
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 332–344
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1031

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 332–344
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1031

Learning attention for historical text normalization
by learning to pronounce

Marcel Bollmann
Department of Linguistics
Ruhr-Universität Bochum

Germany
bollmann@linguistics.rub.de

Joachim Bingel
Dept. of Computer Science
University of Copenhagen

Denmark
bingel@di.ku.dk

Anders Søgaard
Dept. of Computer Science
University of Copenhagen

Denmark
soegaard@di.ku.dk

Abstract

Automated processing of historical texts
often relies on pre-normalization to mod-
ern word forms. Training encoder-decoder
architectures to solve such problems typi-
cally requires a lot of training data, which
is not available for the named task. We ad-
dress this problem by using several novel
encoder-decoder architectures, including a
multi-task learning (MTL) architecture us-
ing a grapheme-to-phoneme dictionary as
auxiliary data, pushing the state-of-the-
art by an absolute 2% increase in perfor-
mance. We analyze the induced models
across 44 different texts from Early New
High German. Interestingly, we observe
that, as previously conjectured, multi-task
learning can learn to focus attention during
decoding, in ways remarkably similar to
recently proposed attention mechanisms.
This, we believe, is an important step to-
ward understanding how MTL works.

1 Introduction

There is a growing interest in automated process-
ing of historical documents, as evidenced by the
growing field of digital humanities and the in-
creasing number of digitally available collections
of historical documents. A common approach to
deal with the high amount of variance often found
in this type of data is to perform spelling nor-
malization (Piotrowski, 2012), which is the map-
ping of historical spelling variants to standard-
ized/modernized forms (e.g. vnd→ und ‘and’).

Training data for supervised learning of histor-
ical text normalization is typically scarce, mak-
ing it a challenging task for neural architec-
tures, which typically require large amounts of la-
beled data. Nevertheless, we explore framing the

spelling normalization task as a character-based
sequence-to-sequence transduction problem, and
use encoder–decoder recurrent neural networks
(RNNs) to induce our transduction models. This is
similar to models that have been proposed for neu-
ral machine translation (e.g., Cho et al. (2014)), so
essentially, our approach could also be considered
a specific case of character-based neural machine
translation.

By basing our model on individual characters as
input, we keep the vocabulary size small, which
in turn reduces the model’s complexity and the
amount of data required to train it effectively. Us-
ing an encoder–decoder architecture removes the
need for an explicit character alignment between
historical and modern wordforms. Furthermore,
we explore using an auxiliary task for which data
is more readily available, namely grapheme-to-
phoneme mapping (word pronunciation), to reg-
ularize the induction of the normalization models.

We propose several architectures, including
multi-task learning architectures taking advantage
of the auxiliary data, and evaluate them across
44 small datasets from Early New High German.

Contributions Our contributions are as follows:

• We are, to the best of our knowledge, the first
to propose and evaluate encoder-decoder ar-
chitectures for historical text normalization.

• We evaluate several such architectures across
44 datasets of Early New High German.

• We show that such architectures benefit from
bidirectional encoding, beam search, and at-
tention.

• We also show that MTL with pronuncia-
tion as an auxiliary task improves the perfor-
mance of architectures without attention.

332

https://doi.org/10.18653/v1/P17-1031
https://doi.org/10.18653/v1/P17-1031


• We analyze the above architectures and show
that the MTL architecture learns attention
from the auxiliary task, making the attention
mechanism largely redundant.

• We make our implementation publicly
available at https://bitbucket.org/
mbollmann/acl2017.

In sum, we both push the state-of-the-art in his-
torical text normalization and present an analysis
that, we believe, brings us a step further in under-
standing the benefits of multi-task learning.

2 Datasets

Normalization For the normalization task, we
use a total of 44 texts from the Anselm cor-
pus (Dipper and Schultz-Balluff, 2013) of Early
New High German.1 The corpus is a collection of
manuscripts and prints of the same core text, a reli-
gious treatise. Although the texts are semi-parallel
and share some vocabulary, they were written in
different time periods (between the 14th and 16th
century) as well as different dialectal regions, and
show quite diverse spelling characteristics. For ex-
ample, the modern German word Frau ‘woman’
can be spelled as fraw/vraw (Me), frawe (N2),
frauwe (St), fraüwe (B2), frow (Stu), vrowe (Ka),
vorwe (Sa), or vrouwe (B), among others.2

All texts in the Anselm corpus are manually an-
notated with gold-standard normalizations follow-
ing guidelines described in Krasselt et al. (2015).
For our experiments, we excluded texts from the
corpus that are shorter than 4,000 tokens, as well
as a few for which annotations were not yet avail-
able at the time of writing (mostly Low German
and Dutch versions). Nonetheless, the remaining
44 texts are still quite short for machine-learning
standards, ranging from about 4,200 to 13,200 to-
kens, with an average length of 7,350 tokens.

For all texts, we removed tokens that consisted
solely of punctuation characters. We also lower-
case all characters, since it helps keep the size of
the vocabulary low, and uppercasing of words is
usually not very consistent in historical texts. Tok-
enization was not an issue for pre-processing these
texts, since modern token boundaries have already
been marked by the transcribers.

1https://www.linguistics.rub.de/
anselm/

2We refer to individual texts using the same internal IDs
that are found in the Anselm corpus (cf. the website).

Grapheme-to-phoneme mappings We use
learning to pronounce as our auxiliary task. This
task consists of learning mappings from sequences
of graphemes to the corresponding sequences of
phonemes. We use the German part of the CELEX
lexical database (Baayen et al., 1995), particu-
larly the database of phonetic transcriptions of
German wordforms. The database contains a
total of 365,530 wordforms with transcriptions
in DISC format, which assigns one character to
each distinct phonological segment (including
affricates and diphthongs). For example, the word
Jungfrau ‘virgin’ is represented as ’jUN-frB.

