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Abstract

We propose two novel methodologies for
the automatic generation of rhythmic po-
etry in a variety of forms. The first
approach uses a neural language model
trained on a phonetic encoding to learn
an implicit representation of both the form
and content of English poetry. This model
can effectively learn common poetic de-
vices such as rhyme, rhythm and allitera-
tion. The second approach considers po-
etry generation as a constraint satisfac-
tion problem where a generative neural
language model is tasked with learning a
representation of content, and a discrimi-
native weighted finite state machine con-
strains it on the basis of form. By manip-
ulating the constraints of the latter model,
we can generate coherent poetry with arbi-
trary forms and themes. A large-scale ex-
trinsic evaluation demonstrated that partic-
ipants consider machine-generated poems
to be written by humans 54% of the time.
In addition, participants rated a machine-
generated poem to be the most human-like
amongst all evaluated.

1 Introduction

Poetry is an advanced form of linguistic commu-
nication, in which a message is conveyed that sat-
isfies both aesthetic and semantic constraints. As
poetry is one of the most expressive forms of lan-
guage, the automatic creation of texts recognis-
able as poetry is difficult. In addition to requiring
an understanding of many aspects of language in-
cluding phonetic patterns such as rhyme, rhythm
and alliteration, poetry composition also requires
a deep understanding of the meaning of language.

Poetry generation can be divided into two sub-
tasks, namely the problem of content, which is
concerned with a poem’s semantics, and the prob-
lem of form, which is concerned with the aesthetic
rules that a poem follows. These rules may de-
scribe aspects of the literary devices used, and are
usually highly prescriptive. Examples of different
forms of poetry are limericks, ballads and sonnets.
Limericks, for example, are characterised by their
strict rhyme scheme (AABBA), their rhythm (two
unstressed syllables followed by one stressed syl-
lable) and their shorter third and fourth lines. Cre-
ating such poetry requires not only an understand-
ing of the language itself, but also of how it sounds
when spoken aloud.

Statistical text generation usually requires the
construction of a generative language model that
explicitly learns the probability of any given word
given previous context. Neural language models
(Schwenk and Gauvain, 2005; Bengio et al., 2006)
have garnered signficant research interest for their
ability to learn complex syntactic and seman-
tic representations of natural language (Mikolov
et al., 2010; Sutskever et al., 2014; Cho et al.,
2014; Kim et al., 2015). Poetry generation is an
interesting application, since performing this task
automatically requires the creation of models that
not only focus on what is being written (content),
but also on how it is being written (form).

We experiment with two novel methodologies
for solving this task. The first involves training a
model to learn an implicit representation of con-
tent and form through the use of a phonological
encoding. The second involves training a gener-
ative language model to represent content, which
is then constrained by a discriminative pronuncia-
tion model, representing form. This second model
is of particular interest because poetry with arbi-
trary rhyme, rhythm, repetition and themes can be
generated by tuning the pronunciation model.
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2 Related Work

Automatic poetry generation is an important task
due to the significant challenges involved. Most
systems that have been proposed can loosely be
categorised as rule-based expert systems, or statis-
tical approaches.

Rule-based poetry generation attempts include
case-based reasoning (Gervás, 2000), template-
based generation (Colton et al., 2012), constraint
satisfaction (Toivanen et al., 2013; Barbieri et al.,
2012) and text mining (Netzer et al., 2009). These
approaches are often inspired by how humans
might generate poetry.

Statistical approaches, conversely, make no as-
sumptions about the creative process. Instead,
they attempt to extract statistical patterns from ex-
isting poetry corpora in order to construct a lan-
guage model, which can then be used to gener-
ate new poetic variants (Yi et al., 2016; Greene
et al., 2010). Neural language models have been
increasingly applied to the task of poetry gener-
ation. The work of Zhang and Lapata (2014) is
one such example, where they were able to outper-
form all other classical Chinese poetry generation
systems with both manual and automatic evalua-
tion. Ghazvininejad et al. (2016) and Goyal et al.
(2016) apply neural language models with regu-
larising finite state machines. However, in the for-
mer case the rhythm of the output cannot be de-
fined at sample time, and in the latter case the fi-
nite state machine is not trained on rhythm at all,
as it is trained on dialogue acts. McGregor et al.
(2016) construct a phonological model for gener-
ating prosodic texts, however there is no attempt
to embed semantics into this model.

