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Abstract

In this paper, we present the gated self-
matching networks for reading compre-
hension style question answering, which
aims to answer questions from a given pas-
sage. We first match the question and pas-
sage with gated attention-based recurrent
networks to obtain the question-aware pas-
sage representation. Then we propose a
self-matching attention mechanism to re-
fine the representation by matching the
passage against itself, which effectively
encodes information from the whole pas-
sage. We finally employ the pointer net-
works to locate the positions of answers
from the passages. We conduct extensive
experiments on the SQuAD dataset. The
single model achieves 71.3% on the evalu-
ation metrics of exact match on the hidden
test set, while the ensemble model further
boosts the results to 75.9%. At the time of
submission of the paper, our model holds
the first place on the SQuAD leaderboard
for both single and ensemble model.

1 Introduction

In this paper, we focus on reading comprehension
style question answering which aims to answer
questions given a passage or document. We specif-
ically focus on the Stanford Question Answering
Dataset (SQuAD) (Rajpurkar et al., 2016), a large-
scale dataset for reading comprehension and ques-
tion answering which is manually created through
crowdsourcing. SQuAD constrains answers to
the space of all possible spans within the refer-
ence passage, which is different from cloze-style
reading comprehension datasets (Hermann et al.,

∗Contribution during internship at Microsoft Research.
§Equal contribution.

2015; Hill et al., 2016) in which answers are sin-
gle words or entities. Moreover, SQuAD requires
different forms of logical reasoning to infer the an-
swer (Rajpurkar et al., 2016).

Rapid progress has been made since the release
of the SQuAD dataset. Wang and Jiang (2016b)
build question-aware passage representation with
match-LSTM (Wang and Jiang, 2016a), and pre-
dict answer boundaries in the passage with pointer
networks (Vinyals et al., 2015). Seo et al. (2016)
introduce bi-directional attention flow networks to
model question-passage pairs at multiple levels of
granularity. Xiong et al. (2016) propose dynamic
co-attention networks which attend the question
and passage simultaneously and iteratively refine
answer predictions. Lee et al. (2016) and Yu et al.
(2016) predict answers by ranking continuous text
spans within passages.

Inspired by Wang and Jiang (2016b), we in-
troduce a gated self-matching network, illustrated
in Figure 1, an end-to-end neural network model
for reading comprehension and question answer-
ing. Our model consists of four parts: 1) the re-
current network encoder to build representation
for questions and passages separately, 2) the gated
matching layer to match the question and passage,
3) the self-matching layer to aggregate informa-
tion from the whole passage, and 4) the pointer-
network based answer boundary prediction layer.
The key contributions of this work are three-fold.

First, we propose a gated attention-based re-
current network, which adds an additional gate to
the attention-based recurrent networks (Bahdanau
et al., 2014; Rocktäschel et al., 2015; Wang and
Jiang, 2016a), to account for the fact that words
in the passage are of different importance to an-
swer a particular question for reading comprehen-
sion and question answering. In Wang and Jiang
(2016a), words in a passage with their correspond-
ing attention-weighted question context are en-
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coded together to produce question-aware passage
representation. By introducing a gating mecha-
nism, our gated attention-based recurrent network
assigns different levels of importance to passage
parts depending on their relevance to the question,
masking out irrelevant passage parts and empha-
sizing the important ones.

Second, we introduce a self-matching mecha-
nism, which can effectively aggregate evidence
from the whole passage to infer the answer.
Through a gated matching layer, the resulting
question-aware passage representation effectively
encodes question information for each passage
word. However, recurrent networks can only
memorize limited passage context in practice de-
spite its theoretical capability. One answer candi-
date is often unaware of the clues in other parts
of the passage. To address this problem, we pro-
pose a self-matching layer to dynamically refine
passage representation with information from the
whole passage. Based on question-aware passage
representation, we employ gated attention-based
recurrent networks on passage against passage it-
self, aggregating evidence relevant to the current
passage word from every word in the passage. A
gated attention-based recurrent network layer and
self-matching layer dynamically enrich each pas-
sage representation with information aggregated
from both question and passage, enabling subse-
quent network to better predict answers.

Lastly, the proposed method yields state-of-the-
art results against strong baselines. Our single
model achieves 71.3% exact match accuracy on
the hidden SQuAD test set, while the ensemble
model further boosts the result to 75.9%. At the
time1 of submission of this paper, our model holds
the first place on the SQuAD leader board.

