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Abstract

In this paper, we aim to understand
whether current language and vision
(LaVi) models truly grasp the interac-
tion between the two modalities. To this
end, we propose an extension of the MS-
COCO dataset, FOIL-COCO, which asso-
ciates images with both correct and ‘foil’
captions, that is, descriptions of the im-
age that are highly similar to the original
ones, but contain one single mistake (‘foil
word’). We show that current LaVi mod-
els fall into the traps of this data and per-
form badly on three tasks: a) caption clas-
sification (correct vs. foil); b) foil word
detection; c) foil word correction. Hu-
mans, in contrast, have near-perfect per-
formance on those tasks. We demonstrate
that merely utilising language cues is not
enough to model FOIL-COCO and that it
challenges the state-of-the-art by requiring
a fine-grained understanding of the rela-
tion between text and image.

1 Introduction

Most human language understanding is grounded
in perception. There is thus growing interest in
combining information from language and vision
in the NLP and AI communities.

So far, the primary testbeds of Language and
Vision (LaVi) models have been ‘Visual Question
Answering’ (VQA) (e.g. Antol et al. (2015); Mali-
nowski and Fritz (2014); Malinowski et al. (2015);
Gao et al. (2015); Ren et al. (2015)) and ‘Im-
age Captioning’ (IC) (e.g. Hodosh et al. (2013);
Fang et al. (2015); Chen and Lawrence Zitnick
(2015); Donahue et al. (2015); Karpathy and
Fei-Fei (2015); Vinyals et al. (2015)). Whilst
some models have seemed extremely successful
on those tasks, it remains unclear how the re-
ported results should be interpreted and what those

Figure 1: Is the caption correct or foil (T1)? If it
is foil, where is the mistake (T2) and which is the
word to correct the foil one (T3)?

models are actually learning. There is an emerg-
ing feeling in the community that the VQA task
should be revisited, especially as many current
dataset can be handled by ‘blind’ models which
use language input only, or by simple concate-
nation of language and vision features (Agrawal
et al., 2016; Jabri et al., 2016; Zhang et al., 2016;
Goyal et al., 2016a). In IC too, Hodosh and Hock-
enmaier (2016) showed that, contrarily to what
prior research had suggested, the task is far from
been solved, since IC models are not able to dis-
tinguish between a correct and incorrect caption.

Such results indicate that in current datasets,
language provides priors that make LaVi models
successful without truly understanding and inte-
grating language and vision. But problems do not
stop at biases. Johnson et al. (2016) also point out
that current data ‘conflate multiple sources of er-
ror, making it hard to pinpoint model weaknesses’,
thus highlighting the need for diagnostic datasets.
Thirdly, existing IC evaluation metrics are sensi-
tive to n-gram overlap and there is a need for mea-
sures that better simulate human judgments (Ho-
dosh et al., 2013; Elliott and Keller, 2014; Ander-
son et al., 2016).

Our paper tackles the identified issues by
proposing an automatic method for creating a
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large dataset of real images with minimal lan-
guage bias and some diagnostic abilities. Our
dataset, FOIL (Find One mismatch between Im-
age and Language caption),1 consists of images
associated with incorrect captions. The captions
are produced by introducing one single error (or
‘foil’) per caption in existing, human-annotated
data (Figure 1). This process results in a chal-
lenging error-detection/correction setting (because
the caption is ‘nearly’ correct). It also provides us
with a ground truth (we know where the error is)
that can be used to objectively measure the perfor-
mance of current models.

We propose three tasks based on widely ac-
cepted evaluation measures: we test the ability
of the system to a) compute whether a caption is
compatible with the image (T1); b) when it is in-
compatible, highlight the mismatch in the caption
(T2); c) correct the mistake by replacing the foil
word (T3).

