
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 90–101
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1009

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 90–101
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1009

Joint Learning for Event Coreference Resolution

Jing Lu and Vincent Ng
Human Language Technology Research Institute

University of Texas at Dallas
Richardson, TX 75083-0688

{ljwinnie,vince}@hlt.utdallas.edu

Abstract

While joint models have been developed
for many NLP tasks, the vast majority of
event coreference resolvers, including the
top-performing resolvers competing in the
recent TAC KBP 2016 Event Nugget De-
tection and Coreference task, are pipeline-
based, where the propagation of errors
from the trigger detection component to
the event coreference component is a ma-
jor performance limiting factor. To ad-
dress this problem, we propose a model
for jointly learning event coreference, trig-
ger detection, and event anaphoricity. Our
joint model is novel in its choice of tasks
and its features for capturing cross-task
interactions. To our knowledge, this is
the first attempt to train a mention-ranking
model and employ event anaphoricity for
event coreference. Our model achieves the
best results to date on the KBP 2016 En-
glish and Chinese datasets.

1 Introduction

Within-document event coreference resolution is
the task of determining which event mentions in a
text refer to the same real-world event. Compared
to entity coreference resolution, event coreference
resolution is not only much less studied, but it is
arguably more challenging. The challenge stems
in part from the fact that an event coreference re-
solver typically lies towards the end of the stan-
dard information extraction pipeline, assuming as
input the noisy outputs of its upstream compo-
nents. One such component is the trigger detection
system, which is responsible for identifying event
triggers and determining their event subtypes.

As is commonly known, trigger detection is
another challenging task that is far from being

solved. In fact, in the recent TAC KBP 2016 Event
Nugget Detection and Coreference task, trigger
detection (a.k.a. event nugget detection in KBP)
is deliberately made more challenging by focus-
ing only on detecting the 18 subtypes of triggers
on which the KBP 2015 participating systems’
performances were the poorest (Mitamura et al.,
2016). The best-performing KBP 2016 system on
English trigger detection achieved only an F-score
of 47 (Lu and Ng, 2016).1

Given the difficulty of trigger detection, it is
conceivable that many errors will propagate from
the trigger detection component to the event coref-
erence component in any pipeline architecture
where trigger detection precedes event corefer-
ence resolution. These trigger detection errors
could severely harm event coreference perfor-
mance. For instance, two event mentions could
be wrongly posited as coreferent if the underlying
triggers were wrongly predicted to have the same
subtype. Nevertheless, the top-performing sys-
tems in the KBP 2016 event coreference task all
adopted the aforementioned pipeline architecture
(Liu et al., 2016; Lu and Ng, 2016; Nguyen et al.,
2016). Their performances are not particularly im-
pressive, however: the best English event corefer-
ence F-score (averaged over four scoring metrics)
is only around 30%.

To address this error propagation problem, we
describe a joint model of trigger detection, event
coreference, and event anaphoricity in this pa-
per. Our choice of these three tasks is moti-
vated in part by their inter-dependencies. As men-
tioned above, it is well-known that trigger de-
tection performance has a huge impact on event
coreference performance. Though largely under-
investigated, event coreference could also improve

1This is the best English nugget type result in KBP 2016.
In this paper, we will not be concerned with realis classifica-
tion, as it does not play any role in event coreference.

90

https://doi.org/10.18653/v1/P17-1009
https://doi.org/10.18653/v1/P17-1009

trigger detection. For instance, if two event men-
tions are posited as coreferent, then the under-
lying triggers must have the same event sub-
type. While the use of anaphoricity information
for entity coreference has been extensively stud-
ied (see Ng (2010)), to our knowledge there has
thus far been no attempt to explicitly model event
anaphoricity for event coreference.2 Although
the mention-ranking model we employ for event
coreference also allows an event mention to be
posited as non-anaphoric (by resolving it to a null
candidate antecedent), our decision to train a sep-
arate anaphoricity model and integrate it into our
joint model is motivated in part by the recent suc-
cesses of Wiseman et al. (2015), who showed that
there are benefits in jointly training a noun phrase
anaphoricity model and a mention-ranking model
for entity coreference resolution. Finally, event
anaphoricity and trigger detection can also mu-
tually benefit each other. For instance, any verb
posited as a non-trigger cannot be anaphoric, and
any verb posited as anaphoric must be a trigger.
Note that in our joint model, anaphoricity serves
as an auxiliary task: its intended use is to im-
prove trigger detection and event coreference, po-
tentially mediating the interaction between trigger
detection and event coreference.

