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Abstract

Kernel methods enable the direct usage of
structured representations of textual data
during language learning and inference
tasks. Expressive kernels, such as Tree
Kernels, achieve excellent performance in
NLP. On the other side, deep neural net-
works have been demonstrated effective in
automatically learning feature representa-
tions during training. However, their in-
put is tensor data, i.e., they cannot man-
age rich structured information. In this pa-
per, we show that expressive kernels and
deep neural networks can be combined in
a common framework in order to (i) ex-
plicitly model structured information and
(ii) learn non-linear decision functions.
We show that the input layer of a deep ar-
chitecture can be pre-trained through the
application of the Nyström low-rank ap-
proximation of kernel spaces. The result-
ing “kernelized” neural network achieves
state-of-the-art accuracy in three different
tasks.

1 Introduction

Learning for Natural Language Processing (NLP)
requires to more or less explicitly account for trees
or graphs to express syntactic and semantic in-
formation. A straightforward modeling of such
information has been obtained in statistical lan-
guage learning with Tree Kernels (TKs) (Collins
and Duffy, 2001), or by means of structured neu-
ral models (Hochreiter and Schmidhuber, 1997;
Socher et al., 2013). In particular, kernel-based
methods (Shawe-Taylor and Cristianini, 2004)
have been largely applied in language processing
for alleviating the need of complex activities of
manual feature engineering (e.g., (Moschitti et al.,

2008)). Although ad-hoc features are adopted by
many successful approaches to language learning
(e.g., (Gildea and Jurafsky, 2002)), kernels pro-
vide a natural way to capture textual generaliza-
tions directly operating over (possibly complex)
linguistic structures. Sequence (Cancedda et al.,
2003) or tree kernels (Collins and Duffy, 2001) are
of particular interest as the feature space they im-
plicitly generate reflects linguistic patterns. On the
other hand, Recursive Neural Networks (Socher
et al., 2013) have been shown to learn dense
feature representations of the nodes in a struc-
ture, thus exploiting similarities between nodes
and sub-trees. Also, Long-Short Term Mem-
ory (Hochreiter and Schmidhuber, 1997) networks
build intermediate representations of sequences,
resulting in similarity estimates over sequences
and their inner sub-sequences.

While such methods are highly effective and
reach state-of-the-art results in many tasks, their
adoption can be problematic. In kernel-based
Support Vector Machine (SVM) the classification
model corresponds to the set of support vectors
(SVs) and weights justifying the maximal margin
hyperplane: the classification cost crucially de-
pends on their number, as classifying a new in-
stance requires a kernel computation against all
SVs, making their adoption in large data settings
prohibitive. This scalability issue is evident in
many NLP and Information Retrieval applications,
such as in answer re-ranking in question answer-
ing (Severyn et al., 2013; Filice et al., 2016),
where the number of SVs is typically very large.
Improving the efficiency of kernel-based methods
is a largely studied topic. The reduction of com-
putational costs has been early designed by impos-
ing a budget (Dekel and Singer, 2006; Wang and
Vucetic, 2010), that is limiting the maximum num-
ber of SVs in a model. However, in complex tasks,
such methods still require large budgets to reach
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adequate accuracies. On the other hand, train-
ing complex neural networks is also difficult as
no common design practice is established against
complex data structures. In Levy et al. (2015), a
careful analysis of neural word embedding models
is carried out and the role of the hyper-parameter
estimation is outlined. Different neural architec-
tures result in the same performances, whenever
optimal hyper-parameter tuning is applied. In this
latter case, no significant difference is observed
across different architectures, making the choice
between different neural architectures a complex
and empirical task.

A general approach to the large scale modeling
of complex structures is a critical and open prob-
lem. A viable and general solution to this scal-
ability issue is provided by the Nyström method
(Williams and Seeger, 2001); it allows to ap-
proximate the Gram matrix of a kernel function
and support the embedding of future input exam-
ples into a low-dimensional space. For example,
if used over TKs, the Nyström projection corre-
sponds to the embedding of any tree into a low-
dimensional vector.