3 Phonetic-level Model

Our first model is a pure neural language model,
trained on a phonetic encoding of poetry in or-
der to represent both form and content. Phonetic
encodings of language represent information as
sequences of around 40 basic acoustic symbols.
Training on phonetic symbols allows the model
to learn effective representations of pronunciation,
including rhyme and rhythm.

However, just training on a large corpus of po-
etry data is not enough. Specifically, two problems
need to be overcome. 1) Phonetic encoding re-
sults in information loss: words that have the same
pronunciation (homophones) cannot be perfectly
reconstructed from the corresponding phonemes.

This means that we require an additional proba-
bilistic model in order to determine the most likely
word given a sequence of phonemes. 2) The va-
riety of poetry and poetic devices one can use—
e.g., rhyme, rhythm, repetition—means that po-
ems sampled from a model trained on all poetry
would be unlikely to maintain internal consistency
of meter and rhyme. It is therefore important to
train the model on poetry which has its own inter-
nal consistency.

Thus, the model comprises three steps: translit-
erating an orthographic sequence to its phonetic
representation, training a neural language model
on the phonetic encoding, and decoding the gen-
erated sequence back from phonemes to ortho-
graphic symbols.

Phonetic encoding To solve the first step, we
apply a combination of word lookups from the
CMU pronunciation dictionary (Weide, 2005)
with letter-to-sound rules for handling out-of-
vocabulary words. These rules are based on the
CART techniques described by Black et al. (1998),
and are represented with a simple Finite State
Transducer1. The number of letters and number
of phones in a word are rarely a one-to-one match:
letters may match with up to three phones. In ad-
dition, virtually all letters can, in some contexts,
map to zero phones, which is known as ‘wild’
or epsilon. Expectation Maximisation is used to
compute the probability of a single letter match-
ing a single phone, which is maximised through
the application of Dynamic Time Warping (Myers
et al., 1980) to determine the most likely position
of epsilon characters.

Although this approach offers full coverage
over the training corpus—even for abbreviated
words like ask’d and archaic words like re-
newest—it has several limitations. Irregularities
in the English language result in difficulty deter-
mining general letter-to-sound rules that can man-
age words with unusual pronunciations such as
“colonel” and “receipt” 2.

In addition to transliterating words into
phoneme sequences, we also represent word
break characters as a specific symbol. This makes

1Implemented using FreeTTS (Walker et al., 2010)
2An evaluation of models in American English, British

English, German and French was undertaken by Black et al.
(1998), who reported an externally validated per token accu-
racy on British English as low as 67%. Although no experi-
ments were carried out on corpora of early-modern English,
it is likely that this accuracy would be significantly lower.
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decipherment, when converting back into an or-
thographic representation, much easier. Phonetic
transliteration allows us to construct a phonetic
poetry corpus comprising 1,046,536 phonemes.

Neural language model We train a Long-Short
Term Memory network (Hochreiter and Schmid-
huber, 1997) on the phonetic representation of our
poetry corpus. The model is trained using stochas-
tic gradient descent to predict the next phoneme
given a sequence of phonemes. Specifically, we
maximize a multinomial logistic regression ob-
jective over the final softmax prediction. Each
phoneme is represented as a 256-dimensional em-
bedding, and the model consists of two hidden
layers of size 256. We apply backpropagation-
through-time (Werbos, 1990) for 150 timesteps,
which roughly equates to four lines of poetry in
sonnet form. This allows the network to learn
features like rhyme even when spread over mul-
tiple lines. Training is preemptively stopped at 25
epochs to prevent overfitting.