2 Task Description

For reading comprehension style question answer-
ing, a passage P and question Q are given, our task
is to predict an answer A to question Q based on
information found in P. The SQuAD dataset fur-
ther constrains answer A to be a continuous sub-
span of passage P. Answer A often includes non-
entities and can be much longer phrases. This
setup challenges us to understand and reason about
both the question and passage in order to infer the
answer. Table 1 shows a simple example from the
SQuAD dataset.

1On Feb. 6, 2017

Passage: Tesla later approached Morgan to ask for
more funds to build a more powerful transmitter.
When asked where all the money had gone, Tesla
responded by saying that he was affected by the
Panic of 1901, which he (Morgan) had caused.
Morgan was shocked by the reminder of his part in
the stock market crash and by Tesla’s breach of con-
tract by asking for more funds. Tesla wrote another
plea to Morgan, but it was also fruitless. Morgan
still owed Tesla money on the original agreement,
and Tesla had been facing foreclosure even before
construction of the tower began.
Question: On what did Tesla blame for the loss of
the initial money?
Answer: Panic of 1901

Table 1: An example from the SQuAD dataset.

3 Gated Self-Matching Networks

Figure 1 gives an overview of the gated self-
matching networks. First, the question and pas-
sage are processed by a bi-directional recur-
rent network (Mikolov et al., 2010) separately.
We then match the question and passage with
gated attention-based recurrent networks, obtain-
ing question-aware representation for the passage.
On top of that, we apply self-matching attention
to aggregate evidence from the whole passage and
refine the passage representation, which is then fed
into the output layer to predict the boundary of the
answer span.

3.1 Question and Passage Encoder
Consider a question Q = {wQ

t }mt=1 and a pas-
sage P = {wP

t }nt=1. We first convert the words to
their respective word-level embeddings ({eQt }mt=1

and {ePt }nt=1) and character-level embeddings
({cQt }mt=1 and {cPt }nt=1). The character-level em-
beddings are generated by taking the final hid-
den states of a bi-directional recurrent neural net-
work (RNN) applied to embeddings of characters
in the token. Such character-level embeddings
have been shown to be helpful to deal with out-of-
vocab (OOV) tokens. We then use a bi-directional
RNN to produce new representation uQ1 , . . . , u

Q
m

and uP1 , . . . , u
P
n of all words in the question and

passage respectively:

uQt = BiRNNQ(uQt−1, [e
Q
t , c

Q
t ]) (1)

uPt = BiRNNP (uPt−1, [e
P
t , c

P
t ]) (2)

We choose to use Gated Recurrent Unit (GRU)
(Cho et al., 2014) in our experiment since it per-
forms similarly to LSTM (Hochreiter and Schmid-
huber, 1997) but is computationally cheaper.
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Figure 1: Gated Self-Matching Networks structure overview.

3.2 Gated Attention-based Recurrent
Networks

We propose a gated attention-based recurrent net-
work to incorporate question information into pas-
sage representation. It is a variant of attention-
based recurrent networks, with an additional gate
to determine the importance of information in
the passage regarding a question. Given ques-
tion and passage representation {uQt }mt=1 and
{uPt }nt=1, Rocktäschel et al. (2015) propose gen-
erating sentence-pair representation {vPt }nt=1 via
soft-alignment of words in the question and pas-
sage as follows:

vPt = RNN(vPt−1, ct) (3)

where ct = att(uQ, [uPt , v
P
t−1]) is an attention-

pooling vector of the whole question (uQ):

stj = vTtanh(WQ
u u

Q
j +WP

u u
P
t +WP

v v
P
t−1)

ati = exp(sti)/Σ
m
j=1exp(stj)

ct = Σm
i=1a

t
iu

Q
i (4)

Each passage representation vPt dynamically in-
corporates aggregated matching information from
the whole question.

Wang and Jiang (2016a) introduce match-
LSTM, which takes uPt as an additional input into
the recurrent network:

vPt = RNN(vPt−1, [u
P
t , ct]) (5)

To determine the importance of passage parts and
attend to the ones relevant to the question, we add
another gate to the input ([uPt , ct]) of RNN:

gt = sigmoid(Wg[uPt , ct])

[uPt , ct]
∗ = gt � [uPt , ct] (6)

Different from the gates in LSTM or GRU, the ad-
ditional gate is based on the current passage word
and its attention-pooling vector of the question,
which focuses on the relation between the ques-
tion and current passage word. The gate effec-
tively model the phenomenon that only parts of
the passage are relevant to the question in reading
comprehension and question answering. [uPt , ct]

∗

is utilized in subsequent calculations instead of
[uPt , ct]. We call this gated attention-based recur-
rent networks. It can be applied to variants of
RNN, such as GRU and LSTM. We also conduct
experiments to show the effectiveness of the addi-
tional gate on both GRU and LSTM.