In this paper, we show that the Nyström based
low-rank embedding of input examples can be
used as the early layer of a deep feed-forward
neural network. A standard NN back-propagation
training can thus be applied to induce non-linear
functions in the kernel space. The resulting deep
architecture, called Kernel-based Deep Architec-
ture (KDA), is a mathematically justified integra-
tion of expressive kernel functions and deep neu-
ral architectures, with several advantages: it (i) di-
rectly operates over complex non-tensor struc-
tures, e.g., trees, without any manual feature or
architectural engineering, (ii) achieves a drastic re-
duction of the computational cost w.r.t. pure ker-
nel methods, and (iii) exploits the non-linearity of
NNs to produce accurate models. The experimen-
tal evaluation shows that the proposed approach
achieves state-of-the-art results in three semantic
inference tasks: Semantic Parsing, Question Clas-
sification and Community Question Answering.

In the rest of the paper, Section 2 surveys some
of the investigated kernels. In Section 3 the
Nyström methodology and KDA are presented.
Experimental evaluations are described in Section
4. Finally, Section 5 derives the conclusions.

2 Kernel-based Semantic Inference

In almost all NLP tasks, explicit models of com-
plex syntactic and semantic structures are re-
quired, such as in Paraphrase Detection: deciding
whether two sentences are valid paraphrases in-
volves learning grammatical rewriting rules, such
as semantics preserving mappings among sub-
trees. Also in Question Answering, the syntac-
tic information about input questions is crucial.
While manual feature engineering is always possi-
ble, kernel methods on structured representations
of data objects, e.g., sentences, have been largely
applied. Since Collins and Duffy (2001), sen-
tences can be modeled through their correspond-
ing parse tree, and Tree Kernels (TKs) result in
similarity metrics directly operating over tree frag-
ments. Such kernels corresponds to dot products
in the (implicit) feature space made of all possi-
ble tree fragments (Haussler, 1999). Notice that
the number of tree fragments in a tree bank is
combinatorial with the number of tree nodes and
gives rise to billions of features, i.e., dimensions.
In this high-dimensional space, kernel-based algo-
rithms, such as SVMs, can implicitly learn robust
prediction models (Shawe-Taylor and Cristianini,
2004), resulting in state-of-the-art approaches in
several NLP tasks, e.g., Semantic Role Labeling
(Moschitti et al., 2008), Question Classification
(Croce et al., 2011) or Paraphrase Identification
(Filice et al., 2015). As the feature space gener-
ated by the structural kernels depends on the in-
put structures, different tree representations can be
adopted to reflect more or less expressive syntac-
tic/semantic feature spaces. While constituency
parse trees have been early used (e.g., (Collins and
Duffy, 2001)), dependency parse trees correspond
to graph structures. TKs usually rely on their tree
conversions, where grammatical edge labels corre-
sponds to nodes. An expressive tree representation
of dependency graphs is the Grammatical Relation
Centered Tree (GRCT). As illustrated in Figure 1,
PoS-Tags and grammatical functions correspond
to nodes, dominating their associated lexicals.
Types of tree kernels. While a variety of TK
functions have been studied, e.g., the Partial Tree
Kernel (PTK) (Moschitti, 2006), the kernels used
in this work model grammatical and semantic in-
formation, as triggered respectively by the depen-
dency edge labels and lexical nodes. The lat-
ter is exploited through recent results in distribu-
tional models of lexical semantics, as proposed in
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Figure 1: Grammatical Relation Centered Tree
(GRCT) of “What is the width of a football field?”

word embedding methods (e.g., (Mikolov et al.,
2013; Sahlgren, 2006). In particular, we adopt the
Smoothed Partial Tree Kernel (SPTK) described
in Croce et al. (2011): it extends the PTK formu-
lation with a similarity function between lexical
nodes in a GRCT, i.e., the cosine similarity be-
tween word vector representations based on word
embeddings. We also use a further extension of the
SPTK, called Compositionally Smoothed Partial
Tree Kernel (CSPTK) (as in Annesi et al. (2014)).
In CSPTK, the lexical information provided by
the sentence words is propagated along the non-
terminal nodes representing head-modifier depen-
dencies. Figure 2 shows a compositionally-labeled
tree, where the similarity function at the nodes can
model lexical composition, i.e., capturing contex-
tual information. For example, in the sentence,
“What instrument does Hendrix play?”, the role
of the word instrument can be fully captured only
if its composition with the verb play is consid-
ered. The CSPTK applies a composition func-
tion between nodes: while several algebraic func-
tions can be adopted to compose two word vectors
representing a head/modifier pair, here we refer
to a simple additive function that assigns to each
(h,m) pair the linear combination of the involved
vectors, i.e., (h,m) = Ah +Bm: although sim-
ple and efficient, it actually produces very effec-
tive CSPTK functions.