Orthographic decoding When decoding from
phonemes back to orthographic symbols, the goal
is to compute the most likely word correspond-
ing to a sequence of phonemes. That is, we com-
pute the most probable hypothesis word W given
a phoneme sequence ρ:

arg maxi P ( Wi | ρ ) (1)

We can consider the phonetic encoding of plain-
text to be a homophonic cipher; that is, a cipher in
which each symbol can correspond to one or more
possible decodings. The problem of homophonic
decipherment has received significant research at-
tention in the past; with approaches utilising Ex-
pectation Maximisation (Knight et al., 2006), In-
teger Programming (Ravi and Knight, 2009) and
A* search (Corlett and Penn, 2010).

Transliteration from phonetic to an ortho-
graphic representation is done by constructing a
Hidden Markov Model using the CMU pronunci-
ation dictionary (Weide, 2005) and an n-gram lan-
guage model. We calculate the transition proba-
bilities (using the n-gram model) and the emission
matrix (using the CMU pronunciation dictionary)
to determine pronunciations that correspond to a
single word. All pronunciations are naively con-
sidered equiprobable. We perform Viterbi decod-
ing to find the most likely sequence of words. This
means finding the most likely word wt+1 given a

And humble and their fit flees are wits size
but that one made and made thy step me lies

—————————————
Cool light the golden dark in any way
the birds a shade a laughter turn away

—————————————
Then adding wastes retreating white as thine

She watched what eyes are breathing awe what shine
—————————————

But sometimes shines so covered how the beak
Alone in pleasant skies no more to seek

Figure 1: Example output of the phonetic-level
model trained on Iambic Pentameter poetry (gram-
matical errors are emphasised).

previous word sequence (wt−n, ..., wt).

arg maxwt+1 P ( wt+1 | w1, ... , wt ) (2)

If a phonetic sequence does not map to any word,
we apply the heuristic of artificially breaking the
sequence up into two subsequences at index n,
such that n maximises the n-gram frequency of the
subsequences.

Output A popular form of poetry with strict in-
ternal structure is the sonnet. Popularised in En-
glish by Shakespeare, the sonnet is characterised
by a strict rhyme scheme and exactly fourteen
lines of Iambic Pentameter (Greene et al., 2010).
Since the 17,134 word tokens in Shakespeare’s
153 sonnets are insufficient to train an effective
model, we augment this corpus with poetry taken
from the website sonnets.org, yielding a training
set of 288,326 words and 1,563,457 characters.

An example of the output when training on this
sonnets corpus is provided in Figure 1. Not only is
it mostly in strict Iambic Pentameter, but the gram-
mar of the output is mostly correct and the poetry
contains rhyme.

4 Constrained Character-level Model

As the example shows, phonetic-level language
models are effective at learning poetic form, de-
spite small training sets and relatively few param-
eters. However, the fact that they require training
data with internal poetic consistency implies that
they do not generalise to other forms of poetry.
That is, in order to generate poetry in Dactylic
Hexameter (for example), a phonetic model must
be trained on a corpus of Dactylic poetry. Not only
is this impractical, but in many cases no corpus of
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adequate size even exists. Even when such poetic
corpora are available, a new model must be trained
for each type of poetry. This precludes tweaking
the form of the output, which is important when
generating poetry automatically.

We now explore an alternative approach. In-
stead of attempting to represent both form and
content in a single model, we construct a pipeline
containing a generative language model represent-
ing content, and a discriminative model represent-
ing form. This allows us to represent the problem
of creating poetry as a constraint satisfaction prob-
lem, where we can modify constraints to restrict
the types of poetry we generate.

Character Language Model Rather than train
a model on data representing features of both con-
tent and form, we now use a simple character-level
model (Sutskever et al., 2011) focused solely on
content. This approach offers several benefits over
the word-level models that are prevalent in the lit-
erature. Namely, their more compact vocabulary
allows for more efficient training; they can learn
common prefixes and suffixes to allow us to sam-
ple words that are not present in the training cor-
pus and can learn effective language representa-
tions from relatively small corpora; and they can
handle archaic and incorrect spellings of words.