3 Model

3.1 Base model
We propose several architectures that are ex-
tensions of a base neural network architecture,
closely following the sequence-to-sequence model
proposed by Sutskever et al. (2014). It consists of
the following:

• an embedding layer that maps one-hot input
vectors to dense vectors;

• an encoder RNN that transforms the input se-
quence to an intermediate vector of fixed di-
mensionality;

• a decoder RNN whose hidden state is initial-
ized with the intermediate vector, and which
is fed the output prediction of one timestep as
the input for the next one; and

• a final dense layer with a softmax activation
which takes the decoder’s output and gener-
ates a probability distribution over the output
classes at each timestep.

For the encoder/decoder RNNs, we use long
short-term memory units (LSTM) (Hochreiter and
Schmidhuber, 1997). LSTMs are designed to al-
low recurrent networks to better learn long-term
dependencies, and have proven advantageous to
standard RNNs on many tasks. We found no sig-
nificant advantage from stacking multiple LSTM
layers for our task, so we use the simplest compet-
itive model with only a single LSTM unit for both
encoder and decoder.

By using this encoder–decoder model, we avoid
the need to generate explicit alignments between
the input and output sequences, which would bring
up the question of how to deal with input/output

333



v r o w e (START) f r a u

f r a u (END)

Figure 1: Flow diagram of the base model; left side is the encoder, right side the decoder, the latter of
which has an additional prediction layer on top. Multi-task learning variants use two separate prediction
layers for main/auxiliary tasks, while sharing the rest of the model. Embedding layers for the inputs are
not explicitly shown.

pairs of different lengths. Another important prop-
erty is that the model does not start to generate
any output until it has seen the full input sequence,
which in theory allows it to learn from any part of
the input, without being restricted to fixed context
windows. An example illustration of the unrolled
network is shown in Fig. 1.

3.2 Training

During training, the encoder inputs are the histor-
ical wordforms, while the decoder inputs corre-
spond to the correct modern target wordforms. We
then train each model by minimizing the cross-
entropy loss across all output characters; i.e., if
y = (y1, ..., yn) is the correct output word (as a
list of one-hot vectors of output characters) and
ŷ = (ŷ1, ..., ŷn) is the model’s output, we mini-
mize the mean loss−∑n

i=1 yi log ŷi over all train-
ing samples. For the optimization, we use the
Adam algorithm (Kingma and Ba, 2015) with a
learning rate of 0.003.

To reduce computational complexity, we also
set a maximum word length of 14, and filter all
training samples where either the input or output
word is longer than 14 characters. This only af-
fects 172 samples across the whole dataset, and
is only done during training. In other words, we
evaluate our models across all the test examples.

3.3 Decoding

For prediction, our base model generates output
character sequences in a greedy fashion, selecting
the character with the highest probability at each
timestep. This works fairly well, but the greedy
approach can yield suboptimal global picks, in
which each individual character is sensibly de-
rived from the input, but the overall word is non-

sensical. We therefore also experiment with beam
search decoding, setting the beam size to 5.

Finally, we also experiment with using a lexi-
cal filter during the decoding step. Here, before
picking the next 5 most likely characters during
beam search, we remove all characters that would
lead to a string not covered by the lexicon. This
is again intended to reduce the occurrence of non-
sensical outputs. For the lexicon, we use all word
forms from CELEX (cf. Sec. 2) plus the target
word forms from the training set.3

3.4 Attention

In our base architecture, we assume that we can
decode from a single vector encoding of the input
sequence. This is a strong assumption, especially
with long input sequences. Attention mechanisms
give us more flexibility. The idea is that instead
of encoding the entire input sequence into a fixed-
length vector, we allow the decoder to “attend” to
different parts of the input character sequence at
each time step of the output generation. Impor-
tantly, we let the model learn what to attend to
based on the input sequence and what it has pro-
duced so far.

Our implementation is identical to the decoder
with soft attention described by Xu et al. (2015).
If a = (a1, ..., an) is the encoder’s output and ht
is the decoder’s hidden state at timestep t, we first
calculate a context vector ẑt as a weighted combi-
nation of the output vectors ai:

ẑt =

n∑

i=1

αiai (1)

3We observe that due to this filtering, we cannot reach
2.25% of the targets in our test set, most of which are Latin
word forms.

334



The weights αi are derived by feeding the en-
coder’s output and the decoder’s hidden state from
the previous timestep into a multilayer perceptron,
called the attention model (fatt):

α = softmax(fatt(a, ht−1)) (2)

We then modify the decoder by conditioning
its internal states not only on the previous hid-
den state ht−1 and the previously predicted output
character yt−1, but also on the context vector ẑt:

it = σ(Wi[ht−1, yt−1, ẑt] + bi)

ft = σ(Wf [ht−1, yt−1, ẑt] + bf )

ot = σ(Wo[ht−1, yt−1, ẑt] + bo)

gt = tanh(Wg[ht−1, yt−1, ẑt] + bg)

ct = ft � ct−1 + it � gt
ht = ot � tanh(ct)

(3)

In Eq. 3, we follow the traditional LSTM de-
scription consisting of input gate it, forget gate ft,
output gate ot, cell state ct and hidden state ht,
where W and b are trainable parameters.