The dataset presented in this paper (Section 3)
is built on top of MS-COCO (Lin et al., 2014),
and contains 297,268 datapoints and 97,847 im-
ages. We will refer to it as FOIL-COCO. We eval-
uate two state-of-the-art VQA models: the popular
one by Antol et al. (2015), and the attention-based
model by Lu et al. (2016), and one popular IC
model by (Wang et al., 2016). We show that those
models perform close to chance level, while hu-
mans can perform the tasks accurately (Section 4).
Section 5 provides an analysis of our results, al-
lowing us to diagnose three failures of LaVi mod-
els. First, their coarse representations of language
and visual input do not encode suitably structured
information to spot mismatches between an utter-
ance and the corresponding scene (tested by T1).
Second, their language representation is not fine-
grained enough to identify the part of an utterance
that causes a mismatch with the image as it is (T2).
Third, their visual representation is also too poor
to spot and name the visual area that corresponds
to a captioning error (T3).

2 Related Work

The image captioning (IC) and visual question
answering (VQA) tasks are the most relevant to
our work. In IC (Fang et al., 2015; Chen and
Lawrence Zitnick, 2015; Donahue et al., 2015;
Karpathy and Fei-Fei, 2015; Vinyals et al., 2015;

1The dataset is available from https://foilunitn.
github.io/

Wang et al., 2016), the goal is to generate a caption
for a given image, such that it is both semantically
and syntactically correct, and properly describes
the content of that image. In VQA (Antol et al.,
2015; Malinowski and Fritz, 2014; Malinowski
et al., 2015; Gao et al., 2015; Ren et al., 2015),
the system attempts to answer open-ended ques-
tions related to the content of the image. There is
a wealth of literature on both tasks, but we only
discuss here the ones most related to our work and
refer the reader to the recent surveys by (Bernardi
et al., 2016; Wu et al., 2016).

Despite their success, it remains unclear
whether state-of-the-art LaVi models capture vi-
sion and language in a truly integrative fashion.
We could identify three types of arguments sur-
rounding the high performance of LaVi models:

(i) Triviality of the LaVi tasks: Recent work
has shown that LaVi models heavily rely on lan-
guage priors (Ren et al., 2015; Agrawal et al.,
2016; Kafle and Kanan, 2016). Even simple cor-
relation and memorisation can result in good per-
formance, without the underlying models truly un-
derstanding visual content (Zhou et al., 2015; Jabri
et al., 2016; Hodosh and Hockenmaier, 2016).
Zhang et al. (2016) first unveiled that there exists
a huge bias in the popular VQA dataset by An-
tol et al. (2015): they showed that almost half of
all the questions in this dataset could be answered
correctly by using the question alone and ignoring
the image completely. In the same vein, Zhou et al.
(2015) proposed a simple baseline for the task
of VQA. This baseline simply concatenates the
Bag of Words (BoW) features from the question
and Convolutional Neural Networks (CNN) fea-
tures from the image to predict the answer. They
showed that such a simple method can achieve
comparable performance to complex and deep ar-
chitectures. Jabri et al. (2016) proposed a similar
model for the task of multiple choice VQA, and
suggested a cross-dataset generalization scheme as
an evaluation criterion for VQA systems. We com-
plement this research by introducing three new
tasks with different levels of difficulty, on which
LaVi models can be evaluated sequentially.

(ii) Need for diagnostics: To overcome the
bias uncovered in previous datasets, several re-
search groups have started proposing tasks which
involve distinguishing distractors from a ground-
truth caption for an image. Zhang et al. (2016) in-
troduced a binary VQA task along with a dataset
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composed of sets of similar artificial images, al-
lowing for more precise diagnostics of a system’s
errors. Goyal et al. (2016a) balanced the dataset
of Antol et al. (2015), collecting a new set of com-
plementary natural images which are similar to ex-
isting items in the original dataset, but result in
different answers to a common question. Hodosh
and Hockenmaier (2016) also proposed to evalu-
ate a number of state-of-the-art LaVi algorithms
in the presence of distractors. Their evaluation
was however limited to a small dataset (namely,
Flickr30K (Young et al., 2014)) and the caption
generation was based on a hand-crafted scheme
using only inter-dataset distractors.

