et al. (2015) extend this work and
apply deep canonical correlation analysis to learn
non-linear transformations.

Artetxe et al. (2016) propose a general frame-
work that clarifies the relation between Mikolov
et al. (2013a), Xing et al. (2015), Faruqui and Dyer
(2014) and Zhang et al. (2016) as variants of the

same core optimization objective, and show that
a new variant is able to surpass them all. While
most of the previous methods use gradient descent,
Artetxe et al. (2016) propose an efficient analytical
implementation for those same methods, recently
extended by Smith et al. (2017) to incorporate di-
mensionality reduction.

A prominent application of bilingual embed-
ding mappings, with a direct application in ma-
chine translation (Zhao et al., 2015), is bilingual
lexicon extraction, which is also the main evalua-
tion method. More specifically, the learned map-
ping is used to induce the translation of source lan-
guage words that were missing in the original dic-
tionary, usually by taking their nearest neighbor
word in the target language according to cosine
similarity, although Dinu et al. (2015) and Smith
et al. (2017) propose alternative retrieval methods
to address the hubness problem.

2.2 Unsupervised and weakly supervised
bilingual embeddings

As mentioned before, our method works with as
little as 25 word pairs, while the methods dis-
cussed previously use thousands of pairs. The only
exception in this regard is the work by Zhang et al.
(2016), who only use 10 word pairs with good re-
sults on transfer learning for part-of-speech tag-
ging. Our experiments will show that, although
their method captures coarse-grained relations, it
fails on finer-grained tasks like bilingual lexicon
induction.

Bootstrapping methods similar to ours have
been previously proposed for traditional count-
based vector space models (Peirsman and Padó,
2010; Vulić and Moens, 2013). However, while
previous techniques incrementally build a high-
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Algorithm 1 Traditional framework
Input: X (source embeddings)
Input: Z (target embeddings)
Input: D (seed dictionary)

1: W ← LEARN MAPPING(X , Z, D)
2: D ← LEARN DICTIONARY(X , Z, W )
3: EVALUATE DICTIONARY(D)

dimensional model where each axis encodes the
co-occurrences with a specific word and its equiv-
alent in the other language, our method works
with low-dimensional pre-trained word embed-
dings, which are more widely used nowadays.

A practical aspect for reducing the need of bilin-
gual supervision is on the design of the seed dic-
tionary. This is analyzed in depth by Vulić and
Korhonen (2016), who propose using document-
aligned corpora to extract the training dictionary.
A more common approach is to rely on shared
words and cognates (Peirsman and Padó, 2010;
Smith et al., 2017), eliminating the need of bilin-
gual data in practice. Our use of shared numer-
als exploits the same underlying idea, but relies on
even less bilingual evidence and should thus gen-
eralize better to distant language pairs.

Miceli Barone (2016) and Cao et al. (2016)
go one step further and attempt to learn bilingual
embeddings without any bilingual evidence. The
former uses adversarial autoencoders (Makhzani
et al., 2016), combining an encoder that maps
the source language embeddings into the target
language, a decoder that reconstructs the origi-
nal embeddings, and a discriminator that distin-
guishes mapped embeddings from real target lan-
guage embeddings, whereas the latter adds a regu-
larization term to the training of word embeddings
that pushes the mean and variance of each dimen-
sion in different languages close to each other.
Although promising, the reported performance in
both cases is poor in comparison to other methods.

Finally, the induction of bilingual knowledge
from monolingual corpora is closely related to the
decipherment scenario, for which models that in-
corporate word embeddings have also been pro-
posed (Dou et al., 2015). However, decipherment
is only concerned with translating text from one
language to another and relies on complex statis-
tical models that are designed specifically for that
purpose, while our approach is more general and
learns task-independent multilingual embeddings.