For all experiments including an attentional de-
coder, we use a bi-directional encoder, comprised
of one LSTM layer that reads the input sequence
normally and another LSTM layer that reads it
backwards, and attend over the concatenated out-
puts of these two layers.

While a precise alignment of input and output
sequences is sometimes difficult, most of the time
the sequences align in a sequential order, which
can be exploited by an attentional component.

3.5 Multi-task learning
Finally, we introduce a variant of the base archi-
tecture, with or without beam search, that does
multi-task learning (Caruana, 1993). The multi-
task architecture only differs from the base archi-
tecture in having two classifier functions at the
outer layer, one for each of our two tasks. Our aux-
iliary task is to predict a sequence of phonemes as
the correct pronunciation of an input sequence of
graphemes. This choice is motivated by the rela-
tionship between phonology and orthography, in
particular the observation that spelling variation
often stems from phonological variation.

We train our multi-task learning architecture by
alternating between the two tasks, sampling one
instance of the auxiliary task for each training
sample of the main task. We use the encoder-
decoder to generate a corresponding output se-

quence, whether a modern word form or a pronun-
ciation. Doing so, we suffer a loss with respect to
the true output sequence and update the model pa-
rameters. The update for a sample from a specific
task affects the parameters of corresponding clas-
sifier function, as well as all the parameters of the
shared hidden layers.

3.6 Hyperparameters

We used a single manuscript (B) for manually
evaluating and setting the hyperparameters. This
manuscript is left out of the averages reported be-
low. We believe that using a single manuscript for
development, and using the same hyperparameters
across all manuscripts, is more realistic, as we of-
ten do not have enough data in historical text nor-
malization to reliably tune hyperparameters.

For the final evaluation, we set the size of the
embedding and the recurrent LSTM layers to 128,
applied a dropout of 0.3 to the input of each recur-
rent layer, and trained the model on mini-batches
with 50 samples each for a total of 50 epochs (in
the multi-task learning setup, mini-batches contain
50 samples of each task, and epochs are counted
by the size of the training set for the main task
only). All these parameters were set on the B
manuscript alone.

3.7 Implementation

We implemented all of the models in Keras (Chol-
let, 2015). Any parameters not explicitly de-
scribed here were left at their default values in
Keras v1.0.8.

4 Evaluation

We split up each text into three parts, using
1,000 tokens each for a test set and a development
set (that is not currently used), and the remainder
of the text (between 2,000 and 11,000 tokens) for
training. We then train and evaluate on each of the
43 texts (excluding the B text that was used for
hyper-parameter tuning) individually.

Baselines We compare our architectures to sev-
eral competitive baselines. Our first baseline is
an averaged perceptron model trained to predict
output character n-grams for each input character,
after using Levenshtein alignment with generated
segment distances (Wieling et al., 2009, Sec. 3.3)
to align input and output characters. Our sec-
ond baseline uses the same alignment, but trains a

335



Avg. Accuracy

Norma 77.89%
Averaged perceptron 75.72%
Bi-LSTM tagger 79.91%
MTL bi-LSTM tagger 79.56%

Base model

GREEDY 78.91%
BEAM 79.27%
BEAM+FILTER 80.46%
BEAM+FILTER+ATTENTION 82.72%

MTL model

GREEDY 80.64%
BEAM 81.13%
BEAM+FILTER 82.76%
BEAM+FILTER+ATTENTION 82.02%

Table 1: Average word accuracy across 43 texts from the Anselm dataset, evaluated on the first 1,000 to-
kens of each text. Evaluation on the base encoder-decoder model (Sec. 3.1) with greedy search, beam
search (k = 5) and/or lexical filtering (Sec. 3.3), with attentional decoder (Sec. 3.4), and the multi-task
learning (MTL) model using grapheme-to-phoneme mappings (Sec. 3.5).

deep bi-LSTM sequential tagger, following Boll-
mann and Søgaard (2016). We evaluate this tag-
ger using both standard and multi-task learning.
Finally, we compare our model to the rule-based
and Levenshtein-based algorithms provided by the
Norma tool (Bollmann, 2012).4

4.1 Word accuracy

We use word-level accuracy as our evaluation
metric. While we also measure character-level
metrics, minor differences on character level can
cause large differences in downstream applica-
tions, so we believe that perfectly matching the
output sequences is more useful. Average scores
across all 43 texts are presented in Table 1 (see
Appendix A for individual scores).

We first see that almost all our encoder-decoder
architectures perform significantly better than the
four state-of-the-art baselines. All our architec-
tures perform better than Norma and the averaged
perceptron, and all the MTL architectures outper-
form Bollmann and Søgaard (2016).

We also see that beam search, filtering, and at-
tention lead to cumulative gains in the context of
the single-task architecture – with the best archi-
tecture outperforming the state-of-the-art by al-
most 3% in absolute terms.

For our multi-task architecture, we also observe
gains when we add beam search and filtering, but

4https://github.com/comphist/norma

importantly, adding attention does not help. In
fact, attention hurts the performance of our multi-
task architecture quite significantly. Also note
that the multi-task architecture without attention
performs on-par with the single-task architecture
with attention.

We hypothesize that the reason for this pattern,
which is not only observed in the average scores in
Table 1, but also quite consistent across the indi-
vidual results in Appendix A, is that our multi-task
learning already learns how to focus attention.

This is the hypothesis that we will try to vali-
date in Sec. 5: That multi-task learning can induce
strategies for focusing attention comparable to at-
tention strategies for recurrent neural networks.