As we no longer need the model to explicitly
represent the form of generated poetry, we can
loosen our constraints when choosing a training
corpus. Instead of relying on poetry only in sonnet
form, we can instead construct a generic corpus of
poetry taken from online sources. This corpus is
composed of 7.56 million words and 34.34 mil-
lion characters, taken largely from 20th Century
poetry books found online. The increase in cor-
pus size facilitates a corresponding increase in the
number of permissible model parameters. This al-
lows us to train a 3-layer LSTM model with 2048-
dimensional hidden layers, with embeddings in
128 dimensions. The model was trained to pre-
dict the next character given a sequence of charac-
ters, using stochastic gradient descent. We attenu-
ate the learning rate over time, and by 20 epochs
the model converges.

Rhythm Modeling Although a character-level
language model trained on a corpus of generic po-
etry allows us to generate interesting text, internal
irregularities and noise in the training data prevent
the model from learning important features such

as rhythm. Hence, we require an additional classi-
fier to constrain our model by either accepting or
rejecting sampled lines based on the presence or
absence of these features. As the presence of me-
ter (rhythm) is the most characteristic feature of
poetry, it therefore must be our primary focus.

Pronunciation dictionaries have often been used
to determine the syllabic stresses of words (Colton
et al., 2012; Manurung et al., 2000; Misztal and In-
durkhya, 2014), but suffer from some limitations
for constructing a classifier. All word pronunci-
ations are considered equiprobable, including ar-
chaic and uncommon pronunciations, and pronun-
ciations are provided context free, despite the im-
portance of context for pronunciation3. Further-
more, they are constructed from American En-
glish, meaning that British English may be mis-
classified.

These issues are circumvented by applying
lightly supervised learning to determine the con-
textual stress pattern of any word. That is, we ex-
ploit the latent structure in our corpus of sonnet
poetry, namely, the fact that sonnets are composed
of lines in rigid Iambic Pentameter, and are there-
fore exactly ten syllables long with alternating syl-
labic stress. This allows us to derive a syllable-
stress distribution. Although we use the sonnets
corpus for this, it is important to note that any cor-
pus with such a latent structure could be used.

We represent each line of poetry as a cascade
of Weighted Finite State Transducers (WFST). A
WFST is a finite-state automaton that maps be-
tween two sets of symbols. It is defined as an
eight-tuple where ⟨Q, Σ, ρ, I, F, ∆, λ, p⟩:

Q : A set of states

Σ : An input alphabet of symbols

ρ : An output alphabet of symbols

I : A set of initial states

F : A set of final states, or sinks

∆ : A transition function mapping pairs of states
and symbols to sets of states

λ : A set of weights for initial states

P : A set of weights for final states
3For example, the independent probability of stressing the

single syllable word at is 40%, but this increases to 91% when
the following word is the (Greene et al., 2010)
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A WFST assigns a probability (or weight, in the
general case) to each path through it, going from
an initial state to an end state. Every path corre-
sponds to an input and output label sequence, and
there can be many such paths for each sequence.

WFSTs are often used in a cascade, where a
number of machines are executed in series, such
that the output tape of one machine is the input
tape for the next. Formally, a cascade is repre-
sented by the functional composition of several
machines.

W (x, z) = A(x|y) ◦ B(y|z) ◦ C(z) (3)

Where W (x, z) is defined as the ⊕ sum of the
path probabilities through the cascade, and x and z
are an input sequence and output sequence respec-
tively. In the real semiring (where the product of
probabilities are taken in series, and the sum of the
probabilities are taken in parallel), we can rewrite
the definition of weighted composition to produce
the following:

W (x, z) =
⊕

y

A(x | y) ⊗ B(y | z) ⊗ C(z) (4)

As we are dealing with probabilities, this can be
rewritten as:

P (x, z) =
∑

y

P (x | y)P (y | z)P (z) (5)

We can perform Expectation Maximisation over
the poetry corpus to obtain a probabilistic classi-
fier which enables us to determine the most likely
stress patterns for each word. Every word is rep-
resented by a single transducer.