Complexity. The training phase of an optimal
maximum margin algorithm (such as SVM) re-
quires a number of kernel operations that is more
than linear (almost O(n2)) with respect to the
number of training examples n, as discussed in
Chang and Lin (2011). Also the classification
phase depends on the size of the input dataset and
the intrinsic complexity of the targeted task: clas-
sifying a new instance requires to evaluate the ker-
nel function with respect to each support vector.
For complex tasks, the number of selected sup-
port vectors tends to be very large, and using the

resulting model can be impractical. This cost is
also problematic as single kernel operations can
be very expensive: the cost of evaluating the PTK
on a single tree pair is almost linear in the number
of nodes in the input trees, as shown in Moschitti
(2006). When lexical semantics is considered, as
in SPTKs and CSPTKs, it is more than linear in
the number of nodes (Croce et al., 2011).

3 Deep Learning in Kernel Spaces

3.1 The Nyström method
Given an input training dataset D, a kernel
K(oi, oj) is a similarity function over D2 that
corresponds to a dot product in the implicit ker-
nel space, i.e., K(oi, oj) = Φ(oi) · Φ(oj). The
advantage of kernels is that the projection func-
tion Φ(o) = x ∈ Rn is never explicitly com-
puted (Shawe-Taylor and Cristianini, 2004). In
fact, this operation may be prohibitive when the
dimensionality n of the underlying kernel space is
extremely large, as for Tree Kernels (Collins and
Duffy, 2001). Kernel functions are used by learn-
ing algorithms, such as SVM, to operate only im-
plicitly on instances in the kernel space, by never
accessing their explicit definition. Let us apply the
projection function Φ over all examples from D
to derive representations, x denoting the rows of
the matrix X . The Gram matrix can always be
computed asG = XX>, with each single element
corresponding to Gij = Φ(oi)Φ(oj) = K(oi, oj).
The aim of the Nyström method is to derive a new
low-dimensional embedding x̃ in a l-dimensional
space, with l� n so that G̃ = X̃X̃> and G̃ ≈ G.
This is obtained by generating an approximation
G̃ of G using a subset of l columns of the matrix,
i.e., a selection of a subset L ⊂ D of the avail-
able examples, called landmarks. Suppose we ran-
domly sample l columns of G, and let C ∈ R|D|×l
be the matrix of these sampled columns. Then, we
can rearrange the columns and rows of G and de-
fine X = [X1 X2] such that:

G = XX> =

[
W X>1 X2

X>2 X1 X>2 X2

]

and C =

[
W

X>2 X1

]
(1)

where W = X>1 X1, i.e., the subset of G that con-
tains only landmarks. The Nyström approxima-
tion can be defined as:

G ≈ G̃ = CW †C> (2)

347



root〈play::v,*::*〉

VB

play::v

nsubj〈play::v,Hendrix::n〉

NNP

Hendrix::n

aux〈play::v,do::v〉

VBZ

do::v

dobj〈play::v,instrument::n〉

NN

instrument::n

det〈instrument::n,what::w〉

WDT

what::w

Figure 2: Compositional Grammatical Relation Centered Tree (CGRCT) of “What instrument does Hendrix play?”

where W † denotes the Moore-Penrose inverse of
W . The Singular Value Decomposition (SVD) is
used to obtain W † as it follows. First, W is de-
composed so that W = USV >, where U and
V are both orthogonal matrices, and S is a di-
agonal matrix containing the (non-zero) singular
values of W on its diagonal. Since W is sym-
metric and positive definite W = USU>. Then
W † = US−1U> = US−

1
2S−

1
2U> and the Equa-

tion 2 can be rewritten as

G ≈ G̃ = CUS−
1
2S−

1
2U>C>

= (CUS−
1
2 )(CUS−

1
2 )> = X̃X̃> (3)