Sample predictions A small selection of pre-
dictions from our models is shown in Table 2.
They serve to illustrate the effects of the various
settings; e.g., the base model with greedy search
tends to produce more nonsense words (ters, üns-
get) than the others. Using a lexical filter helps
the most in this regard: the base model with fil-
tering correctly normalizes ergieng to erging ‘(he)
fared’, while decoding without a filter produces
the non-word erbiggen. Even for herczenlichen
(modern herzlichen ‘heartfelt’), where no model
finds the correct target form, only the model with
filtering produces a somewhat reasonable alterna-
tive (herzgeliebtes ‘heartily loved’).

In some cases (such as gewarnet ‘warned’),

336



Input Target Base model MTL model

GREEDY BEAM B+F B+F+A B+F

ergieng erging erbiggen erbiggen erging erging erging
herczenlichen herzlichen herrgelichen herzgelichen herzgeliebtes herzel herzel
tewr teuer ters terter terme teurer der
iüngst jüngst ünsget pingst fingst fingst jüngst
gewarnet gewarnt prandet prandert pranget gewarnt gewarnt
dick oft oft oft oft dicke dicke

Table 2: Selected predictions from some of our models on the M4 text; B = BEAM, F = FILTER, A = AT-
TENTION.

only the models with attention or multi-task learn-
ing produce the correct normalization, but even
when they are wrong, they often agree on the pre-
diction (e.g. dicke, herzel). We will investigate this
property further in Sec. 5.

4.2 Learned vector representations

To gain further insights into our model, we created
t-SNE projections (Maaten and Hinton, 2008) of
vector representations learned on the M4 text.

Fig. 2 shows the learned character embed-
dings. In the representations from the base model
(Fig. 2a), characters that are often normalized
to the same target character are indeed grouped
closely together: e.g., historical <v> and <u>
(and, to a smaller extent, <f>) are often used in-
terchangeably in the M4 text. Note the wide sepa-
ration of <n> and <m>, which is a feature of M4
that does not hold true for all of the texts, as these
do not always display a clear distinction between
nasals. On the other hand, the MTL model shows a
better generalization of the training data (Fig. 2b):
here, <u> is grouped closer to other vowel charac-
ters and far away from <v>/<f>. Also, <n> and
<m> are now in close proximity.

We can also visualize the internal word rep-
resentations that are produced by the encoder
(Fig. 3). Here, we chose words that demonstrate
the interchangeable use of <u> and <v>. Histor-
ical vnd, vns, vmb become modern und, uns, um,
changing the <v> to <u>. However, the represen-
tation of vmb learned by the base model is closer
to forms like von, vor, uor, all starting with <v> in
the target normalization. In the MTL model, how-
ever, these examples are indeed clustered together.

5 Analysis: Multi-task learning helps
focus attention

Table 1 shows that models which employ either an
attention mechanism or multi-task learning obtain
similar improvements in word accuracy. However,
we observe a decline in word accuracy for models
that combine multi-task learning with attention.

A possible interpretation of this counter-
intuitive pattern might be that attention and MTL,
to some degree, learn similar functions of the in-
put data, a conjecture by Caruana (1998). We put
this hypothesis to the test by closely investigating
properties of the individual models below.

5.1 Model parameters

First, we are interested in the weight parameters of
the final layer that transforms the decoder output
to class probabilities. We consider these parame-
ters for our standard encoder-decoder model and
compare them to the weights that are learned by
the attention and multi-task models, respectively.5

Note that hidden layer parameters are not neces-
sarily comparable across models, but with a fixed
seed, differences in parameters over a reference
model may be (and are, in our case). With a fixed
seed, and iterating over data points in the same or-
der, it is conceivable the two non-baselines end up
in roughly the same alternative local optimum (or
at least take comparable routes).

We observe that the weight differences between
the standard and the attention model correlate with
the differences between the standard and multi-
task model by a Pearson’s r of 0.346, averaged
across datasets, with a standard deviation of 0.315;
on individual datasets, correlation coefficient is as

5For the multi-task models, this analysis disregards those
dimensions that do not correspond to classes in the main task.

337



(a) Base model (b) Multi-task learning model

Figure 2: t-SNE projections (with perplexity 7) of character embeddings from models trained on M4

(a) Base model (b) Multi-task learning model

Figure 3: t-SNE projections (with perplexity 5) of the intermediate vectors produced by the encoder
(“historical word embeddings”), from models trained on M4

Figure 4: Heat map of parameter differences in the final dense layer between (a) the plain and the
attention model as well as (b) the plain and the multi-task model, when trained on the N4 manuscript.
The changes correlate by ρ = 0.959.

338



Figure 5: First-derivative saliency w.r.t. the input sequence, as calculated from the base model (left), the
attentional model (center), and the MTL model (right). The scores for the attentional and the multi-task
model correlate by ρ = 0.615, while the correlation of either one with the base model is |ρ| < 0.12.

high as 96. Figure 4 illustrates these highly paral-
lel weight changes for the different models when
trained on the N4 dataset.

5.2 Final output

Next, we compare the effect that employing either
an attention mechanism or multi-task learning has
on the actual output of our system. We find that out
of the 210.9 word errors that the base model pro-
duces on average across all test sets (comprising
1,000 tokens each), attention resolves 47.7, while
multi-task learning resolves an average of 45.4 er-
rors. Crucially, the overlap of errors that are re-
solved by both the attention and the MTL model
amounts to 27.7 on average.

Attention and multi-task also introduce new er-
rors compared to the base model (26.6 and 29.5
per test set, respectively), and again we can ob-
serve a relatively high agreement of the models
(11.8 word errors are introduced by both models).