In each cascade, a sequence of input words is
mapped onto a sequence of stress patterns ⟨×, /⟩
where each pattern is between 1 and 5 syllables
in length4. We initially set all transition proba-
bilities equally, as we make no assumptions about
the stress distributions in our training set. We
then iterate over each line of the sonnet corpus,
using Expectation Maximisation to train the cas-
cades. In practice, there are several de facto vari-
ations of Iambic meter which are permissible, as
shown in Figure 2. We train the rhythm classifier
by converging the cascades to whatever output is
the most likely given the line.

4Words of more than 5 syllables comprise less than 0.1%
of the lexicon (Aoyama and Constable, 1998).

× / × / × / × / × /
/ × × / × / × / × /
× / × / × / × / × / ×
/ × × / × / × / × / ×

Figure 2: Permissible variations of Iambic Pen-
tameter in Shakespeare’s sonnets.

Generic poetry

Sonnet poetry

LSTM

WFST

Rhythmic Output

Trained

Trained

Buffer

Constraining the model To generate poetry us-
ing this model, we sample sequences of charac-
ters from the character-level language model. To
impose rhythm constrains on the language model,
we first represent these sampled characters at the
word level and pool sampled characters into word
tokens in an intermediary buffer. We then apply
the separately trained word-level WFSTs to con-
struct a cascade of this buffer and perform Viterbi
decoding over the cascade. This defines the distri-
bution of stress-patterns over our word tokens.

We can represent this cascade as a probabilistic
classifier, and accept or reject the buffered output
based on how closely it conforms to the desired
meter. While sampling sequences of words from
this model, the entire generated sequence is passed
to the classifier each time a new word is sampled.
The pronunciation model then returns the proba-
bility that the entire line is within the specified me-
ter. If a new word is rejected by the classifier, the
state of the network is rolled back to the last for-
mulaically acceptable state of the line, removing
the rejected word from memory. The constraint on
rhythm can be controlled by adjusting the accept-
ability threshold of the classifier. By increasing
the threshold, output focuses on form over content.
Conversely, decreasing the criterion puts greater
emphasis on content.
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Themed Training Set

Poetry LSTM

Themed Output
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Poetry LSTM

Themed Output

Thematic Boosting

Implicit Explicit

Figure 3: Two approaches for generating themed
poetry.

4.1 Themes and Poetic devices
It is important for any generative poetry model to
include themes and poetic devices. One way to
achieve this would be by constructing a corpus
that exhibits the desired themes and devices. To
create a themed corpus about ‘love’, for instance,
we would aggregate love poetry to train the model,
which would thus learn an implicit representation
of love. However, this forces us to generate poetry
according to discrete themes and styles from pre-
trained models, requiring a new training corpus
for each model. In other words, we would suffer
from similar limitations as with the phonetic-level
model, in that we require a dedicated corpus. Al-
ternatively, we can manipulate the language model
by boosting character probabilities at sample time
to increase the probability of sampling thematic
words like ‘love’. This approach is more robust,
and provides us with more control over the final
output, including the capacity to vary the inclusion
of poetic devices in the output.

Themes In order to introduce thematic content,
we heuristically boost the probability of sampling
words that are semantically related to a theme
word from the language model. First, we com-
pile a list of similar words to a key theme word by
retrieving its semantic neighbours from a distribu-
tional semantic model (Mikolov et al., 2013). For
example, the theme winter might include thematic
words frozen, cold, snow and frosty. We represent
these semantic neighbours at the character level,
and heuristically boost their probability by multi-
plying the sampling probability of these character
strings by their cosine similarity to the key word,
plus a constant. Thus, the likelihood of sampling a
thematically related word is artificially increased,
while still constraining the model rhythmically.

Errors per line 1 2 3 4 Total

Phonetic Model 11 2 3 1 28
Character Model + WFST 6 5 1 1 23
Character Model 3 8 7 7 68

Table 1: Number of lines with n errors from a set
of 50 lines generated by each of the three models.