3.3 Self-Matching Attention

Through gated attention-based recurrent networks,
question-aware passage representation {vPt }nt=1 is
generated to pinpoint important parts in the pas-
sage. One problem with such representation is
that it has very limited knowledge of context. One
answer candidate is often oblivious to important
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cues in the passage outside its surrounding win-
dow. Moreover, there exists some sort of lexical
or syntactic divergence between the question and
passage in the majority of SQuAD dataset (Ra-
jpurkar et al., 2016). Passage context is neces-
sary to infer the answer. To address this problem,
we propose directly matching the question-aware
passage representation against itself. It dynami-
cally collects evidence from the whole passage for
words in passage and encodes the evidence rele-
vant to the current passage word and its matching
question information into the passage representa-
tion hPt :

hPt = BiRNN(hPt−1, [v
P
t , ct]) (7)

where ct = att(vP , vPt ) is an attention-pooling
vector of the whole passage (vP ):

stj = vTtanh(WP
v v

P
j +W P̃

v v
P
t )

ati = exp(sti)/Σ
n
j=1exp(stj)

ct = Σn
i=1a

t
iv

P
i (8)

An additional gate as in gated attention-based re-
current networks is applied to [vPt , ct] to adap-
tively control the input of RNN.

Self-matching extracts evidence from the whole
passage according to the current passage word and
question information.

3.4 Output Layer
We follow Wang and Jiang (2016b) and use
pointer networks (Vinyals et al., 2015) to predict
the start and end position of the answer. In addi-
tion, we use an attention-pooling over the question
representation to generate the initial hidden vector
for the pointer network. Given the passage rep-
resentation {hPt }nt=1, the attention mechanism is
utilized as a pointer to select the start position (p1)
and end position (p2) from the passage, which can
be formulated as follows:

stj = vTtanh(WP
h h

P
j +W a

hh
a
t−1)

ati = exp(sti)/Σ
n
j=1exp(stj)

pt = arg max(at1, . . . , a
t
n) (9)

Here hat−1 represents the last hidden state of
the answer recurrent network (pointer network).
The input of the answer recurrent network is
the attention-pooling vector based on current pre-
dicted probability at:

ct = Σn
i=1a

t
ih

P
i

hat = RNN(hat−1, ct) (10)

When predicting the start position, hat−1 repre-
sents the initial hidden state of the answer recur-
rent network. We utilize the question vector rQ as
the initial state of the answer recurrent network.
rQ = att(uQ, V Q

r ) is an attention-pooling vector
of the question based on the parameter V Q

r :

sj = vTtanh(WQ
u u

Q
j +WQ

v V
Q
r )

ai = exp(si)/Σ
m
j=1exp(sj)

rQ = Σm
i=1aiu

Q
i (11)

To train the network, we minimize the sum of
the negative log probabilities of the ground truth
start and end position by the predicted distribu-
tions.

4 Experiment

4.1 Implementation Details
We specially focus on the SQuAD dataset to train
and evaluate our model, which has garnered a huge
attention over the past few months. SQuAD is
composed of 100,000+ questions posed by crowd
workers on 536 Wikipedia articles. The dataset is
randomly partitioned into a training set (80%), a
development set (10%), and a test set (10%). The
answer to every question is a segment of the cor-
responding passage.

We use the tokenizer from Stanford CoreNLP
(Manning et al., 2014) to preprocess each passage
and question. The Gated Recurrent Unit (Cho
et al., 2014) variant of LSTM is used through-
out our model. For word embedding, we use pre-
trained case-sensitive GloVe embeddings2 (Pen-
nington et al., 2014) for both questions and pas-
sages, and it is fixed during training; We use
zero vectors to represent all out-of-vocab words.
We utilize 1 layer of bi-directional GRU to com-
pute character-level embeddings and 3 layers of
bi-directional GRU to encode questions and pas-
sages, the gated attention-based recurrent network
for question and passage matching is also encoded
bidirectionally in our experiment. The hidden vec-
tor length is set to 75 for all layers. The hidden
size used to compute attention scores is also 75.
We also apply dropout (Srivastava et al., 2014) be-
tween layers with a dropout rate of 0.2. The model
is optimized with AdaDelta (Zeiler, 2012) with
an initial learning rate of 1. The ρ and ε used in
AdaDelta are 0.95 and 1e−6 respectively.