Algorithm 2 Proposed self-learning framework
Input: X (source embeddings)
Input: Z (target embeddings)
Input: D (seed dictionary)

1: repeat
2: W ← LEARN MAPPING(X , Z, D)
3: D ← LEARN DICTIONARY(X , Z, W )
4: until convergence criterion
5: EVALUATE DICTIONARY(D)

3 Proposed self-learning framework

As discussed in Section 2.1, a common evaluation
task (and practical application) of bilingual em-
bedding mappings is to induce bilingual lexicons,
that is, to obtain the translation of source words
that were missing in the training dictionary, which
are then compared to a gold standard test dictio-
nary for evaluation. This way, one can say that the
seed (train) dictionary is used to learn a mapping,
which is then used to induce a better dictionary (at
least in the sense that it is larger). Algorithm 1
summarizes this framework.

Following this observation, we propose to use
the output dictionary in Algorithm 1 as the input of
the same system in a self-learning fashion which,
assuming that the output dictionary was indeed
better than the original one, should serve to learn
a better mapping and, consequently, an even better
dictionary the second time. The process can then
be repeated iteratively to obtain a hopefully bet-
ter mapping and dictionary each time until some
convergence criterion is met. Algorithm 2 summa-
rizes this alternative framework that we propose.

Our method can be combined with any embed-
ding mapping and dictionary induction technique
(see Section 2.1). However, efficiency turns out
to be critical for a variety of reasons. First of all,
by enclosing the learning logic in a loop, the to-
tal training time is increased by the number of it-
erations. Even more importantly, our framework
requires to explicitly build the entire dictionary
at each iteration, whereas previous work tends
to induce the translation of individual words on-
demand later at runtime. Moreover, from the sec-
ond iteration onwards, it is this induced, full dic-
tionary that has to be used to learn the embedding
mapping, and not the considerably smaller seed
dictionary as it is typically done. In the follow-
ing two subsections, we respectively describe the
embedding mapping method and the dictionary in-
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duction method that we adopt in our work with
these efficiency requirements in mind.

3.1 Embedding mapping
As discussed in Section 2.1, most previous meth-
ods to learn embedding mappings use variants of
gradient descent. Among the more efficient ex-
act alternatives, we decide to adopt the one by
Artetxe et al. (2016) for its simplicity and good
results as reported in their paper. We next present
their method, adapting the formalization to explic-
itly incorporate the dictionary as required by our
self-learning algorithm.

Let X and Z denote the word embedding ma-
trices in two languages so that Xi∗ corresponds to
the ith source language word embedding and Zj∗
corresponds to the jth target language embedding.
While Artetxe et al. (2016) assume these two ma-
trices are aligned according to the dictionary, we
drop this assumption and represent the dictionary
explicitly as a binary matrix D, so that Dij = 1
if the ith source language word is aligned with the
jth target language word. The goal is then to find
the optimal mapping matrix W ∗ so that the sum of
squared Euclidean distances between the mapped
source embeddings Xi∗W and target embeddings
Zj∗ for the dictionary entries Dij is minimized:

W ∗ = arg min
W

∑

i

∑

j

Dij ||Xi∗W − Zj∗||2

Following Artetxe et al. (2016), we length nor-
malize and mean center the embedding matrices
X and Z in a preprocessing step, and constrain
W to be an orthogonal matrix (i.e. WW T =
W TW = I), which serves to enforce monolingual
invariance, preventing a degradation in monolin-
gual performance while yielding to better bilin-
gual mappings. Under such orthogonality con-
straint, minimizing the squared Euclidean distance
becomes equivalent to maximizing the dot prod-
uct, so the above optimization objective can be re-
formulated as follows:

W ∗ = arg max
W

Tr
(
XWZTDT

)

where Tr (·) denotes the trace operator (the sum of
all the elements in the main diagonal). The opti-
mal orthogonal solution for this problem is given
by W ∗ = UV T , where XTDZ = UΣV T is the
singular value decomposition of XTDZ. Since
the dictionary matrix D is sparse, this can be effi-
ciently computed in linear time with respect to the
number of dictionary entries.