Poetic devices A similar method may be used
for poetic devices such as assonance, consonance
and alliteration. Since these devices can be or-
thographically described by the repetition of iden-
tical sequences of characters, we can apply the
same heuristic to boost the probability of sampling
character strings that have previously been sam-
pled. That is, to sample a line with many instances
of alliteration (multiple words with the same ini-
tial sound) we record the historical frequencies of
characters sampled at the beginning of each previ-
ous word. After a word break character, we boost
the probability that those characters will be sam-
pled again in the softmax. We only keep track of
frequencies for a fixed number of time steps. By
increasing or decreasing the size of this window,
we can manipulate the prevalence of alliteration.
Variations of this approach are applied to invoke
consonance (by boosting intra-word consonants)
and assonance (by boosting intra-word vowels).
An example of two sampled lines with high de-
grees of alliteration, assonance and consonance is
given in Figure 4c.

5 Evaluation

In order to examine how effective our methodolo-
gies for generating poetry are, we evaluate the pro-
posed models in two ways. First, we perform an
intrinsic evaluation where we examine the quality
of the models and the generated poetry. Second,
we perform an extrinsic evaluation where we eval-
uate the generated output using human annotators,
and compare it to human-generated poetry.

5.1 Intrinsic evaluation

To evaluate the ability of both models to gen-
erate formulaic poetry that adheres to rhythmic
rules, we compared sets of fifty sampled lines
from each model. The first set was sampled from
the phonetic-level model trained on Iambic poetry.
The second set was sampled from the character-
level model, constrained to Iambic form. For com-
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Word Line Coverage

Wikipedia 64.84% 83.35% 97.53%
Sonnets 85.95% 80.32% 99.36%

Table 2: Error when transliterating text into
phonemes and reconstructing back into text.

parison, and to act as a baseline, we also sampled
from the unconstrained character model.

We created gold-standard syllabic classifica-
tions by recording each line spoken-aloud, and
marking each syllable as either stressed or un-
stressed. We then compared these observations
to loose Iambic Pentameter (containing all four
variants), to determine how many syllabic mis-
classifications existed on each line. This was done
by speaking each line aloud, and noting where the
speaker put stresses.

As Table 1 shows, the constrained character
level model generated the most formulaic poetry.
Results from this model show that 70% of lines
had zero mistakes, with frequency obeying an in-
verse power-law relationship with the number of
errors. We can see that the phonetic model per-
formed similarly, but produced more subtle mis-
takes than the constrained character model: many
of the errors were single mistakes in an otherwise
correct line of poetry.

In order to investigate this further, we examined
to what extent these errors are due to translitera-
tion (i.e., the phonetic encoding and orthographic
decoding steps). Table 2 shows the reconstruction
accuracy per word and per line when transliterat-
ing either Wikipedia or Sonnets to phonemes us-
ing the CMU pronunciation dictionary and subse-
quently reconstructing English text using the n-
gram model5. Word accuracy reflects the fre-
quency of perfect reconstruction, whereas per line
tri-gram similarity (Kondrak, 2005) reflects the
overall reconstruction. Coverage captures the per-
centage of in-vocabulary items. The relatively low
per-word accuracy achieved on the Wikipedia cor-
pus is likely due to the high frequency of out-of-
vocabulary words. The results show that a signifi-
cant number of errors in the phonetic-level model
are likely to be caused by transliteration mistakes.

5Obviously, calculating this value for the character-level
model makes no sense, since no transliteration occurs in that
case.

5.2 Extrinsic evaluation

We conducted an indistinguishability study with
a selection of automatically generated poetry and
human poetry. As extrinsic evaluations are expen-
sive and the phonetic model was unlikely to do
well (as illustrated in Figure 4e: the model gener-
ates good Iambic form, but not very good English),
we only evaluate on the constrained character-
level model. Poetry was generated with a variety
of themes and poetic devices (see supplementary
material).

The aim of the study was to determine whether
participants could distinguish between human and
machine-generated poetry, and if so to what ex-
tent. A set of 70 participants (of whom 61
were English native speakers) were each shown
a selection of randomly chosen poetry segments,
and were invited to classify them as either hu-
man or generated. Participants were recruited
from friends and people within poetry communi-
ties within the University of Cambridge, with an
age range of 17 to 80, and a mean age of 29. Our
participants were not financially incentivised, per-
ceiving the evaluation as an intellectual challenge.