Given an input example o ∈ D, a new low-
dimensional representation x̃ can be thus deter-
mined by considering the corresponding item of
C as

x̃ = cUS−
1
2 (4)

where c is the vector whose dimensions contain
the evaluations of the kernel function between o
and each landmark oj ∈ L. Therefore, the method
produces l-dimensional vectors. If k is the average
number of basic operations required during a sin-
gle kernel computation, the overall cost of a sin-
gle projection is O(kl + l2), where the first term
corresponds to the cost of generating the vector
c, while the second term is needed for the ma-
trix multiplications in Equation 4. Typically, the
number of landmarks l ranges from hundreds to
few thousands and, for complex kernels (such as
Tree Kernels), the projection cost can be reduced
to O(kl). Several policies have been defined to
determine the best selection of landmarks to re-
duce the Gram Matrix approximation error. In this
work the uniform sampling without replacement
is adopted, as suggested by Kumar et al. (2012),
where this policy has been theoretically and em-
pirically shown to achieve results comparable with
other (more complex) selection policies.

3.2 A Kernel-based Deep Architecture
The above introduced Nyström representation x̃ of
any input example o is linear and can be adopted

to feed a neural network architecture. We assume
a labeled dataset L = {(o, y) | o ∈ D, y ∈ Y }
being available, where o refers to a generic in-
stance and y is its associated class. In this Sec-
tion, we define a Multi-Layer Perceptron (MLP)
architecture, with a specific Nyström layer based
on the Nyström embeddings of Eq. 4. We will
refer to this architecture as Kernel-based Deep
Architecture (KDA). KDA has an input layer,
a Nyström layer, a possibly empty sequence of
non-linear hidden layers and a final classification
layer, which produces the output.

The input layer corresponds to the input vector
c, i.e., the row of the C matrix associated to an
example o. Notice that, for adopting the KDA,
the values of the matrix C should be all avail-
able. In the training stage, these values are in gen-
eral cached. During the classification stage, the c
vector corresponding to an example o is directly
computed by l kernel computations between o and
each one of the l landmarks.

The input layer is mapped to the Nyström
layer, through the projection in Equation 4. No-
tice that the embedding provides also the proper
weights, defined by US−

1
2 , so that the mapping

can be expressed through the Nyström matrix
HNy = US−

1
2 : it corresponds to a pre-trained

stage derived through SVD, as discussed in Sec-
tion 3.1. Equation 4 provides a static definition
for HNy whose weights can be left invariant dur-
ing the neural network training. However, the val-
ues ofHNy can be made available for the standard
back-propagation adjustments applied for train-
ing1. Formally, the low-dimensional embedding
of an input example o, is x̃ = c HNy = c US−

1
2 .

The resulting outcome x̃ is the input to one or
more non-linear hidden layers. Each t-th hidden
layer is realized through a matrix Ht ∈ Rht−1×ht

and a bias vector bt ∈ R1×ht , whereas ht denotes

1In our preliminary experiments, adjustments to the HNy

matrix have been tested, but no significant effect was ob-
served. Therefore, no adjustment has been used in any re-
ported experiment, although more in depth exploration is
needed on this aspect.
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the desired hidden layer dimensionality. Clearly,
given that HNy ∈ Rl×l, h0 = l. The first hid-
den layer in fact receives in input x̃ = cHNy,
that corresponds to t = 0 layer input x0 = x̃
and its computation is formally expressed by
x1 = f(x0H1 + b1), where f is a non-linear acti-
vation function. In general, the generic t-th layer
is modeled as:

xt = f(xt−1Ht + bt) (5)

The final layer of KDA is the classification
layer, realized through the output matrix HO and
the output bias vector bO. Their dimensionality
depends on the dimensionality of the last hidden
layer (called O−1) and the number |Y | of different
classes, i.e., HO ∈ RhO−1

×|Y | and bO ∈ R1×|Y |,
respectively. In particular, this layer computes a
linear classification function with a softmax oper-
ator so that ŷ = softmax(xO−1HO + bO).