3.2 Dictionary induction

As discussed in Section 2.1, practically all previ-
ous work uses nearest neighbor retrieval for word
translation induction based on embedding map-
pings. In nearest neighbor retrieval, each source
language word is assigned the closest word in the
target language. In our work, we use the dot prod-
uct between the mapped source language embed-
dings and the target language embeddings as the
similarity measure, which is roughly equivalent to
cosine similarity given that we apply length nor-
malization followed by mean centering as a pre-
processing step (see Section 3.1). This way, fol-
lowing the notation in Section 3.1, we set Dij = 1
if j = argmaxk (Xi∗W ) ·Zk∗ and Dij = 0 other-
wise1.

While we find that independently computing the
similarity measure between all word pairs is pro-
hibitively slow, the computation of the entire sim-
ilarity matrix XWZT can be easily vectorized us-
ing popular linear algebra libraries, obtaining big
performance gains. However, the resulting sim-
ilarity matrix is often too large to fit in memory
when using large vocabularies. For that reason,
instead of computing the entire similarity matrix
XWZT in a single step, we iteratively compute
submatrices of it using vectorized matrix multi-
plication, find their corresponding maxima each
time, and then combine the results.

4 Experiments and results

In this section, we experimentally test the pro-
posed method in bilingual lexicon induction and
crosslingual word similarity. Subsection 4.1 de-
scribes the experimental settings, while Subsec-
tions 4.2 and 4.3 present the results obtained in
each of the tasks. The code and resources nec-
essary to reproduce our experiments are avail-
able at https://github.com/artetxem/
vecmap.

4.1 Experimental settings

For easier comparison with related work, we eval-
uated our mappings on bilingual lexicon induc-
tion using the public English-Italian dataset by
Dinu et al. (2015), which includes monolingual
word embeddings in both languages together with
a bilingual dictionary split in a training set and a

1Note that we induce the dictionary entries starting from
the source language words. We experimented with other al-
ternatives in development, with minor differences.
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test set2. The embeddings were trained with the
word2vec toolkit with CBOW and negative sam-
pling (Mikolov et al., 2013b)3, using a 2.8 billion
word corpus for English (ukWaC + Wikipedia +
BNC) and a 1.6 billion word corpus for Italian
(itWaC). The training and test sets were derived
from a dictionary built form Europarl word align-
ments and available at OPUS (Tiedemann, 2012),
taking 1,500 random entries uniformly distributed
in 5 frequency bins as the test set and the 5,000
most frequent of the remaining word pairs as the
training set.

In addition to English-Italian, we selected two
other languages from different language families
with publicly available resources. We thus cre-
ated analogous datasets for English-German and
English-Finnish. In the case of German, the em-
beddings were trained on the 0.9 billion word cor-
pus SdeWaC, which is part of the WaCky collec-
tion (Baroni et al., 2009) that was also used for
English and Italian. Given that Finnish is not in-
cluded in this collection, we used the 2.8 billion
word Common Crawl corpus provided at WMT
20164 instead, which we tokenized using the Stan-
ford Tokenizer (Manning et al., 2014). In addition
to that, we created training and test sets for both
pairs from their respective Europarl dictionaries
from OPUS following the exact same procedure
used for English-Italian, and the word embeddings
were also trained using the same configuration as
Dinu et al. (2015).

Given that the main focus of our work is on
small seed dictionaries, we created random sub-
sets of 2,500, 1,000, 500, 250, 100, 75, 50 and
25 entries from the original training dictionaries
of 5,000 entries. This was done by shuffling once
the training dictionaries and taking their first k en-
tries, so it is guaranteed that each dictionary is a
strict subset of the bigger dictionaries.