In addition to the classification task, each partic-
ipant was also invited to rate each poem on a 1-5
scale with respect to three criteria, namely read-
ability, form and evocation (how much emotion
did a poem elicit). We naively consider the over-
all quality of a poem to be the mean of these three
measures. We used a custom web-based environ-
ment, built specifically for this evaluation6, which
is illustrated in Figure 5. Based on human judg-
ments, we can determine whether the models pre-
sented in this work can produce poetry of a similar
quality to humans.

To select appropriate human poetry that could
be meaningfully compared with the machine-
generated poetry, we performed a comprehension
test on all poems used in the evaluation, using the
Dale-Chall readability formula (Dale and Chall,
1948). This formula represents readability as a
function of the complexity of the input words.
We selected nine machine-generated poems with
a high readability score. The generated poems
produced an average score of 7.11, indicating that
readers over 15 years of age should easily be able
to comprehend them.

For our human poems, we focused explicitly on
poetry where greater consideration is placed on

6http://neuralpoetry.getforge.io/
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(a)
The crow crooked on more beautiful and free,
He journeyed off into the quarter sea.
his radiant ribs girdled empty and very -
least beautiful as dignified to see.

(c)
Man with the broken blood blue glass and gold.
Cheap chatter chants to be a lover do.

(e)
The son still streams and strength and spirit.
The ridden souls of which the fills of.

(b)
Is that people like things
(are the way we to figure it
out) and I thought of you
reading and then is your
show or you know we will
finish along will you play.

(d)
How dreary to be somebody,
How public like a frog
To tell one’s name the livelong day
To an admiring bog.

Figure 4: Examples of automatically generated and human generated poetry. (a) Character-level model
- Strict rhythm regularisation - Iambic - No Theme. (b) Character-level model - Strict rhythm regulari-
sation - Anapest. (c) Character-level model - Boosted alliteration/assonance. (d) Emily Dickinson - I’m
nobody, who are you? (e) Phonetic-level model - Nonsensical Iambic lines.

Figure 5: The experimental environment for ask-
ing participants to distinguish between automati-
cally generated and human poetry.

prosodic elements like rhythm and rhyme than se-
mantic content (known as “nonsense verse”). We
randomly selected 30 poems belonging to that cat-
egory from the website poetrysoup.com, of which
eight were selected for the final comparison based
on their comparable readability score. The se-
lected poems were segmented into passages of be-
tween four and six lines, to match the length of the
generated poetry segments. An example of such a
segment is shown in Figure 4d. The human poems
had an average score of 7.52, requiring a similar
level of English aptitude to the generated texts.

The performance of each human poem, along-
side the aggregated scores of the generated poems,
is illustrated in Table 3. For the human poems,

our group of participants guessed correctly that
they were human 51.4% of the time. For the gen-
erated poems, our participants guessed correctly
46.2% of the time that they were machine gener-
ated. To determine whether our results were statis-
tically significant, we performed a Chi2 test. This
resulted in a p-value of 0.718. This indicates that
our participants were unable to tell the difference
between human and generated poetry in any sig-
nificant way. Although our participants generally
considered the human poems to be of marginally
higher quality than our generated poetry, they were
unable to effectively distinguish between them.
Interestingly, our results seem to suggest that our
participants consider the generated poems to be
more ‘human-like’ than those actually written by
humans. In addition, the poem with the highest
overall quality rating is a machine generated one.
This shows that our approach was effective at gen-
erating high-quality rhythmic verse.

It should be noted that the poems that were most
‘human-like’ and most aesthetic respectively were
generated by the neural character model. Gener-
ally the set of poetry produced by the neural char-
acter model was slightly less readable and emo-
tive than the human poetry, but had above average
form. All generated poems included in this evalu-
ation can be found in the supplementary material,
and our code is made available online7.