Most related to our paper is the work by Ding
et al. (2016). Like us, they propose to extend
the MS-COCO dataset by generating decoys from
human-created image captions. They also suggest
an evaluation apparently similar to our T1, requir-
ing the LaVi system to detect the true target cap-
tion amongst the decoys. Our efforts, however,
differ in some substantial ways. First, their tech-
nique to create incorrect captions (using BLEU to
set an upper similarity threshold) is so that many
of those captions will differ from the gold descrip-
tion in more than one respect. For instance, the
caption two elephants standing next to each other
in a grass field is associated with the decoy a herd
of giraffes standing next to each other in a dirt field
(errors: herd, giraffe, dirt) or with animals are
gathering next to each other in a dirt field (error:
dirt; infelicities: animals and gathering, which are
both pragmatically odd). Clearly, the more the
caption changes in the decoy, the easier the task
becomes. In contrast, the foil captions we propose
only differ from the gold description by one word
and are thus more challenging. Secondly, the auto-
matic caption generation of Ding et al means that
‘correct’ descriptions can be produced, resulting
in some confusion in human responses to the task.
We made sure to prevent such cases, and human
performance on our dataset is thus close to 100%.
We note as well that our task does not require any
complex instructions for the annotation, indicat-
ing that it is intuitive to human beings (see §4).
Thirdly, their evaluation is a multiple-choice task,
where the system has to compare all captions to
understand which one is closest to the image. This
is arguably a simpler task than the one we propose,
where a caption is given and the system is asked
to classify it as correct or foil: as we show in §4,

detecting a correct caption is much easier than de-
tecting foils. So evaluating precision on both gold
and foil items is crucial.

Finally, (Johnson et al., 2016) proposed
CLEVR, a dataset for the diagnostic evaluation of
VQA systems. This dataset was designed with the
explicit goal of enabling detailed analysis of dif-
ferent aspects of visual reasoning, by minimising
dataset biases and providing rich ground-truth rep-
resentations for both images and questions.

(iii) Lack of objective evaluation metrics:
The evaluation of Natural Language Generation
(NLG) systems is known to be a hard prob-
lem. It is further unclear whether the quality
of LaVi models should be measured using met-
rics designed for language-only tasks. Elliott and
Keller (2014) performed a sentence-level correla-
tion analysis of NLG evaluation measures against
expert human judgements in the context of IC.
Their study revealed that most of those metrics
were only weakly correlated with human judge-
ments. In the same line of research, Anderson
et al. (2016) showed that the most widely-used
metrics for IC fail to capture semantic proposi-
tional content, which is an essential component of
human caption evaluation. They proposed a se-
mantic evaluation metric called SPICE, that mea-
sures how effectively image captions recover ob-
jects, attributes and the relations between them. In
this paper, we tackle this problem by proposing
tasks which can be evaluated based on objective
metrics for classification/detection error.

3 Dataset

In this section, we describe how we automati-
cally generate FOIL-COCO datapoints, i.e. im-
age, original and foil caption triples. We used the
training and validation Microsoft’s Common Ob-
jects in Context (MS-COCO) dataset (Lin et al.,
2014) (2014 version) as our starting point. In
MS-COCO, each image is described by at least
five descriptions written by humans via Amazon
Mechanical Turk (AMT). The images contains 91
common object categories (e.g. dog, elephant,
bird, . . . and car, bicycle, airplane, . . . ), from 11
supercategories (Animal, Vehicle, resp.), with 82
of them having more than 5K labeled instances.
In total there are 123,287 images with captions
(82,783 for training and 40,504 for validation).2

Our data generation process consists of four
2The MS-COCO test set is not available for download.
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nr. of datapoints nr. unique images nr. of tot. captions nr. target::foil pairs
Train 197,788 65,697 395,576 256
Test 99,480 32,150 198,960 216

Table 1: Composition of FOIL-COCO.

main steps, as described below. The last two steps
are illustrated in Figure 2.

1. Generation of replacement word pairs We
want to replace one noun in the original caption
(the target) with an incorrect but similar word
(the foil). To do this, we take the labels of MS-
COCO categories, and we pair together words
belonging to the same supercategory (e.g., bicy-
cle::motorcycle, bicycle::car, bird::dog). We use
as our vocabulary 73 out of the 91 MS-COCO cat-
egories, leaving out those categories that are multi-
word expressions (e.g. traffic light). We thus ob-
tain 472 target::foil pairs.

2. Splitting of replacement pairs into train-
ing and testing To avoid the models learning
trivial correlations due to replacement frequency,
we randomly split, within each supercategory, the
candidate target::foil pairs which are used to gen-
erate the captions of the training vs. test sets. We
obtain 256 pairs, built out of 72 target and 70 foil
words, for the training set, and 216 pairs, contain-
ing 73 target and 71 foil words, for the test set.