In addition to that, we explored using auto-
matically generated dictionaries as a shortcut to
practical unsupervised learning. For that purpose,
we created numeral dictionaries, consisting of
words matching the [0-9]+ regular expression in
both vocabularies (e.g. 1-1, 2-2, 3-3, 1992-1992

2http://clic.cimec.unitn.it/
˜georgiana.dinu/down/

3The context window was set to 5 words, the dimension
of the embeddings to 300, the sub-sampling to 1e-05 and the
number of negative samples to 10, and the vocabulary was
restricted to the 200,000 most frequent words

4http://www.statmt.org/wmt16/
translation-task.html

etc.). The resulting dictionary had 2772 entries
for English-Italian, 2148 for English-German, and
2345 for English-Finnish. While more sophisti-
cated approaches are possible (e.g. involving the
edit distance of all words), we believe that this
method is general enough that should work with
practically any language pair, as Arabic numerals
are often used even in languages with a different
writing system (e.g. Chinese and Russian).

While bilingual lexicon induction is a standard
evaluation task for seed dictionary based meth-
ods like ours, it is unsuitable for bilingual corpus
based methods, as statistical word alignment al-
ready provides a reliable way to derive dictionar-
ies from bilingual corpora and, in fact, this is how
the test dictionary itself is built in our case. For
that reason, we carried out some experiments in
crosslingual word similarity as a way to test our
method in a different task and allowing to com-
pare it to systems that use richer bilingual data.
There are no many crosslingual word similarity
datasets, and we used the RG-65 and WordSim-
353 crosslingual datasets for English-German and
the WordSim-353 crosslingual dataset for English-
Italian as published by Camacho-Collados et al.
(2015) 5.

As for the convergence criterion, we decide to
stop training when the improvement on the aver-
age dot product for the induced dictionary falls
below a given threshold from one iteration to the
next. After length normalization, the dot product
ranges from -1 to 1, so we decide to set this thresh-
old at 1e-6, which we find to be a very conserva-
tive value yet enough that training takes a reason-
able amount of time. The curves in the next sec-
tion confirm that this was a reasonable choice.

This convergence criterion is usually met in less
than 100 iterations, each of them taking 5 minutes
on a modest desktop computer (Intel Core i5-4670
CPU with 8GiB of RAM), including the induction
of a dictionary of 200,000 words at each iteration.

4.2 Bilingual lexicon induction

For the experiments on bilingual lexicon induc-
tion, we compared our method with those pro-
posed by Mikolov et al. (2013a), Xing et al.
(2015), Zhang et al. (2016) and Artetxe et al.
(2016), all of them implemented as part of the
framework proposed by the latter. The results ob-

5http://lcl.uniroma1.it/
similarity-datasets/
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English-Italian English-German English-Finnish
5,000 25 num. 5,000 25 num. 5,000 25 num.

Mikolov et al. (2013a) 34.93 0.00 0.00 35.00 0.00 0.07 25.91 0.00 0.00
Xing et al. (2015) 36.87 0.00 0.13 41.27 0.07 0.53 28.23 0.07 0.56
Zhang et al. (2016) 36.73 0.07 0.27 40.80 0.13 0.87 28.16 0.14 0.42
Artetxe et al. (2016) 39.27 0.07 0.40 41.87 0.13 0.73 30.62 0.21 0.77
Our method 39.67 37.27 39.40 40.87 39.60 40.27 28.72 28.16 26.47

Table 1: Accuracy (%) on bilingual lexicon induction for different seed dictionaries

tained with the 5,000 entry, 25 entry and the nu-
merals dictionaries for all the 3 language pairs are
given in Table 1.

The results for the 5,000 entry dictionaries show
that our method is comparable or even better than
the other systems. As another reference, the
best published results using nearest-neighbor re-
trieval are due to Lazaridou et al. (2015), who re-
port an accuracy of 40.20% for the full English-
Italian dictionary, almost at pair with our system
(39.67%).