In order to avoid over-fitting, two different reg-
ularization schemes are applied. First, the dropout
is applied to the input xt of each hidden layer
(t ≥ 1) and to the input xO−1 of the final clas-
sifier. Second, a L2 regularization is applied to the
norm of each layer2 Ht and HO.

Finally, the KDA is trained by optimizing a loss
function made of the sum of two factors: first, the
cross-entropy function between the gold classes
and the predicted ones; second the L2 regulariza-
tion, whose importance is regulated by a meta-
parameter λ. The final loss function is thus

L(y, ŷ) =
∑

(o,y)∈L
y log(ŷ)+λ

∑

H∈{Ht}∪{HO}
||H||2

where ŷ are the softmax values computed by the
network and y are the true one-hot encoding val-
ues associated with the example from the labeled
training dataset L.

4 Empirical Investigation

The proposed KDA has been applied adopting
the same architecture but with different kernels
to three NLP tasks, i.e., Question Classification,
Community Question Answering, and Automatic
Boundary Detection in Semantic Role Labeling.
The Nyström projector has been implemented in
the KeLP framework3. The neural network has

2The input layer and the Nyström layer are not modified
during the learning process, and they are not regularized.

3
http://www.kelp-ml.org

been implemented in Tensorflow4, with 2 hidden
layers whose dimensionality corresponds to the
number of involved Nyström landmarks. The rec-
tified linear unit is the non-linear activation func-
tion in each layer. The dropout has been applied
in each hidden layer and in the final classification
layer. The values of the dropout parameter and the
λ parameter of the L2-regularization have been se-
lected from a set of values via grid-search. The
Adam optimizer with a learning rate of 0.001 has
been applied to minimize the loss function, with a
multi-epoch (500) training, each fed with batches
of size 256. We adopted an early stop strategy,
where the best model was selected according to
the performance over the development set. Every
performance measure is obtained against a specific
sampling of the Nyström landmarks. Results aver-
aged against 5 such samplings are always hereafter
reported.

4.1 Question Classification
Question Classification (QC) is the task of map-
ping a question into a closed set of answer types
in a Question Answering system. We used the
UIUC dataset (Li and Roth, 2006), including a
training and test set of 5, 452 and 500 questions,
respectively, organized in 6 classes (like ENTITY
or HUMAN). TKs resulted very effective, as shown
in Croce et al. (2011); Annesi et al. (2014). In
Annesi et al. (2014), QC is mapped into a One-vs-
All multi-classification schema, where the CSPTK
achieves state-of-the-art results of 95%: it acts di-
rectly over compositionally labeled trees without
relying on any manually designed feature.

In order to proof the benefits of the KDA ar-
chitecture, we generated Nyström representation
of the CSPTK kernel function5 with default pa-
rameters (i.e., µ = λ = 0.4). The SVM for-
mulation by Chang and Lin (2011), fed with the
CSPTK (hereafter KSVM), is here adopted to de-
termine the reachable upper bound in classifica-
tion quality, i.e., a 95% of accuracy, at higher com-
putational costs. It establishes the state-of-the-art
over the UIUC dataset. The resulting model in-
cludes 3,873 support vectors: this corresponds to
the number of kernel operations required to clas-
sify any input test question. The Nyström method
based on a number of landmarks ranging from 100
to 1,000 is adopted for modeling input vectors in

4
https://www.tensorflow.org/

5The lexical vectors used in the CSPTK are generated
again using the Word2vec tool with a Skip-gram model.
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the CSPTK kernel space. Results are reported in
Table 1: computational saving refers to the per-
centage of avoided kernel computations with re-
spect to the application of the KSVM to each test
instance. To justify the need of the Neural Net-
work, we compared the proposed KDA to an effi-
cient linear SVM that is directly trained over the
Nyström embeddings. This SVM implements the
Dual Coordinate Descent method (Hsieh et al.,
2008) and will be referred as SVMDCD. We also
measured the state-of-the-art Convolutional Neu-
ral Network6 (CNN) of Kim (2014), achieving the
remarkable accuracy of 93.6%. Notice that the
linear classifier SVMDCD operating over the ap-
proximated kernel space achieves the same classi-
fication quality of the CNN when just 1,000 land-
marks are considered. KDA improves this results,
achieving 94.3% accuracy even with fewer land-
marks (only 600), showing the effectiveness of
non-linear learning over the Nyström input. Al-
though KSVM improves to 95%, KDA provides
a saving of more than 84% kernel computations
at classification time. This result is straightfor-
ward as it confirms that linguistic information
encoded in a tree is important in the analysis of
questions and can be used as a pre-training strat-
egy. Figure 3 shows the accuracy curves accord-
ing to various approximations of the kernel space,
i.e., number of landmarks.