2Downloaded from http://nlp.stanford.edu/
data/glove.840B.300d.zip.
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Dev Set Test Set
Single model EM / F1 EM / F1
LR Baseline (Rajpurkar et al., 2016) 40.0 / 51.0 40.4 / 51.0
Dynamic Chunk Reader (Yu et al., 2016) 62.5 / 71.2 62.5 / 71.0
Match-LSTM with Ans-Ptr (Wang and Jiang, 2016b) 64.1 / 73.9 64.7 / 73.7
Dynamic Coattention Networks (Xiong et al., 2016) 65.4 / 75.6 66.2 / 75.9
RaSoR (Lee et al., 2016) 66.4 / 74.9 - / -
BiDAF (Seo et al., 2016) 68.0 / 77.3 68.0 / 77.3
jNet (Zhang et al., 2017) - / - 68.7 / 77.4
Multi-Perspective Matching (Wang et al., 2016) - / - 68.9 / 77.8
FastQA (Weissenborn et al., 2017) - / - 68.4 / 77.1
FastQAExt (Weissenborn et al., 2017) - / - 70.8 / 78.9
R-NET 71.1 / 79.5 71.3 / 79.7
Ensemble model
Fine-Grained Gating (Yang et al., 2016) 62.4 / 73.4 62.5 / 73.3
Match-LSTM with Ans-Ptr (Wang and Jiang, 2016b) 67.6 / 76.8 67.9 / 77.0
RaSoR (Lee et al., 2016) 68.2 / 76.7 - / -
Dynamic Coattention Networks (Xiong et al., 2016) 70.3 / 79.4 71.6 / 80.4
BiDAF (Seo et al., 2016) 73.3 / 81.1 73.3 / 81.1
Multi-Perspective Matching (Wang et al., 2016) - / - 73.8 / 81.3
R-NET 75.6 / 82.8 75.9 / 82.9
Human Performance (Rajpurkar et al., 2016) 80.3 / 90.5 77.0 / 86.8

Table 2: The performance of our gated self-matching networks (R-NET) and competing approaches4.

Single Model EM / F1
Gated Self-Matching (GRU) 71.1 / 79.5
-Character embedding 69.6 / 78.6
-Gating 67.9 / 77.1
-Self-Matching 67.6 / 76.7
-Gating, -Self-Matching 65.4 / 74.7

Table 3: Ablation tests of single model on the
SQuAD dev set. All the components significantly
(t-test, p < 0.05) improve the model.

4.2 Main Results
Two metrics are utilized to evaluate model perfor-
mance: Exact Match (EM) and F1 score. EM
measures the percentage of the prediction that
matches one of the ground truth answers exactly.
F1 measures the overlap between the prediction
and ground truth answers which takes the max-
imum F1 over all of the ground truth answers.
The scores on dev set are evaluated by the offi-
cial script3. Since the test set is hidden, we are re-
quired to submit the model to Stanford NLP group
to obtain the test scores.

Table 2 shows exact match and F1 scores on the
3Downloaded from http://stanford-qa.com

Single Model EM / F1
Base model (GRU) 64.5 / 74.1
+Gating 66.2 / 75.8
Base model (LSTM) 64.2 / 73.9
+Gating 66.0 / 75.6

Table 4: Effectiveness of gated attention-based re-
current networks for both GRU and LSTM.

dev and test set of our model and competing ap-
proaches4. The ensemble model consists of 20
training runs with the identical architecture and
hyper-parameters. At test time, we choose the an-
swer with the highest sum of confidence scores
amongst the 20 runs for each question. As we can
see, our method clearly outperforms the baseline
and several strong state-of-the-art systems for both
single model and ensembles.