3. Generation of foil captions We would like
to generate foil captions by replacing only target
words which refer to visually salient objects. To
this end, given an image, we replace only those tar-
get words that occur in more than one MS-COCO
caption associated with that image. Moreover, we
want to use foils which are not visually present,
i.e. that refer to visual content not present in the
image. Hence, given an image, we only replace
a word with foils that are not among the labels
(objects) annotated in MS-COCO for that image.
We use the images from the MS-COCO training
and validation sets to generate our training and test
sets, respectively. We obtain 2,229,899 for train-
ing and 1,097,012 captions for testing.

4. Mining the hardest foil caption for
each image To eliminate possible visual-language
dataset bias, out of all foil captions generated in
step 3, we select only the hardest one. For this pur-
pose, we need to model the visual-language bias
of the dataset. To this end, we use Neuraltalk3

3https://github.com/karpathy/
neuraltalk

(Karpathy and Fei-Fei, 2015), one of the state-
of-the-art image captioning systems, pre-trained
on MS-COCO. Neuraltalk is based on an LSTM
which takes as input an image and generates a sen-
tence describing its content. We obtain a neural
network N that implicitly represents the visual-
language bias through its weights. We use N to
approximate the conditional probability of a cap-
tion C given a dataset T and and an image I
(P (C|I, T )). This is obtained by simply using the
loss l(C,N (I)) i.e., the error obtained by compar-
ing the pseudo-ground truth C with the sentence
predicted by N : P (C|I, T ) = 1 − l(C,N (I))
(we refer to (Karpathy and Fei-Fei, 2015) for more
details on how l() is computed). P (C|I, T ) is
used to select the hardest foil among all the pos-
sible foil captions, i.e. the one with the highest
probability according to the dataset bias learned by
N . Through this process, we obtain 197,788 and
99,480 original::foil caption pairs for the training
and test sets, respectively. None of the target::foil
word pairs are filtered out by this mining process.

The final FOIL-COCO dataset consists of
297,268 datapoints (197,788 in training and
99,480 in test set). All the 11 MS-COCO supercat-
egories are represented in our dataset and contain
73 categories from the 91 MS-COCO ones (4.8
categories per supercategory on average.) Further
details are reported in Table 1.

4 Experiments and Results

We conduct three tasks, as presented below:

Task 1 (T1): Correct vs. foil classification
Given an image and a caption, the model is asked
to mark whether the caption is correct or wrong.
The aim is to understand whether LaVi models can
spot mismatches between their coarse representa-
tions of language and visual input.

Task 2 (T2): Foil word detection Given an im-
age and a foil caption, the model has to detect the
foil word. The aim is to evaluate the understanding
of the system at the word level. In order to system-
atically check the system’s performance with dif-
ferent prior information, we test two different set-
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Figure 2: The main aspects of the foil caption generation process. Left column: some of the original
COCO captions associated with an image. In bold we highlight one of the target words (bicycle), chosen
because it is mentioned by more than one annotator. Middle column: For each original caption and each
chosen target word, different foil captions are generated by replacing the target word with all possible
candidate foil replacements. Right column: A single caption is selected amongst all foil candidates. We
select the ‘hardest’ caption, according to Neuraltalk model, trained using only the original captions.

tings: the foil has to be selected amongst (a) only
the nouns or (b) all content words in the caption.

Task 3 (T3): Foil word correction Given an
image, a foil caption and the foil word, the model
has to detect the foil and provide its correction.
The aim is to check whether the system’s visual
representation is fine-grained enough to be able
to extract the information necessary to correct the
error. For efficiency reasons, we operationalise
this task by asking models to select a correction
from the set of target words, rather than the whole
dataset vocabulary (viz. more than 10K words).

4.1 Models
We evaluate both VQA and IC models against our
tasks. For the former, we use two of the three mod-
els evaluated in (Goyal et al., 2016a) against a bal-
anced VQA dataset. For the latter, we use the mul-
timodal bi-directional LSTM, proposed in (Wang
et al., 2016), and adapted for our tasks.