Finally, the attention and multi-task models dis-
play a word-level agreement of κ=0.834 (Co-
hen’s kappa), while either of these models is less
strongly correlated with the base model (κ=0.817
for attention and κ=0.814 for multi-task learning).

5.3 Saliency analysis

Our last analysis regards the saliency of the input
timesteps with respect to the predictions of our
models. We follow Li et al. (2016) in calculat-
ing first-derivative saliency for given input/output
pairs and compare the scores from the differ-
ent models. The higher the saliency of an input
timestep, the more important it is in determining
the model’s prediction at a given output timestep.
Therefore, if two models produce similar saliency

matrices for a given input/output pair, they have
learned to focus on similar parts of the input dur-
ing the prediction. Our hypothesis is that the at-
tentional and the multi-task learning model should
be more similar in terms of saliency scores than
either of them compared to the base model.

Figure 5 shows a plot of the saliency matrices
generated from the word pair czeychen – zeichen
‘sign’. Here, the scores for the attentional and
the MTL model indeed correlate by ρ = 0.615,
while those for the base model do not correlate
with either of them. A systematic analysis across
19,000 word pairs (where all models agree on
the output) shows that this effect only holds for
longer input sequences (≥ 7 characters), with a
mean ρ = 0.303 (±0.177) for attentional vs. MTL
model, while the base model correlates with either
of them by ρ < 0.21.

6 Related Work

Many traditional approaches to spelling normal-
ization of historical texts use edit distances or
some form of character-level rewrite rules, hand-
crafted (Baron and Rayson, 2008) or learned auto-
matically (Bollmann, 2013; Porta et al., 2013).

A more recent approach is based on character-
based statistical machine translation applied to
historical text (Pettersson et al., 2013; Sánchez-
Martínez et al., 2013; Scherrer and Erjavec, 2013;
Ljubešić et al., 2016) or dialectal data (Scherrer
and Ljubešić, 2016). This is conceptually very
similar to our approach, except that we substi-
tute the classical SMT algorithms for neural net-
works. Indeed, our models can be seen as a form
of character-based neural MT (Cho et al., 2014).

Neural networks have rarely been applied to

339



historical spelling normalization so far. Azawi
et al. (2013) normalize old Bible text using bi-
directional LSTMs with a layer that performs
alignment between input and output wordforms.
Bollmann and Søgaard (2016) also use bi-LSTMs
to frame spelling normalization as a character-
based sequence labelling task, performing charac-
ter alignment as a preprocessing step.

Multi-task learning was shown to be effective
for a variety of NLP tasks, such as POS tagging,
chunking, named entity recognition (Collobert
et al., 2011) or sentence compression (Klerke
et al., 2016). It has also been used in encoder-
decoder architectures, typically for machine trans-
lation (Dong et al., 2015; Luong et al., 2016),
though so far not with attentional decoders.

7 Conclusion and Future Work

We presented an approach to historical spelling
normalization using neural networks with an
encoder-decoder architecture, and showed that it
consistently outperforms several existing base-
lines. Encouragingly, our work proves to be fully
competitive with the sequence-labeling approach
by Bollmann and Søgaard (2016), without requir-
ing a prior character alignment.

Specifically, we demonstrated the aptitude of
multi-task learning to mitigate the shortage of
training data for the named task. We included a
multifaceted analysis of the effects that MTL in-
troduces to our models and the resemblance that
it bears to attention mechanisms. We believe
that this analysis is a valuable contribution to the
understanding of MTL approaches also beyond
spelling normalization, and we are confident that
our observations will stimulate further research
into the relationship between MTL and attention.

Finally, many improvements to the presented
approach are conceivable, most notably introduc-
ing some form of token context to the model. Cur-
rently, we only consider word forms in isolation,
which is problematic for ambiguous cases (such
as jn, which can normalize to in ‘in’ or ihn ‘him’)
and conceivably makes the task harder for oth-
ers. Reranking the predictions with a language
model could be one possible way to improve on
this. Ljubešić et al. (2016), for example, exper-
iment with segment-based normalization, using
a character-based SMT model with character in-
put derived from segments (essentially, token n-
grams) instead of single tokens, which also intro-

duces context. Such an approach could also deal
with the issue of tokenization differences between
the historical and the modern text, which is an-
other challenge often found in datasets of histori-
cal text.

Acknowledgments

Marcel Bollmann was supported by Deutsche
Forschungsgemeinschaft (DFG), Grant DI 1558/4.
This research is further supported by ERC Start-
ing Grant LOWLANDS No. 313695, as well as by
Trygfonden.

References
Mayce Al Azawi, Muhammad Zeshan Afzal, and

Thomas M. Breuel. 2013. Normalizing histor-
ical orthography for OCR historical documents
using LSTM. In Proceedings of the 2nd In-
ternational Workshop on Historical Document
Imaging and Processing. ACM, pages 80–85.
https://doi.org/10.1145/2501115.2501131.

R. Harald Baayen, Richard Piepenbrock, and Léon Gu-
likers. 1995. The CELEX lexical database (Re-
lease 2) (CD-ROM). Linguistic Data Consor-
tium, University of Pennsylvania, Philadelphia, PA.
https://catalog.ldc.upenn.edu/ldc96l14.

Alistair Baron and Paul Rayson. 2008. VARD
2: A tool for dealing with spelling variation
in historical corpora. In Proceedings of the
Postgraduate Conference in Corpus Linguistics.
http://eprints.lancs.ac.uk/41666/.

Marcel Bollmann. 2012. (Semi-)automatic normal-
ization of historical texts using distance mea-
sures and the Norma tool. In Proceedings of
the Second Workshop on Annotation of Corpora
for Research in the Humanities (ACRH-2). Lis-
bon, Portugal. https://www.linguistics.ruhr-uni-
bochum.de/comphist/pub/acrh12.pdf.