Table 1: Results in terms of Accuracy and saving
in the Question Classification task

Model #Land. Accuracy Saving
CNN - 93.6% -
KSVM - 95.0% 0.0%

100 88.5% (84.1%) 97.4%
200 92.2% (88.7%) 94.8%

KDA 400 93.7% (91.6%) 89.7%
(SVMDCD) 600 94.3% (92.8%) 84.5%

800 94.3% (93.0%) 79.3%
1,000 94.2% (93.6%) 74.2%

4.2 Community Question-Answering
In the SemEval-2016 task 3, participants were
asked to automatically provide good answers in
a community question answering setting (Nakov
et al., 2016). We focused on the subtask A:
given a question and a large collection of question-
comment threads created by a user community,

6The deep architecture presented in Kim (2014) outper-
forms several NN models, including the Recursive Neural
Tensor Network or Tree-LSTM presented in (Socher et al.,
2013; Tai et al., 2015) which presents a semantic composi-
tionality model that exploits parse trees.
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Figure 3: QC task - accuracy curves w.r.t. the
number of landmarks.

the task consists in (re-)ranking the comments
w.r.t. their utility in answering the question. Sub-
task A can be modeled as a binary classification
problem, where instances are (question, comment)
pairs. Each pair generates an example for a bi-
nary SVM, where the positive label is associated
to a good comment and the negative label refers
to potentially useful and bad comments. The clas-
sification score achieved over different (question,
comment) pairs is used to sort instances and pro-
duce the final ranking over comments. The above
setting results in a train and test dataset made
of 20,340 and 3,270 examples, respectively. In
Filice et al. (2016), a Kernel-based SVM clas-
sifier (KSVM) achieved state-of-the-art results
by adopting a kernel combination that exploited
(i) feature vectors containing linguistic similarities
between the texts in a pair; (ii) shallow syntactic
trees that encode the lexical and morpho-syntactic
information shared between text pairs; (iii) feature
vectors capturing task-specific information.

Table 2: Results in terms of F1 and savings in the
Community Question Answering task

Model #Land. F1 Saving
KSVM - 0.644 0.0%
ConvKN - 0.662 -

100 0.638 (0.596) 99.1%
200 0.635 (0.627) 98.2%

KDA 400 0.657 (0.637) 96.5%
(SVMDCD) 600 0.669 (0.645) 94.7%

800 0.680 (0.653) 92.9%
1,000 0.674 (0.644) 91.2%

Such model includes 11,322 support vectors.
We investigated the KDA architecture, trained by
maximizing the F1 measure, based on a Nyström
layer initialized using the same kernel functions as
KSVM. We varied the Nyström dimensions from
100 to 1,000 landmarks, i.e., a much lower number
than the support vectors of KSVM.

Table 2 reports the results: very high F1 scores
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are observed with impressive savings in terms of
kernel computations (between 91.2% and 99%).
Also on the cQA task, the F1 obtained by the
SVMDCD is significantly lower than the KDA one.
Moreover, with 800 landmarks KDA achieves
the remarkable results of 0.68 of F1, that is the
state-of-the-art against other convolutional sys-
tems, e.g., ConvKN (Barrón-Cedeño et al., 2016):
this latter combines convolutional tree kernels
with kernels operating on sentence embeddings
generated by a convolutional neural network.

4.3 Argument Boundary Detection

Semantic Role Labeling (SRL) consists of the
detection of the semantic arguments associated
with the predicate of a sentence (called Lexi-
cal Unit) and their classification into their spe-
cific roles (Fillmore, 1985). For example, given
the sentence “Bootleggers then copy the film onto
hundreds of tapes” the task would be to recog-
nize the verb copy as representing the DUPLICA-
TION frame with roles, CREATOR for Bootleggers,
ORIGINAL for the film and GOAL for hundreds of
tapes.