LSTM + norm I: We use the best performing
VQA model in (Antol et al., 2015) (deeper LSTM
+ norm I). This model uses a two stack Long-
Short Term Memory (LSTM) to encode the ques-
tions and the last fully connected layer of VG-
GNet to encode images. Both image embedding
and caption embedding are projected into a 1024-
dimensional feature space. Following (Antol et al.,
2015), we have normalised the image feature be-
fore projecting it. The combination of these two

projected embeddings is performed by a point-
wise multiplication. The multi-model represen-
tation thus obtained is used for the classification,
which is performed by a multi-layer perceptron
(MLP) classifier.

HieCoAtt: We use the Hierarchical Co-
Attention model proposed by (Lu et al., 2016)
that co-attends to both the image and the question
to solve the task. In particular, we evaluate the
‘alternate’ version, i.e. the model that sequentially
alternates between generating some attention over
the image and question. It does so in a hierarchical
way by starting from the word-level, then going
to the phrase and then to the entire sentence-level.
These levels are combined recursively to produce
the distribution over the foil vs. correct captions.

IC-Wang: Amongst the IC models, we choose
the multimodal bi-directional LSTM (Bi-LSTM)
model proposed in (Wang et al., 2016). This
model predicts a word in a sentence by considering
both the past and future context, as sentences are
fed to the LSTM in forward and backward order.
The model consists of three modules: a CNN for
encoding image inputs, a Text-LSTM (T-LSTM)
for encoding sentence inputs, a Multimodal LSTM
(M-LSTM) for embedding visual and textual vec-
tors to a common semantic space and decoding to
sentence. The bidirectional LSTM is implemented
with two separate LSTM layers.
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Baselines: We compare the SoA models above
against two baselines. For the classification task,
we use a Blind LSTM model followed by a fully
connected layer and softmax and train it only on
captions as input to predict the answer. In addition,
we evaluate the CNN+LSTM model, where visual
and textual features are simply concatenated.

The models at work on our three tasks For the
classification task (T1), the baselines and VQA
models can be applied directly. We adapt the gen-
erative IC model to perform the classification task
as follows. Given a test image I and a test cap-
tion, for each word wt in the test caption, we
remove the word and use the model to gener-
ate new captions in which the wt has been re-
placed by the word vt predicted by the model
(w1,...,wt−1, vt, wt−1,...,wn). We then compare
the conditional probability of the test caption with
all the captions generated from it by replacing wt

with vt. When all the conditional probabilities of
the generated captions are lower than the one as-
signed to the test caption the latter is classified
as good, otherwise as foil. For the other tasks,
the models have been trained on T1. To perform
the foil word detection task (T2), for the VQA
models, we apply the occlusion method. Follow-
ing (Goyal et al., 2016b), we systematically oc-
clude subsets of the language input, forward prop-
agate the masked input through the model, and
compute the change in the probability of the an-
swer predicted with the unmasked original input.
For the IC model, similarly to T1, we sequentially
generate new captions from the foil one by replac-
ing, one by one, the words in it and computing the
conditional probability of the foil caption and the
one generated from it. The word whose replace-
ment generate the caption with the highest con-
ditional probabilities is taken to be the foil word.
Finally, to evaluate the models on the error cor-
rection task (T3), we apply the linear regression
method over all the target words and select the tar-
get word which has the highest probability of mak-
ing that wrong caption correct with respect to the
given image.

Upper-bound Using Crowdflower, we collected
human answers from 738 native English speak-
ers for 984 image-caption pairs randomly selected
from the test set. Subjects were given an image
and a caption and had to decide whether it was cor-
rect or wrong (T1). If they thought it was wrong,

they were required to mark the error in the cap-
tion (T2). We collected 2952 judgements (i.e. 3
judgements per pair and 4 judgements per rater)
and computed human accuracy in T1 when con-
sidering as answer (a) the one provided by at least
2 out of 3 annotators (majority) and (b) the one
provided by all 3 annotators (unanimity). The
same procedure was adopted for computing ac-
curacies in T2. Accuracies in both T1 an T2 are
reported in Table 2. As can be seen, in the ma-
jority setting annotators are quasi-perfect in classi-
fying captions (92.89%) and detecting foil words
(97.00%). Though lower, accuracies in the una-
nimity setting are still very high, with raters pro-
viding the correct answer in 3 out of 4 cases in
both tasks. Hence, although we have collected hu-
man answers only on a rather small subset of the
test set, we believe their results are representative
of how easy the tasks are for humans.