Marcel Bollmann. 2013. Automatic nor-
malization for linguistic annotation of his-
torical language data. Bochumer Lin-
guistische Arbeitsberichte 13. http://nbn-
resolving.de/urn/resolver.pl?urn:nbn:de:hebis:30:3-
310764.

Marcel Bollmann and Anders Søgaard. 2016. Im-
proving historical spelling normalization with bi-
directional lstms and multi-task learning. In Pro-
ceedings of the 26th International Conference on
Computational Linguistics (COLING 2016). Osaka,
Japan. http://aclweb.org/anthology/C16-1013.

Rich Caruana. 1993. Multitask learning: A
knowledge-based source of inductive bias. In Pro-
ceedings of the 10th International Conference on
Machine Learning (ICML). pages 41–48.

340



Rich Caruana. 1998. Multitask learning. In
Learning to learn, Springer, pages 95–133.
http://dl.acm.org/citation.cfm?id=296635.296645.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the proper-
ties of neural machine translation: Encoder–decoder
approaches. In Proceedings of the Eighth Work-
shop on Syntax, Semantics and Structure in Statis-
tical Translation (SSST-8). Doha, Qatar, pages 103–
111. http://dx.doi.org/10.3115/v1/W14-4012.

François Chollet. 2015. Keras. https://github.
com/fchollet/keras.

Ronan Collobert, Jason Weston, Léon Bottou,
Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. 2011. Natural language pro-
cessing (almost) from scratch. The Journal
of Machine Learning Research 12:2493–2537.
http://dl.acm.org/citation.cfm?id=1953048.2078186.

Stefanie Dipper and Simone Schultz-Balluff.
2013. The Anselm corpus: Methods and
perspectives of a parallel aligned corpus.
In Proceedings of the NODALIDA Work-
shop on Computational Historical Linguistics.
http://www.ep.liu.se/ecp/087/003/ecp1387003.pdf.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for
multiple language translation. In Proceedings of
the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers). Association
for Computational Linguistics, pages 1723–1732.
https://doi.org/10.3115/v1/P15-1166.

Sepp Hochreiter and Jürgen Schmidhu-
ber. 1997. Long short-term memory.
Neural Computation 9(8):1735–1780.
https://doi.org/10.1162/neco.1997.9.8.1735.

Diederik P. Kingma and Jimmy Lei Ba. 2015.
Adam: A method for stochastic optimiza-
tion. The International Conference on Learn-
ing Representations (ICLR) ArXiv:1412.6980.
http://arxiv.org/abs/1412.6980.

Sigrid Klerke, Yoav Goldberg, and Anders Søgaard.
2016. Improving sentence compression by learn-
ing to predict gaze. In Proceedings of NAACL-
HLT 2016. San Diego, CA, pages 1528–1533.
http://dx.doi.org/10.18653/v1/N16-1179.

Julia Krasselt, Marcel Bollmann, Stefanie Dipper,
and Florian Petran. 2015. Guidelines for nor-
malizing historical German texts. Bochumer
Linguistische Arbeitsberichte 15. http://nbn-
resolving.de/urn/resolver.pl?urn:nbn:de:hebis:30:3-
419680.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Ju-
rafsky. 2016. Visualizing and understanding neu-
ral models in NLP. In Proceedings of the

2016 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies. Associa-
tion for Computational Linguistics, pages 681–691.
https://doi.org/10.18653/v1/N16-1082.

Nikola Ljubešić, Katja Zupan, Darja Fišer, and Tomaž
Erjavec. 2016. Normalising Slovene data: histor-
ical texts vs. user-generated content. In Proceed-
ings of the 13th Conference on Natural Language
Processing (KONVENS). Bochum, Germany, pages
146–155.

Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2016. Multi-task se-
quence to sequence learning. 4th International Con-
ference on Learning Representations (ICLR 2016)
https://arxiv.org/abs/1511.06114v4.

Laurens van der Maaten and Geoffrey Hinton.
2008. Visualizing data using t-SNE. Jour-
nal of Machine Learning Research 9:2579–2605.
http://www.jmlr.org/papers/v9/vandermaaten08a.html.

Eva Pettersson, Beáta Megyesi, and Jörg Tiede-
mann. 2013. An SMT approach to auto-
matic annotation of historical text. In Pro-
ceedings of the NODALIDA Workshop on Com-
putational Historical Linguistics. Oslo, Norway.
http://www.ep.liu.se/ecp/087/005/ecp1387005.pdf.

Michael Piotrowski. 2012. Natural Language
Processing for Historical Texts. Number 17 in
Synthesis Lectures on Human Language Tech-
nologies. Morgan & Claypool, San Rafael, CA.
http://dx.doi.org/10.2200/s00436ed1v01y201207hlt017.

Jordi Porta, José-Luis Sancho, and Javier Gómez.
2013. Edit transducers for spelling vari-
ation in Old Spanish. In Proceedings of
the NODALIDA Workshop on Computa-
tional Historical Linguistics. Oslo, Norway.
http://www.ep.liu.se/ecp/087/006/ecp1387006.pdf.

Yves Scherrer and Tomaž Erjavec. 2013. Moderniz-
ing historical Slovene words with character-based
SMT. In Proceedings of the 4th Biennial Work-
shop on Balto-Slavic Natural Language Processing.
Sofia, Bulgaria. https://hal.inria.fr/hal-00838575.