In any case, the main focus of our work is on
smaller dictionaries, and it is under this setting
that our method really stands out. The 25 en-
try and numerals columns in Table 1 show the
results for this setting, where all previous meth-
ods drop dramatically, falling below 1% accuracy
in all cases. The method by Zhang et al. (2016)
also obtains poor results with small dictionaries,
which reinforces our hypothesis in Section 2.2 that
their method can only capture coarse-grain bilin-
gual relations for small dictionaries. In contrast,
our proposed method obtains very competitive re-
sults for all dictionaries, with a difference of only
1-2 points between the full dictionary and both the
25 entry dictionary and the numerals dictionary in
all three languages. Figure 2 shows the curve of
the English-Italian accuracy for different seed dic-
tionary sizes, confirming this trend.

Finally, it is worth mentioning that, even if all
the three language pairs show the same general
behavior, there are clear differences in their abso-
lute accuracy numbers, which can be attributed to
the linguistic proximity of the languages involved.
In particular, the results for English-Finnish are
about 10 points below the rest, which is explained
by the fact that Finnish is a non-indoeuropean ag-
glutinative language, making the task considerably
more difficult for this language pair. In this regard,
we believe that the good results with small dictio-
naries are a strong indication of the robustness of
our method, showing that it is able to learn good
bilingual mappings from very little bilingual ev-

idence even for distant language pairs where the
structural similarity of the embedding spaces is
presumably weaker.

4.3 Crosslingual word similarity
In addition to the baseline systems in Section
4.2, in the crosslingual similarity experiments we
also tested the method by Luong et al. (2015),
which is the state-of-the-art for bilingual word
embeddings based on parallel corpora (Upadhyay
et al., 2016)6. As this method is an extension
of word2vec, we used the same hyperparameters
as for the monolingual embeddings when possible
(see Section 4.1), and leave the default ones oth-
erwise. We used Europarl as our parallel corpus
to train this method as done by the authors, which
consists of nearly 2 million parallel sentences.

As shown in the results in Table 2, our method
obtains the best results in all cases, surpassing the
rest of the dictionary-based methods by 1-3 points
depending on the dataset. But, most importantly,
it does not suffer from any significant degrada-
tion for using smaller dictionaries and, in fact, our
method gets better results using the 25 entry dic-
tionary or the numeral list as the only bilingual
evidence than any of the baseline systems using
much richer resources.

The relatively poor results of Luong et al.
(2015) can be attributed to the fact that the dic-
tionary based methods make use of much big-
ger monolingual corpora, while methods based on
parallel corpora are restricted to smaller corpora.
However, it is not clear how to introduce monolin-
gual corpora on those methods. We did run some
experiments with BilBOWA (Gouws et al., 2015),
which supports training in monolingual corpora in
addition to bilingual corpora, but obtained very
poor results7. All in all, our experiments show

6We also tested English-German pre-trained embeddings
from Klementiev et al. (2012) and Chandar A P et al. (2014).
They both had coverage problems that made the results hard
to compare, and, when considering the correlations for the
word pairs in their vocabulary, their performance was poor.

7Upadhyay et al. (2016) report similar problems using
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Figure 2: Accuracy on English-Italian bilingual
lexicon induction for different seed dictionaries

that it is better to use large monolingual corpora in
combination with very little bilingual data rather
than a bilingual corpus of a standard size alone.

5 Global optimization objective

It might seem somehow surprising at first that,
as seen in the previous section, our simple self-
learning approach is able to learn high quality
bilingual embeddings from small seed dictionar-
ies instead of falling in degenerated solutions. In
this section, we try to shed light on our approach,
and give empirical evidence supporting our claim.

More concretely, we argue that, for the em-
bedding mapping and dictionary induction meth-
ods described in Section 3, the proposed self-
learning framework is implicitly solving the fol-
lowing global optimization problem8:

W ∗ = arg max
W

∑

i

max
j

(Xi∗W ) · Zj∗

s.t. WW T = W TW = I

Contrary to the optimization objective for W in
Section 3.1, the global optimization objective does
not refer to any dictionary, and maximizes the sim-
ilarity between each source language word and its
closest target language word. Intuitively, a ran-
dom solution would map source language embed-
dings to seemingly random locations in the target
language space, and it would thus be unlikely that

BilBOWA.
8While we restrict our formal analysis to the embedding

mapping and dictionary induction method that we use, the
general reasoning should be valid for other choices as well.