4.2 Results

As shown in Table 2, the FOIL-COCO dataset
is challenging. On T1, for which the chance
level is 50.00%, the ‘blind’, language-only model,
does badly with an accuracy of 55.62% (25.04%
on foil captions), demonstrating that language
bias is minimal. By adding visual information,
CNN+LSTM, the overall accuracy increases by
5.45% (7.94% on foil captions.) reaching 61.07%
(resp. 32.98%). Both SoA VQA and IC models
do significantly worse than humans on both T1
and T2. The VQA systems show a strong bias
towards correct captions and poor overall perfor-
mance. They only identify 34.51% (LSTM +norm
I) and 36.38% (HieCoAtt) of the incorrect cap-
tions (T1). On the other hand, the IC model tends
to be biased toward the foil captions, on which it
achieves an accuracy of 45.44%, higher than the
VQA models. But the overall accuracy (42.21%)
is poorer than the one obtained by the two base-
lines. On the foil word detection task, when con-
sidering only nouns as possible foil word, both the
IC and the LSTM+norm I models perform close
to chance level, and the HieCoAtt performs some-
what better, reaching 38.79%. Similar results are
obtained when considering all words in the caption
as possible foil. Finally, the VQA models’ accu-
racy on foil word correction (T3) is extremely low,
at 4.7% (LSTM +norm I) and 4.21% (HieCoAtt).
The result on T3 makes it clear that the VQA sys-
tems are unable to extract from the image rep-
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resentation the information needed to correct the
foil: despite being told which element in the cap-
tion is wrong, they are not able to zoom into the
correct part of the image to provide a correction, or
if they are, cannot name the object in that region.
The IC model performs better compared to the
other models, having an accuracy that is 20,78%
higher than chance level.

T1: Classification task
Overall Correct Foil

Blind 55.62 86.20 25.04
CNN+LSTM 61.07 89.16 32.98
IC-Wang 42.21 38.98 45.44
LSTM + norm I 63.26 92.02 34.51
HieCoAtt 64.14 91.89 36.38
Human (majority) 92.89 91.24 94.52
Human (unanimity) 76.32 73.73 78.90

T2: Foil word detection task
nouns all content words

Chance 23.25 15.87
IC-Wang 27.59 23.32
LSTM + norm I 26.32 24.25
HieCoAtt 38.79 33.69
Human (majority) 97.00
Human (unanimity) 73.60

T3: Foil word correction task
all target words

Chance 1.38
IC-Wang 22.16
LSTM + norm I 4.7
HieCoAtt 4.21

Table 2: T1: Accuracy for the classification task,
relatively to all image-caption pairs (overall) and
by type of caption (correct vs. foil); T2: Accu-
racy for the foil word detection task, when the foil
is known to be among the nouns only or when it
is known to be among all the content words; T3:
Accuracy for the foil word correction task when
the correct word has to be chosen among any of
the target words.

5 Analysis

We performed a mixed-effect logistic regression
analysis in order to check whether the behavior
of the best performing models in T1, namely the
VQA models, can be predicted by various linguis-

tic variables. We included: 1) semantic similar-
ity between the original word and the foil (com-
puted as the cosine between the two corresponding
word2vec embeddings (Mikolov et al., 2013));
2) frequency of original word in FOIL-COCO cap-
tions; 3) frequency of the foil word in FOIL-
COCO captions; 4) length of the caption (number
of words). The mixed-effect model was performed
to get rid of possible effects due to either object
supercategory (indoor, food, vehicle, etc.) or tar-
get::foil pair (e.g., zebra::giraffe, boat::airplane,
etc.). For both LSTM + norm I and HieCoAtt,
word2vec similarity, frequency of the original
word, and frequency of the foil word turned out
to be highly reliable predictors of the model’s re-
sponse. The higher the values of these variables,
the more the models tend to provide the wrong
output. That is, when the foil word (e.g. cat) is
semantically very similar to the original one (e.g.
dog), the models tend to wrongly classify the cap-
tion as ‘correct’. The same holds for frequency
values. In particular, the higher the frequency of
both the original word and the foil one, the more
the models fail. This indicates that systems find it
difficult to distinguish related concepts at the text-
vision interface, and also that they may tend to
be biased towards frequently occurring concepts,
‘seeing them everywhere’ even when they are not
present in the image. Caption length turned out to
be only a partially reliable predictor in the LSTM
+ norm I model, whereas it is a reliable predictor
in HieCoAtt. In particular, the longer the caption,
the harder for the model to spot that there is a foil
word that makes the caption wrong.