4.3 Ablation Study

We do ablation tests on the dev set to analyze the
contribution of components of gated self-matching
networks. As illustrated in Table 3, the gated

4Extracted from SQuAD leaderboard http:
//stanford-qa.com on Feb. 6, 2017.
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Figure 2: Part of the attention matrices for self-matching. Each row is the attention weights of the whole
passage for the current passage word. The darker the color is the higher the weight is. Some key evidence
relevant to the question-passage tuple is more encoded into answer candidates.

attention-based recurrent network (GARNN) and
self-matching attention mechanism positively con-
tribute to the final results of gated self-matching
networks. Removing self-matching results in 3.5
point EM drop, which reveals that information in
the passage plays an important role. Character-
level embeddings contribute towards the model’s
performance since it can better handle out-of-
vocab or rare words. To show the effectiveness
of GARNN for variant RNNs, we conduct experi-
ments on the base model (Wang and Jiang, 2016b)
of different variant RNNs. The base model match
the question and passage via a variant of attention-
based recurrent network (Wang and Jiang, 2016a),
and employ pointer networks to predict the an-
swer. Character-level embeddings are not utilized.
As shown in Table 4, the gate introduced in ques-
tion and passage matching layer is helpful for both
GRU and LSTM on the SQuAD dataset.

5 Discussion

5.1 Encoding Evidence from Passage
To show the ability of the model for encoding
evidence from the passage, we draw the align-

ment of the passage against itself in self-matching.
The attention weights are shown in Figure 2,
in which the darker the color is the higher the
weight is. We can see that key evidence aggre-
gated from the whole passage is more encoded
into the answer candidates. For example, the an-
swer “Egg of Columbus” pays more attention to
the key information “Tesla”, “device” and the lexi-
cal variation word “known” that are relevant to the
question-passage tuple. The answer “world clas-
sic of epoch-making oratory” mainly focuses on
the evidence “Michael Mullet”, “speech” and lex-
ical variation word “considers”. For other words,
the attention weights are more evenly distributed
between evidence and some irrelevant parts. Self-
matching do adaptively aggregate evidence for
words in passage.

5.2 Result Analysis

To further analyse the model’s performance, we
analyse the F1 score for different question types
(Figure 3(a)), different answer lengths (Figure
3(b)), different passage lengths (Figure 3(c)) and
different question lengths (Figure 3(d)) of our
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(a) (b)

(c) (d)

Figure 3: Model performance on different question types (a), different answer lengths (b), different
passage lengths (c), different question lengths (d). The point on the x-axis of figure (c) and (d) represent
the datas whose passages length or questions length are between the value of current point and last point.

model and its ablation models. As we can see,
both four models show the same trend. The ques-
tions are split into different groups based on a
set of question words we have defined, includ-
ing “what”, “how”, “who”, “when”, “which”,
“where”, and “why”. As we can see, our model is
better at “when” and “who” questions, but poorly
on “why” questions. This is mainly because the
answers to why questions can be very diverse,
and they are not restricted to any certain type of
phrases. From the Graph 3(b), the performance
of our model obviously drops with the increase of
answer length. Longer answers are harder to pre-
dict. From Graph 3(c) and 3(d), we discover that
the performance remains stable with the increase
in length, the obvious fluctuation in longer pas-
sages and questions is mainly because the propor-
tion is too small. Our model is largely agnostic to
long passages and focuses on important part of the
passage.

6 Related Work

Reading Comprehension and Question An-
swering Dataset Benchmark datasets play an im-
portant role in recent progress in reading compre-
hension and question answering research. Exist-

ing datasets can be classified into two categories
according to whether they are manually labeled.
Those that are labeled by humans are always in
high quality (Richardson et al., 2013; Berant et al.,
2014; Yang et al., 2015), but are too small for
training modern data-intensive models. Those that
are automatically generated from natural occur-
ring data can be very large (Hill et al., 2016; Her-
mann et al., 2015), which allow the training of
more expressive models. However, they are in
cloze style, in which the goal is to predict the
missing word (often a named entity) in a passage.
Moreover, Chen et al. (2016) have shown that the
CNN / Daily News dataset (Hermann et al., 2015)
requires less reasoning than previously thought,
and conclude that performance is almost saturated.

Different from above datasets, the SQuAD pro-
vides a large and high-quality dataset. The an-
swers in SQuAD often include non-entities and
can be much longer phrase, which is more chal-
lenging than cloze-style datasets. Moreover, Ra-
jpurkar et al. (2016) show that the dataset retains a
diverse set of answers and requires different forms
of logical reasoning, including multi-sentence rea-
soning. MS MARCO (Nguyen et al., 2016) is also
a large-scale dataset. The questions in the dataset
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are real anonymized queries issued through Bing
or Cortana and the passages are related web pages.
For each question in the dataset, several related
passages are provided. However, the answers are
human generated, which is different from SQuAD
where answers must be a span of the passage.