Argument Boundary Detection (ABD) corre-
sponds to the SRL subtask of detecting the sen-
tence fragments spanning individual roles. In the
previous example the phrase “the film” represents
a role (i.e., ORIGINAL), while “of tapes” or “film
onto hundreds” do not, as they just partially cover
one or multiple roles, respectively. The ABD
task has been successfully tackled using TKs since
Moschitti et al. (2008). It can be modeled as a bi-
nary classification task over each parse tree node
n, where the argument span reflects words covered
by the sub-tree rooted at n. In our experiments,
Grammatical Relation Centered Tree (GRCT) de-
rived from dependency grammar (Fig. 4) are em-
ployed, as shown in Fig. 5. Each node is consid-
ered as a candidate in covering a possible argu-
ment. In particular, the structure in Fig. 5a is a
positive example. On the contrary, in Fig. 5b the
NMOD node only covers the phrase “of tapes”,
i.e., a subset of the correct role, and it represents a
negative example7.

We selected all the sentences whose predi-
cate word (lexical unit) is a verb (they are about

7The nodes of the subtree covering the words to be veri-
fied as possible argument are marked with a FE tag. The word
evoking the frame and its ancestor nodes are also marked with
the LU tag. The other nodes are pruned out, except the ones
connecting the LU nodes to the FE ones.

Bootleggers then copy the film onto hundreds of tapes
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Figure 4: Example of dependency parse tree

ROOTLU

VBPLU

copy::v

SBJFE

NNSFE

bootleggers::n

(a)

ROOTLU

ADV

PMOD

NMODFE

PMODFE

NNSFE

tape::n

INFE

of::i

NNS

hundred::n

IN

onto::i

VBPLU

copy::v

(b)

Figure 5: Conversion from dependency graph to
GRCT. Tree in Fig. 5a is a positive example, while
in Fig. 5b a negative one.

60,000), from the 1.3 version of the Framenet
dataset (Baker et al., 1998). This gives rise to
about 1,400,000 sub-trees, i.e., the positive and
negative instances. The dataset is split in train
and test according to the 90/10 proportion (as
in (Johansson and Nugues, 2008)). This size
makes the application of a traditional kernel-based
method unfeasible, unless a significant instance
sub-sampling is performed.

We firstly experimented standard SVM learning
over a sampled training set of 10,000 examples,
a typical size for annotated datasets in computa-
tional linguistics tasks. We adopted the Smoothed
Partial Tree Kernel (Croce et al., 2011) with stan-
dard parameters (i.e., µ = λ = 0.4) and lexical
nodes expressed through 250-dimensional vectors
obtained by applying Word2Vec (Mikolov et al.,
2013) to the entire Wikipedia. When trained over
this 10k instances dataset, the kernel-based SVM
(KSVM) achieves an F1 of 70.2%, over the same
test set used in Croce and Basili (2016) that in-
cludes 146,399 examples. The KSVM learning
produces a model including 2, 994 support vec-
tors, i.e., the number of kernel operations required
to classify each new test instance. We then ap-
ply the Nyström linearization to a larger dataset
made of 100k examples, and trained a classifier
using both the Dual Coordinate Descent method
(Hsieh et al., 2008), SVMDCD, and the KDA pro-
posed in this work. Table 3 presents the results in
terms of F1 and saved kernel operation. Although
SVMDCD with 500 landmarks already achieves
0.713 F1, a score higher than KSVM, it is signif-
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Figure 6: ABD task: F1 measure curves w.r.t. the
number of landmarks.

icantly improved by the KDA. KDA achieves up
to 0.76 F1 with only 400 landmarks, resulting in
a huge step forward w.r.t. the KSVM. This result
is straightforward considering (i) the reduction of
required kernel operations, i.e., more than 86% are
saved and (ii) the quality achieved since 100 land-
marks (i.e., 0.711, higher than the KSVM).

Table 3: Results in terms of F1 and saving in the
Argument Boundary Detection task.