As revealed by the fairly high variance ex-
plained by the random effect related to target::foil
pairs in the regression analysis, both models per-
form very well on some target::foil pairs, but
fail on some others (see leftmost part of Table 4
for same examples of easy/hard target::foil pairs).
Moreover, the variance explained by the random
effect related to object supercategory is reported in
Table 3. As can be seen, for some supercategories
accuracies are significatively higher than for oth-
ers (compare, e.g., ‘electronic’ and ‘outdoor’).

In a separate analysis, we also checked whether
there was any correlation between results and the
position of the foil in the sentence, to ensure the
models did not profit from any undesirable arti-
facts of the data. We did not find any such corre-
lation.
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Super-category No. of object
No. of foil
captions

Acc. using
LSTM + norm I

Acc. using
HieCoAtt

outdoor 2 107 2.80 0.93
food 9 10407 22.00 26.59

indoor 6 4911 30.74 27.97
appliance 5 2811 32.72 34.54

sports 10 16276 31.57 31.61
animal 10 21982 39.03 43.18
vehicle 8 16514 34.38 40.09

furniture 5 13625 33.27 33.13
accessory 5 3040 49.53 31.80
electronic 6 5615 45.82 43.47
kitchen 7 4192 38.19 45.34

Table 3: Classification Accuracy of foil captions by Super Categories (T1). The No. of the objects and
the No. of foil captions refer to the test set. The training set has a similar distribution.

Top-5 Bottom-5
T1: LSTM + norm I

racket::glove 100 motorcycle::airplane 0
racket::kite 97.29 bicycle::airplane 0
couch::toilet 97.11 drier::scissors 0
racket::skis 95.23 bus::airplane 0.35
giraffe::sheep 95.09 zebra::giraffe 0.43

T1: HieCoAtt
tie::handbag 100 drier::scissors 0
snowboard::glove 100 fork::glass 0
racket::skis 100 handbag::tie 0
racket::glove 100 motorcycle::airplane 0
backpack::handbag 100 train::airplane 0

Top-5 Bottom-5
T2: LSTM + norm I

drier::scissors 100 glove::skis 0
zebra::giraffe 88.98 snowboard::racket 0
boat::airplane 87.87 donut::apple 0
truck::airplane 85.71 glove::surfboard 0
train::airplane 81.93 spoon::bottle 0

T2: HieCoAtt
zebra::elephant 94.92 drier::scissors 0
backpack::handbag 94.44 handbag::tie 0
cow::zebra 93.33 broccoli:orange 1.47
bird::sheep 93.11 zebra::giraffe 1.96
orange::carrot 92.37 boat::airplane 2.09

Table 4: Easiest and hardest target::foil pairs: T1 (caption classification) and T2 (foil word detection).

To better understand results on T2, we per-
formed an analysis investigating the performance
of the VQA models on different target::foil pairs.
As reported in Table 4 (right), both models per-
form nearly perfectly with some pairs and very
badly with others. At first glance, it can be no-
ticed that LSTM + norm I is very effective with
pairs involving vehicles (airplane, truck, etc.),
whereas HieCoAtt seems more effective with pairs
involving animate nouns (i.e. animals), though
more in depth analysis is needed on this point.
More interestingly, some pairs that are found
to be predicted almost perfectly by LSTM + I
norm, namely boat::airplane, zebra::giraffe, and
drier::scissors, turn out to be among the Bottom-5
cases in HieCoAtt. This suggests, on the one hand,
that the two VQA models use different strategies
to perform the task. On the other hand, it shows
that our dataset does not contain cases that are a
priori easy for any model.