Yves Scherrer and Nikola Ljubešić. 2016. Auto-
matic normalisation of the Swiss German Archi-
Mob corpus using character-level machine trans-
lation. In Proceedings of the 13th Confer-
ence on Natural Language Processing (KONVENS).
Bochum, Germany, pages 248–255. http://archive-
ouverte.unige.ch/unige:90846.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Process-
ing Systems (NIPS 2014). 27, pages 3104–3112.

Felipe Sánchez-Martínez, Isabel Martínez-Sempere,
Xavier Ivars-Ribes, and Rafael C. Carrasco. 2013.
An open diachronic corpus of historical Spanish:

341



annotation criteria and automatic modernisation of
spelling. http://arxiv.org/abs/1306.3692v1.

Martijn Wieling, Jelena Prokić, and John Nerbonne.
2009. Evaluating the pairwise string align-
ment of pronunciations. In Proceedings of the
EACL 2009 Workshop on Language Technology
and Resources for Cultural Heritage, Social Sci-
ences, Humanities, and Education (LaTeCH –
SHELT&R 2009). Athens, Greece, pages 26–34.
http://dl.acm.org/citation.cfm?id=1642049.1642053.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun
Cho, Aaron Courville, Ruslan Salakhudinov, Rich
Zemel, and Yoshua Bengio. 2015. Show, at-
tend and tell: Neural image caption genera-
tion with visual attention. In JMLR Workshop
and Conference Proceedings: Proceedings of the
32nd International Conference on Machine Learn-
ing. Lille, France, volume 37, pages 2048–2057.
http://proceedings.mlr.press/v37/xuc15.pdf.

A Supplementary Material

For interested parties, we provide our full evalua-
tion results for each single text in our dataset. Ta-
ble 3 shows token counts, a rough classification of
each text’s dialectal region, and the results for the
baseline methods. Table 4 presents the full results
for our encoder-decoder models.

342



ID Region Tokens Norma Avg. Perc. Bi-LSTM Tagger

BASE MTL

B East Central 4,718 79.60% 76.30% 79.20% 78.82%
D3 East Central 5,704 79.70% 77.20% 80.10% 81.62%
H East Central 8,427 83.00% 78.60% 85.00% 84.32%

B2 West Central 9,145 76.20% 74.60% 82.00% 80.12%
KÄ1492 West Central 7,332 78.40% 74.80% 81.60% 80.82%
KJ1499 West Central 7,330 77.00% 73.50% 84.50% 80.22%
N1500 West Central 7,272 77.60% 72.70% 79.00% 78.52%
N1509 West Central 7,418 78.40% 74.30% 80.80% 80.02%
N1514 West Central 7,412 78.50% 72.20% 79.00% 79.62%
St West Central 7,407 73.30% 70.30% 75.50% 73.03%

D4 Upper/Central 5,806 76.10% 72.40% 76.50% 76.62%
N4 Upper 8,593 79.30% 80.00% 81.80% 82.52%
s1496/97 Upper 5,840 81.20% 77.70% 83.00% 82.62%

B3 East Upper 6,222 82.30% 79.50% 81.50% 83.02%
Hk East Upper 8,690 79.10% 78.20% 80.90% 79.52%
M East Upper 8,700 75.20% 72.80% 83.90% 82.72%
M2 East Upper 8,729 76.30% 75.10% 76.70% 79.32%
M3 East Upper 7,929 79.20% 77.30% 80.40% 81.52%
M5 East Upper 4,705 81.60% 76.40% 77.70% 76.92%
M6 East Upper 4,632 74.90% 73.70% 75.20% 75.72%
M9 East Upper 4,739 81.00% 79.00% 80.40% 79.32%
M10 East Upper 4,379 77.20% 76.00% 75.10% 75.92%
Me East Upper 4,560 80.20% 76.90% 80.30% 79.12%
Sb East Upper 7,218 79.60% 75.70% 80.00% 80.12%
T East Upper 8,678 76.00% 73.40% 75.80% 73.43%
W East Upper 8,217 77.60% 78.20% 81.40% 80.72%
We East Upper 6,661 82.70% 78.60% 81.50% 82.22%

Ba North Upper 5,934 79.10% 80.20% 80.70% 80.02%
Ba2 North Upper 5,953 80.70% 78.10% 82.50% 82.12%
M4 North Upper 8,574 76.70% 75.70% 79.40% 79.32%
M7 North Upper 4,638 78.60% 75.60% 78.20% 77.42%
M8 North Upper 8,275 79.30% 78.20% 81.10% 80.02%
n North Upper 9,191 79.80% 81.90% 84.40% 84.62%
N North Upper 13,285 74.00% 71.70% 79.00% 79.42%
N2 North Upper 7,058 82.80% 80.30% 84.30% 81.72%
N3 North Upper 4,192 78.10% 76.40% 77.60% 77.12%

Be West Upper 8,203 74.90% 75.30% 78.80% 77.52%
Ka West Upper 12,641 72.80% 75.40% 80.10% 81.62%
SG West Upper 7,838 79.70% 78.00% 81.70% 81.12%
Sa West Upper 8,668 71.50% 71.90% 76.10% 74.93%
Sa2 West Upper 8,834 77.60% 73.50% 79.50% 79.72%
St2 West Upper 8,686 72.80% 73.20% 78.20% 79.92%
Stu West Upper 8,011 78.00% 76.50% 79.40% 79.62%

Le Dutch 7,087 71.30% 65.00% 75.60% 75.12%

Average (-B) 7,353 77.89% 76.30% 79.91% 79.56%

Table 3: Word accuracy on the Anselm dataset, evaluated on the first 1,000 tokens, using the baseline
models (cf. Sec. 4): the Norma tool (Bollmann, 2012), an averaged perceptron model, and a deep bi-
LSTM sequential tagger (Bollmann and Søgaard, 2016).