7https://github.com/JackHopkins/ACLPoetry
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Poet Title Human Readability Emotion Form

Generated Best 0.66 0.60 -0.77 0.90

G. M. Hopkins Carrion Comfort 0.62 -1.09 1.39 -1.55

J. Thornton Delivery of Death 0.60 0.26 -1.38 -0.65

Generated Mean 0.54 -0.28 -0.30 0.23

M. Yvonne Intricate Weave 0.53 2.38 0.94 -1.67

E. Dickinson I’m Nobody 0.52 -0.46 0.92 0.44

G. M. Hopkins The Silver Jubilee 0.52 0.71 -0.33 0.65

R. Dryden Mac Flecknoe 0.51 -0.01 0.35 -0.78

A. Tennyson Beautiful City 0.48 -1.05 0.97 -1.26

W. Shakespeare A Fairy Song 0.45 0.65 1.30 1.18

Table 3: Proportion of people classifying each poem as ‘human’, as well as the relative qualitative scores
of each poem as deviations from the mean.

6 Conclusions

Our contributions are twofold. First, we devel-
oped a neural language model trained on a pho-
netic transliteration of poetic form and content.
Although example output looked promising, this
model was limited by its inability to generalise to
novel forms of verse. We then proposed a more ro-
bust model trained on unformed poetic text, whose
output form is constrained at sample time. This
approach offers greater control over the style of
the generated poetry than the earlier method, and
facilitates themes and poetic devices.

An indistinguishability test, where participants
were asked to classify a randomly selected set of
human “nonsense verse” and machine-generated
poetry, showed generated poetry to be indistin-
guishable from that written by humans. In ad-
dition, the poems that were deemed most ‘hu-
manlike’ and most aesthetic were both machine-
generated.

In future work, it would be useful to investigate
models based on morphemes, rather than char-
acters, which offers potentially superior perfor-
mance for complex and rare words (Luong et al.,
2013), which are common in poetry.
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Cernockỳ, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In IN-
TERSPEECH. volume 2, page 3.

Joanna Misztal and Bipin Indurkhya. 2014. Poetry
generation system with an emotional personality. In
Proceedings of the Fourth International Conference
on Computational Creativity.

Cory Myers, Lawrence R Rabiner, and Aaron E Rosen-
berg. 1980. Performance tradeoffs in dynamic
time warping algorithms for isolated word recog-
nition. Acoustics, Speech and Signal Processing,
IEEE Transactions on 28(6):623–635.

Yael Netzer, David Gabay, Yoav Goldberg, and
Michael Elhadad. 2009. Gaiku: Generating haiku
with word associations norms. In Proceedings of the
Workshop on Computational Approaches to Linguis-
tic Creativity. Association for Computational Lin-
guistics, pages 32–39.

Sujith Ravi and Kevin Knight. 2009. Learning
phoneme mappings for transliteration without paral-
lel data. In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North
American Chapter of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics, pages 37–45.

Holger Schwenk and Jean-Luc Gauvain. 2005. Train-
ing neural network language models on very large
corpora. In Proceedings of the conference on Hu-
man Language Technology and Empirical Methods
in Natural Language Processing. Association for
Computational Linguistics, pages 201–208.

Ilya Sutskever, James Martens, and Geoffrey E Hin-
ton. 2011. Generating text with recurrent neural
networks. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11). pages
1017–1024.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems. pages 3104–3112.

Jukka M Toivanen, Matti Järvisalo, Hannu Toivonen,
et al. 2013. Harnessing constraint programming for
poetry composition. In Proceedings of the Fourth
International Conference on Computational Cre-
ativity. page 160.

Willie Walker, Paul Lamere, and Philip Kwok. 2010.
Freetts 1.2: A speech synthesizer written entirely in
the java programming language.

R Weide. 2005. The carnegie mellon pronouncing dic-
tionary [cmudict. 0.6].

Paul J Werbos. 1990. Backpropagation through time:
what it does and how to do it. Proceedings of the
IEEE 78(10):1550–1560.

Xiaoyuan Yi, Ruoyu Li, and Maosong Sun. 2016. Gen-
erating chinese classical poems with rnn encoder-
decoder. arXiv preprint arXiv:1604.01537 .

177



Xingxing Zhang and Mirella Lapata. 2014. Chinese
poetry generation with recurrent neural networks. In
EMNLP. pages 670–680.

178


	Automatically Generating Rhythmic Verse with Neural Networks