IT DE
Bi. data WS RG WS

Luong et al. (2015) Europarl .331 .335 .356
Mikolov et al. (2013a) 5k dict .627 .643 .528
Xing et al. (2015) 5k dict .614 .700 .595
Zhang et al. (2016) 5k dict .616 .704 .596
Artetxe et al. (2016) 5k dict .617 .716 .597

Our method
5k dict .624 .742 .616
25 dict .626 .749 .612
num. .628 .739 .604

Table 2: Spearman correlations on English-Italian
and English-German crosslingual word similarity

they have any target language word nearby, mak-
ing the optimization value small. In contrast, a
good solution would map source language words
close to their translation equivalents in the target
language space, and they would thus have their
corresponding embeddings nearby, making the op-
timization value large. While it is certainly possi-
ble to build degenerated solutions that take high
optimization values for small subsets of the vo-
cabulary, we think that the structural similarity be-
tween independently trained embedding spaces in
different languages is strong enough that optimiz-
ing this function yields to meaningful bilingual
mappings when the size of the vocabulary is much
larger than the dimensionality of the embeddings.

The reasoning for how the self-learning frame-
work is optimizing this objective is as follows. At
the end of each iteration, the dictionary D is up-
dated to assign, for the current mapping W , each
source language word to its closest target language
word. This way, when we update W to maximize
the average similarity of these dictionary entries
at the beginning of the next iteration, it is guar-
anteed that the value of the optimization objective
will improve (or at least remain the same). The
reason is that the average similarity between each
word and what were previously the closest words
will be improved if possible, as this is what the up-
dated W directly optimizes (see Section 3.1). In
addition to that, it is also possible that, for some
source words, some other target words get closer
after the update. Thanks to this, our self-learning
algorithm is guaranteed to converge to a local op-
timum of the above global objective, behaving like
an alternating optimization algorithm for it.

It is interesting to note that the above reasoning
is valid no matter what the the initial solution is,
and, in fact, the global optimization objective does
not depend on the seed dictionary nor any other
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Figure 3: Learning curve on English-Italian according to the global objective function (left) and the
accuracy on bilingual lexicon induction (right)

bilingual resource. For that reason, it should be
possible to use a random initialization instead of
a small seed dictionary. However, we empirically
observe that this works poorly in practice, as our
algorithm tends to get stuck in poor local optima
when the initial solution is not good enough.

The general behavior of our method is reflected
in Figure 3, which shows the learning curve for
different seed dictionaries according to both the
objective function and the accuracy on bilingual
lexicon induction. As it can be seen, the objective
function is improved from iteration to iteration and
converges to a local optimum just as expected. At
the same time, the learning curves show a strong
correlation between the optimization objective and
the accuracy, as it can be clearly observed that
improving the former leads to an improvement of
the latter, confirming our explanations. Regarding
random initialization, the figure shows that the al-
gorithm gets stuck in a poor local optimum of the
objective function, which is the reason of the bad
performance (0% accuracy) on bilingual lexicon
induction, but the proposed optimization objective
itself seems to be adequate.

Finally, we empirically observe that our algo-
rithm learns similar mappings no matter what the
seed dictionary was. We first repeated our exper-
iments on English-Italian bilingual lexicon induc-
tion for 5 different dictionaries of 25 entries, ob-
taining an average accuracy of 38.15% and a stan-
dard deviation of only 0.75%. In addition to that,
we observe that the overlap between the predic-
tions made when starting with the full dictionary
and the numerals dictionary is 76.00% (60.00%
for the 25 entry dictionary). At the same time,

37.00% of the test cases are correctly solved by
both instances, and it is only 5.07% of the test
cases that one of them gets right and the other
wrong (34.00% and 8.94% for the 25 entry dic-
tionary). This suggests that our algorithm tends to
converge to similar solutions even for disjoint seed
dictionaries, which is in line with our view that we
are implicitly optimizing an objective that is inde-
pendent from the seed dictionary, yet a seed dic-
tionary is necessary to build a good enough initial
solution to avoid getting stuck in poor local op-
tima. For that reason, it is likely that better meth-
ods to tackle this optimization problem would al-
low learning bilingual word embeddings without
any bilingual evidence at all and, in this regard, we
believe that our work opens exciting opportunities
for future research.