Model Land. Tr.Size F1 Saving
KSVM - 10k 0.702 0.0%

100 100k 0.711 (0.618) 96.7%
KDA 200 100k 0.737 (0.661) 93.3%

(SVMDCD) 300 100k 0.753 (0.686) 90.0%
400 100k 0.760 (0.704) 86.6%
500 100k 0.754 (0.713) 83.3%

5 Discussion and Conclusions

In this work, we promoted a methodology to em-
bed structured linguistic information within NNs,
according to mathematically rich semantic simi-
larity models, based on kernel functions. Struc-
tured data, such as trees, are transformed into
dense vectors according to the Nyström method-
ology, and the NN is effective in capturing non-
linearities in these representations, but still im-
proving generalization at a reasonable complexity.

At the best our knowledge, this work is one of
the few attempts to systematically integrate lin-
guistic kernels within a deep neural network archi-
tecture. The problem of combining such method-
ologies has been studied in specific works, such
as (Baldi et al., 2011; Cho and Saul, 2009; Yu
et al., 2009). In Baldi et al. (2011) the authors pro-
pose a hybrid classifier, for bridging kernel meth-
ods and neural networks. In particular, they use
the output of a kernelized k-nearest neighbors al-
gorithm as input to a neural network. Cho and Saul
(2009) introduced a family of kernel functions that

mimic the computation of large multilayer neu-
ral networks. However, such kernels can be ap-
plied only on vector inputs. In Yu et al. (2009),
deep neural networks for rapid visual recognition
are trained with a novel regularization method tak-
ing advantage of kernels as an oracle represent-
ing prior knowledge. The authors transform the
kernel regularizer into a loss function and carry
out the neural network training by gradient de-
scent. In Zhuang et al. (2011) a different ap-
proach has been promoted: a multiple (two) layer
architecture of kernel functions, inspired by neural
networks, is studied to find the best kernel com-
bination in a Multiple Kernel Learning setting.
In Mairal et al. (2014) the invariance properties
of convolutional neural networks (LeCun et al.,
1998) are modeled through kernel functions, re-
sulting in a Convolutional Kernel Network. Other
effort for combining NNs and kernel methods is
described in Tymoshenko et al. (2016), where a
SVM adopts a tree kernels combinations with em-
beddings learned through a CNN.

The approach here discussed departs from pre-
vious approaches in different aspects. First, a gen-
eral framework is promoted: it is largely applica-
ble to any complex kernel, e.g., structural kernels
or combinations of them. The efficiency of the
Nyström methodology encourages its adoption,
especially when complex kernel computations are
required. Notice that other low-dimensional ap-
proximations of kernel functions have been stud-
ied, as for example the randomized feature map-
pings proposed in Rahimi and Recht (2008). How-
ever, these assume that (i) instances have vectorial
form and (ii) shift-invariant kernels are adopted.
The Nyström method adopted here does not suffer
of such limitations: as our target is the application
to structured (linguistic) data, more general ker-
nels, i.e., non-shift-invariant convolution kernels
are needed.

Given the Nyström approximation, the learning
setting corresponds to a general well-known neu-
ral network architecture, i.e., a multilayer percep-
tron, and does not require any manual feature en-
gineering or the design of ad-hoc network archi-
tectures. The success in three different tasks con-
firms its large applicability without major changes
or adaptations. Second, we propose a novel learn-
ing strategy, as the capability of kernel methods to
represent complex search spaces is combined with
the ability of neural networks to find non-linear so-
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lutions to complex tasks. Last, the suggested KDA
framework is fully scalable, as (i) the network can
be parallelized on multiple machines, and (ii) the
computation of the Nyström reconstruction vector
c can be easily parallelized on multiple processing
units, ideally l, as each unit can compute one ci
value. Future work will address experimentations
with larger scale datasets; moreover, it is interest-
ing to experiment with more landmarks in order to
better understand the trade-off between the repre-
sentation capacity of the Nyström approximation
of the kernel functions and the over-fitting that can
be introduced in a neural network architecture. Fi-
nally, the optimization of the KDA methodology
through the suitable parallelization on multicore
architectures, as well as the exploration of mech-
anisms for the dynamic reconstruction of kernel
spaces (e.g., operating over HNy) also constitute
interesting future research directions on this topic.
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