343



ID Base model Multi-task learning model

G B B+F B+F+A G B B+F B+F+A

B 76.90% 77.30% 78.40% 82.70% 77.70% 79.50% 81.70% 80.10%
D3 81.50% 81.60% 82.70% 83.20% 81.10% 81.70% 82.90% 83.20%
H 82.60% 82.90% 84.50% 87.40% 85.00% 85.80% 86.60% 85.20%

B2 81.00% 81.20% 82.40% 83.40% 80.00% 80.40% 82.70% 83.00%
KÄ1492 83.00% 83.40% 83.60% 84.00% 83.40% 83.70% 85.10% 84.90%
KJ1499 81.30% 81.30% 82.00% 84.60% 84.00% 84.00% 83.80% 82.50%
N1500 79.50% 80.30% 81.30% 84.00% 82.20% 82.50% 83.60% 82.30%
N1509 82.10% 82.40% 83.10% 85.00% 82.80% 83.50% 84.50% 82.80%
N1514 80.40% 80.50% 81.10% 83.40% 82.30% 82.80% 84.20% 83.10%
St 74.60% 74.60% 76.40% 79.70% 77.60% 77.80% 80.20% 77.70%

D4 77.90% 77.20% 79.00% 81.40% 77.00% 77.90% 81.50% 79.90%
N4 82.10% 82.30% 82.90% 84.80% 83.10% 83.00% 84.40% 84.00%
s1496/97 80.40% 80.10% 81.10% 82.10% 82.30% 82.50% 85.20% 83.90%

B3 80.80% 81.20% 82.20% 85.20% 82.70% 83.30% 84.80% 84.50%
Hk 77.30% 79.00% 79.40% 82.90% 80.30% 80.40% 81.20% 83.70%
M 81.40% 81.50% 82.60% 85.00% 82.90% 82.90% 82.70% 84.00%
M2 79.90% 80.50% 81.30% 81.80% 78.80% 77.80% 79.60% 83.20%
M3 81.00% 81.10% 82.00% 83.70% 82.80% 82.50% 83.50% 81.70%
M5 76.60% 77.10% 79.00% 82.00% 78.20% 78.20% 80.90% 81.50%
M6 72.70% 73.80% 75.20% 80.20% 77.30% 79.00% 80.30% 76.60%
M9 78.20% 78.50% 79.70% 83.20% 80.70% 79.70% 83.20% 79.60%
M10 72.00% 72.40% 73.20% 77.40% 75.70% 76.30% 77.90% 77.80%
Me 76.90% 76.50% 78.50% 81.30% 77.30% 79.20% 81.00% 77.40%
Sb 78.80% 79.10% 81.30% 81.40% 80.60% 81.00% 84.00% 82.90%
T 75.60% 75.10% 77.40% 80.30% 76.90% 78.00% 80.10% 79.50%
W 80.80% 81.20% 82.40% 81.90% 80.40% 81.60% 84.40% 84.40%
We 77.70% 80.00% 81.80% 84.40% 83.00% 82.70% 83.80% 83.30%

Ba 81.00% 80.60% 80.90% 84.00% 80.40% 81.00% 82.60% 81.60%
Ba2 79.70% 80.90% 82.00% 84.00% 82.60% 83.30% 85.40% 85.10%
M4 78.40% 78.60% 79.90% 81.00% 82.10% 82.20% 82.60% 80.50%
M7 74.70% 76.30% 78.60% 82.00% 79.60% 79.90% 82.30% 81.10%
M8 80.80% 81.30% 82.50% 85.70% 82.00% 82.50% 84.00% 85.40%
n 83.40% 83.40% 84.30% 86.00% 84.90% 86.30% 88.00% 85.50%
N 77.40% 77.40% 79.40% 79.80% 80.00% 80.30% 81.50% 80.30%
N2 82.00% 82.30% 83.80% 86.40% 82.40% 83.50% 86.60% 85.80%
N3 73.60% 74.00% 75.10% 81.20% 76.00% 76.30% 80.30% 78.70%

Be 75.50% 75.40% 77.60% 78.10% 78.10% 78.40% 79.70% 80.20%
Ka 81.20% 81.20% 81.80% 83.90% 81.20% 83.10% 83.40% 82.30%
SG 81.10% 81.90% 83.40% 85.50% 82.60% 84.30% 84.90% 83.00%
Sa 76.80% 77.20% 78.10% 80.60% 77.50% 78.00% 79.70% 79.90%
Sa2 78.90% 79.70% 80.70% 81.30% 79.70% 81.00% 82.30% 82.30%
St2 77.70% 78.10% 79.00% 81.60% 79.60% 79.70% 80.50% 80.60%
Stu 77.40% 77.30% 78.30% 82.50% 82.00% 81.80% 83.10% 82.90%

Le 77.40% 78.10% 78.20% 79.60% 78.30% 78.60% 79.80% 78.90%

Average (-B) 78.91% 79.27% 80.46% 82.72% 80.64% 81.13% 82.76% 82.02%

Table 4: Word accuracy on the Anselm dataset, evaluated on the first 1,000 tokens, using our base
encoder-decoder model (Sec. 3) and the multi-task model. G = greedy decoding, B = beam-search de-
coding (with beam size 5), F = lexical filter, A = attentional model. Best results (also taking into account
the baseline results from Table 3) shown in bold.

344


	Learning attention for historical text normalization by learning to pronounce