6 Error analysis

So as to better understand the behavior of our sys-
tem, we performed an error analysis of its out-
put in English-Italian bilingual lexicon induction
when starting with the 5,000 entry, the 25 entry
and the numeral dictionaries in comparison with
the baseline method of Artetxe et al. (2016) with
the 5,000 entry dictionary. For that purpose, we
took 100 random examples from the test set in the
[1-5K] frequency bin, another 100 from the [5K-
20K] frequency bin and 30 from the [100K-200K]
frequency bin, and manually analyzed each of the
errors made by all the 4 different variants.

Our analysis first reveals that, in all the cases,
about a third of the translations taken as erroneous
according to the gold standard are not so in real-
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ity. This corresponds to both different morpho-
logical variants of the gold standard translations
(e.g. dichiarato/dichiarò) and other valid transla-
tions that were missing in the gold standard (e.g.
climb → salita instead of the gold standard sca-
lato). This phenomenon is considerably more pro-
nounced in the first frequency bins, which already
have a much higher accuracy according to the gold
standard.

As for the actual errors, we observe that nearly
a third of them correspond to named entities for all
the different variants. Interestingly, the vast major-
ity of the proposed translations in these cases are
also named entities (e.g. Ryan→ Jason, John→
Paolo), which are often highly related to the origi-
nal ones (e.g. Volvo→ BMW, Olympus→ Nikon).
While these are clear errors, it is understandable
that these methods are unable to discriminate be-
tween named entities to this degree based solely
on the distributional hypothesis, in particular when
it comes to common proper names (e.g. John,
Andy), and one could design alternative strategies
to address this issue like taking the edit distance as
an additional signal.

For the remaining errors, all systems tend to
propose translations that have some degree of re-
lationship with the correct ones, including near-
synonyms (e.g. guidelines → raccomandazioni),
antonyms (e.g. sender→ destinatario) and words
in the same semantic field (e.g. nominalism→ in-
tuizionismo / innatismo, which are all philosoph-
ical doctrines). However, there are also a few in-
stances where the relationship is weak or unclear
(e.g. loch→ giardini, sweep→ serrare). We also
observe a few errors that are related to multiwords
or collocations (e.g. carrier→ aereo, presumably
related to the multiword air carrier / linea aerea),
as well as some rare word that is repeated across
many translations (Ferruzzi), which could be at-
tributed to the hubness problem (Dinu et al., 2015;
Lazaridou et al., 2015).

All in all, our error analysis reveals that the
baseline method of Artetxe et al. (2016) and the
proposed algorithm tend to make the same kind
of errors regardless of the seed dictionary used by
the latter, which reinforces our interpretation in
the previous section regarding an underlying op-
timization objective that is independent from any
training dictionary. Moreover, it shows that the
quality of the learned mappings is much better
than what the raw accuracy numbers might sug-

gest, encouraging the incorporation of these tech-
niques in other applications.

7 Conclusions and future work

In this work, we propose a simple self-learning
framework to learn bilingual word embedding
mappings in combination with any embedding
mapping and dictionary induction technique. Our
experiments on bilingual lexicon induction and
crosslingual word similarity show that our method
is able to learn high quality bilingual embeddings
from as little bilingual evidence as a 25 word dic-
tionary or an automatically generated list of nu-
merals, obtaining results that are competitive with
state-of-the-art systems using much richer bilin-
gual resources like larger dictionaries or parallel
corpora. In spite of its simplicity, a more detailed
analysis shows that our method is implicitly opti-
mizing a meaningful objective function that is in-
dependent from any bilingual data which, with a
better optimization method, might allow to learn
bilingual word embeddings in a completely unsu-
pervised manner.