End-to-end Neural Networks for Reading
Comprehension Along with cloze-style datasets,
several powerful deep learning models (Hermann
et al., 2015; Hill et al., 2016; Chen et al., 2016;
Kadlec et al., 2016; Sordoni et al., 2016; Cui et al.,
2016; Trischler et al., 2016; Dhingra et al., 2016;
Shen et al., 2016) have been introduced to solve
this problem. Hermann et al. (2015) first intro-
duce attention mechanism into reading compre-
hension. Hill et al. (2016) propose a window-
based memory network for CBT dataset. Kadlec
et al. (2016) introduce pointer networks with one
attention step to predict the blanking out entities.
Sordoni et al. (2016) propose an iterative alternat-
ing attention mechanism to better model the links
between question and passage. Trischler et al.
(2016) solve cloze-style question answering task
by combining an attentive model with a reranking
model. Dhingra et al. (2016) propose iteratively
selecting important parts of the passage by a multi-
plying gating function with the question represen-
tation. Cui et al. (2016) propose a two-way atten-
tion mechanism to encode the passage and ques-
tion mutually. Shen et al. (2016) propose itera-
tively inferring the answer with a dynamic number
of reasoning steps and is trained with reinforce-
ment learning.

Neural network-based models demonstrate the
effectiveness on the SQuAD dataset. Wang and
Jiang (2016b) combine match-LSTM and pointer
networks to produce the boundary of the answer.
Xiong et al. (2016) and Seo et al. (2016) employ
variant coattention mechanism to match the ques-
tion and passage mutually. Xiong et al. (2016)
propose a dynamic pointer network to iteratively
infer the answer. Yu et al. (2016) and Lee et al.
(2016) solve SQuAD by ranking continuous text
spans within passage. Yang et al. (2016) present
a fine-grained gating mechanism to dynamically
combine word-level and character-level represen-
tation and model the interaction between questions
and passages. Wang et al. (2016) propose match-
ing the context of passage with the question from
multiple perspectives.

Different from the above models, we introduce

self-matching attention in our model. It dynami-
cally refines the passage representation by looking
over the whole passage and aggregating evidence
relevant to the current passage word and question,
allowing our model make full use of passage in-
formation. Weightedly attending to word context
has been proposed in several works. Ling et al.
(2015) propose considering window-based con-
textual words differently depending on the word
and its relative position. Cheng et al. (2016) pro-
pose a novel LSTM network to encode words in
a sentence which considers the relation between
the current token being processed and its past to-
kens in the memory. Parikh et al. (2016) apply
this method to encode words in a sentence ac-
cording to word form and its distance. Since pas-
sage information relevant to question is more help-
ful to infer the answer in reading comprehension,
we apply self-matching based on question-aware
representation and gated attention-based recurrent
networks. It helps our model mainly focus on
question-relevant evidence in the passage and dy-
namically look over the whole passage to aggre-
gate evidence.

Another key component of our model is the
attention-based recurrent network, which has
demonstrated success in a wide range of tasks.
Bahdanau et al. (2014) first propose attention-
based recurrent networks to infer word-level align-
ment when generating the target word. Hermann
et al. (2015) introduce word-level attention into
reading comprehension to model the interaction
between questions and passages. Rocktäschel
et al. (2015) and Wang and Jiang (2016a) propose
determining entailment via word-by-word match-
ing. The gated attention-based recurrent network
is a variant of attention-based recurrent network
with an additional gate to model the fact that pas-
sage parts are of different importance to the partic-
ular question for reading comprehension and ques-
tion answering.

7 Conclusion

In this paper, we present gated self-matching net-
works for reading comprehension and question
answering. We introduce the gated attention-
based recurrent networks and self-matching atten-
tion mechanism to obtain representation for the
question and passage, and then use the pointer-
networks to locate answer boundaries. Our model
achieves state-of-the-art results on the SQuAD

196



dataset, outperforming several strong competing
systems. As for future work, we are applying
the gated self-matching networks to other reading
comprehension and question answering datasets,
such as the MS MARCO dataset (Nguyen et al.,
2016).
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