The results of IC-Wang on T3 are much higher

than LSTM + norm I and HieCoAtt, although it is
outperformed by or is on par with HieCoAtton on
T1-T2. Our interpretation is that this behaviour is
related to the discriminative/generative nature of
our tasks. Specifically, T1 and T2 are discrimina-
tive tasks and LSTM + norm I and HieCoAtt are
discriminative models. Conversely, T3 is a gen-
erative task (a word needs to be generated) and
IC-Wang is a generative model. It would be in-
teresting to test other IC models on T3 and com-
pare their results against the ones reported here.
However, note that IC-Wang is ‘tailored’ for T3
because it takes as input the whole sentence (mi-
nus the word to be generated), while common se-
quential IC approaches can only generate a word
depending on the previous words in the sentence.

As far as human performance is concerned,
both T1 and T2 turn out to be extremely easy.
In T1, image-caption pairs were correctly judged
as correct/wrong in overall 914 out of 984 cases
(92.89%) in the majority setting. In the unanim-
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ity setting, the correct response was provided in
751 out of 984 cases (76.32%). Judging foil cap-
tions turns out to be slightly easier than judging
correct captions in both settings, probably due to
the presence of typos and misspellings that some-
times occur in the original caption (e.g. raters
judge as wrong the original caption People playing
ball with a drown and white dog, where ‘brown’
was misspelled as ‘drown’). To better under-
stand which factors contribute to make the task
harder, we qualitatively analyse those cases where
all annotators provided a wrong judgement for an
image-caption pair. As partly expected, almost
all cases where original captions (thus correct for
the given image) are judged as being wrong are
cases where the original caption is indeed incor-
rect. For example, a caption using the word ‘mo-
torcycle’ to refer to a bicycle in the image is
judged as wrong. More interesting are those cases
where all raters agreed in considering as correct
image-caption pairs that are instead foil. Here, it
seems that vagueness as well as certain metaphor-
ical properties of language are at play: human
annotators judged as correct a caption describing
Blue and banana large birds on tree with metal pot
(see Fig 3, left), where ‘banana’ replaced ‘orange’.
Similarly, all raters judged as correct the caption A
cat laying on a bed next to an opened keyboard
(see Fig 3, right), where the cat is instead laying
next to an opened laptop.

Focusing on T2, it is interesting to report that
among the correctly-classified foil cases, annota-
tors provided the target word in 97% and 73.6%
of cases in the majority and unanimity setting, re-
spectively. This further indicates that finding the
foil word in the caption is a rather trivial task for
humans.

Figure 3: Two cases of foil image-caption pairs
that are judged as correct by all annotators.

6 Conclusion

We have introduced FOIL-COCO, a large dataset
of images associated with both correct and foil
captions. The error production is automatically
generated, but carefully thought out, making the
task of spotting foils particularly challenging. By
associating the dataset with a series of tasks, we al-
low for diagnosing various failures of current LaVi
systems, from their coarse understanding of the
correspondence between text and vision to their
grasp of language and image structure.

Our hypothesis is that systems which, like hu-
mans, deeply integrate the language and vision
modalities, should spot foil captions quite easily.
The SoA LaVi models we have tested fall through
that test, implying that they fail to integrate the two
modalities. To complete the analysis of these re-
sults, we plan to carry out a further task, namely
ask the system to detect in the image the area that
produces the mismatch with the foil word (the red
box around the bird in Figure 1.) This extra step
would allow us to fully diagnose the failure of the
tested systems and confirm what is implicit in our
results from task 3: that the algorithms are unable
to map particular elements of the text to their vi-
sual counterparts. We note that the addition of this
extra step will move this work closer to the tex-
tual/visual explanation research (e.g., (Park et al.,
2016; Selvaraju et al., 2016)). We will then have
a pipeline able to not only test whether a mistake
can be detected, but also whether the system can
explain its decision: ‘the wrong word is dog be-
cause the cyclists are in fact approaching a bird,
there, in the image’.

LaVi models are a great success of recent re-
search, and we are impressed by the amount of
ideas, data and models produced in this stimulat-
ing area. With our work, we would like to push the
community to think of ways that models can bet-
ter merge language and vision modalites, instead
of merely using one to supplement the other.
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