In the future, we would like to delve deeper into
this direction and fine-tune our method so it can
reliably learn high quality bilingual word embed-
dings without any bilingual evidence at all. In ad-
dition to that, we would like to explore non-linear
transformations (Lu et al., 2015) and alternative
dictionary induction methods (Dinu et al., 2015;
Smith et al., 2017). Finally, we would like to ap-
ply our model in the decipherment scenario (Dou
et al., 2015).

Acknowledgements

We thank the anonymous reviewers for their in-
sightful comments and Flavio Merenda for his
help with the error analysis.

This research was partially supported by a
Google Faculty Award, the Spanish MINECO
(TUNER TIN2015-65308-C5-1-R, MUSTER
PCIN-2015-226 and TADEEP TIN2015-70214-P,
cofunded by EU FEDER), the Basque Gov-
ernment (MODELA KK-2016/00082) and the
UPV/EHU (excellence research group). Mikel
Artetxe enjoys a doctoral grant from the Spanish
MECD.

459



References
Mikel Artetxe, Gorka Labaka, and Eneko Agirre.

2016. Learning principled bilingual mappings
of word embeddings while preserving monolin-
gual invariance. In Proceedings of the 2016
Conference on Empirical Methods in Natural
Language Processing. Association for Computa-
tional Linguistics, Austin, Texas, pages 2289–2294.
https://aclweb.org/anthology/D16-1250.

Marco Baroni, Silvia Bernardini, Adriano Ferraresi,
and Eros Zanchetta. 2009. The WaCky wide web:
a collection of very large linguistically processed
web-crawled corpora. Language resources and
evaluation 43(3):209–226.
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Ivan Vulić and Marie-Francine Moens. 2013. A study
on bootstrapping bilingual vector spaces from non-
parallel data (and nothing else). In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Seattle, Washington, USA, pages
1613–1624. http://www.aclweb.org/anthology/D13-
1168.

Ivan Vulić and Marie-Francine Moens. 2016. Bilingual
distributed word representations from document-
aligned comparable data. Journal of Artificial In-
telligence Research 55(1):953–994.

Min Xiao and Yuhong Guo. 2014. Distributed
word representation learning for cross-lingual de-
pendency parsing. In Proceedings of the Eigh-
teenth Conference on Computational Natural Lan-
guage Learning. Association for Computational
Linguistics, Ann Arbor, Michigan, pages 119–129.
http://www.aclweb.org/anthology/W14-1613.

Chao Xing, Dong Wang, Chao Liu, and Yiye
Lin. 2015. Normalized word embedding and
orthogonal transform for bilingual word transla-
tion. In Proceedings of the 2015 Conference
of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, Denver, Colorado, pages 1006–1011.
http://www.aclweb.org/anthology/N15-1104.

Yuan Zhang, David Gaddy, Regina Barzilay, and
Tommi Jaakkola. 2016. Ten pairs to tag – multilin-
gual pos tagging via coarse mapping between em-
beddings. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language

461



Technologies. Association for Computational Lin-
guistics, San Diego, California, pages 1307–1317.
http://www.aclweb.org/anthology/N16-1156.

Kai Zhao, Hany Hassan, and Michael Auli. 2015.
Learning translation models from monolingual con-
tinuous representations. In Proceedings of the 2015
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Denver, Colorado, pages 1527–
1536. http://www.aclweb.org/anthology/N15-1176.

Will Y. Zou, Richard Socher, Daniel Cer, and
Christopher D. Manning. 2013. Bilingual word
embeddings for phrase-based machine transla-
tion. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguis-
tics, Seattle, Washington, USA, pages 1393–1398.
http://www.aclweb.org/anthology/D13-1141.

462


	Learning bilingual word embeddings with (almost) no bilingual data