Being a structured conditional random field, our
model encompasses two types of factors. Unary
factors encode the features specific for each task.
Binary and ternary factors capture the interaction
between each pair of tasks in a soft manner, en-
abling the learner to learn which combinations of
values of the output variables are more probable.
For instance, the learner should learn that it is not a
good idea to classify a verb both as anaphoric and
as a non-trigger. Our model is similar in spirit to
Durrett and Klein’s (2014) joint model for entity
analysis, which performs joint learning for entity
coreference, entity linking and semantic typing via
the use of interaction features.

Our contributions are two-fold. First, we
present a joint model of event coreference, trigger
detection, and anaphoricity that is novel in terms
of the choice of tasks and the features used to cap-
ture cross-task interactions. Second, our model
achieves the best results to date on the KBP 2016
English and Chinese event coreference tasks.

2Following the entity coreference literature, we over-
load the term anaphoricity, saying that an event mention is
anaphoric if it is coreferent with a preceding mention in the
associated text.

2 Definitions, Task, and Corpora

2.1 Definitions
We employ the following definitions in our discus-
sion of trigger detection and event coreference:

• An event mention is an explicit occurrence
of an event consisting of a textual trigger, ar-
guments or participants (if any), and the event
type/subtype.

• An event trigger is a string of text that most
clearly expresses the occurrence of an event,
usually a word or a multi-word phrase

• An event argument is an argument filler that
plays a certain role in an event.

• An event coreference chain (a.k.a. an event
hopper) is a group of event mentions that re-
fer to the same real-world event. They must
have the same event (sub)type.

To understand these definitions, consider the ex-
ample in Table 1, which contains two coreferent
event mentions, ev1 and ev2. left is the trig-
ger for ev1 and departed is the trigger for ev2.
Both triggers have subtype Movement.Transport-
Person. ev1 has three arguments, Georges Cipri-
ani, prison, and Wednesday with roles Person,
Origin, and Time respectively. ev2 also has three
arguments, He, Ensisheim, and police vehicle with
roles Person, Origin, and Instrument respectively.

2.2 Task
The version of the event coreference task we fo-
cus on in this paper is the Event Nugget Detec-
tion and Coreference task in the TAC KBP 2016
Event Track. While we discuss the role played by
event arguments in event coreference in the previ-
ous subsection, KBP 2016 addresses event argu-
ment detection as a separate shared task. In other
words, the KBP 2016 Event Nugget Detection and
Coreference task focuses solely on trigger detec-
tion and event coreference.

It is worth mentioning that the KBP Event
Nugget Detection and Coreference task, which
started in 2015, aims to address a major weakness
of the ACE 2005 event coreference task. Specif-
ically, ACE 2005 adopts a strict notion of event
identity, with which two event mentions were an-
notated as coreferent if and only if “they had
the same agent(s), patient(s), time, and location”
(Song et al., 2015), and their event attributes (po-
larity, modality, genericity, and tense) were not in-
compatible. In contrast, KBP adopts a more re-
laxed definition of event coreference, allowing two

91

Georges Cipriani[Person], {left}ev1 the prison[Origin] in Ensisheim in northern France on parole on Wednesday[Time].
He[Person] {departed}ev2 Ensisheim[Origin] in a police vehicle[Instrument] bound for an open prison near Strasbourg.

Table 1: Event coreference resolution example.

event mentions to be coreferent as long as they in-
tuitively refer to the same real-world event. Under
this definition, two event mentions can be corefer-
ent even if their time and location arguments are
not coreferent. In our example in Table 1, ev1 and
ev2 are coreferent in KBP because they both refer
to the same event of Cipriani leaving the prison.
However, they are not coreferent in ACE because
their Origin arguments are not coreferent (one Ori-
gin argument involves a prison in Ensisheim while
the other involves the city Ensisheim).

2.3 Corpora

Given our focus on the KBP 2016 Event Nugget
Detection and Coreference task, we employ the
English and Chinese corpora used in this task for
evaluation, referring to these corpora as the KBP
2016 English and Chinese corpora for brevity.
There are no official training sets: the task orga-
nizers simply made available a number of event
coreference-annotated corpora for training. For
English, we use LDC2015E29, E68, E73, and E94
for training. These corpora are composed of two
types of documents, newswire documents and dis-
cussion forum documents. Together they contain
648 documents with 18739 event mentions dis-
tributed over 9955 event coreference chains. For
Chinese, we use LDC2015E78, E105, and E112
for training. These corpora are composed of dis-
cussion forum documents only. Together they con-
tain 383 documents with 4870 event mentions dis-
tributed over 3614 event coreference chains.

The test set for English consists of 169
newswire and discussion forum documents with
4155 event mentions distributed over 3191 event
coreference chains. The test set for Chinese con-
sists of 167 newswire and discussion forum docu-
ments with 2518 event mentions distributed over
1912 event coreference chains. Note that these
test sets contain only annotations for event triggers
and event coreference (i.e., there are no event ar-
gument annotations). While some of the training
sets additionally contain event argument annota-
tions, we do not make use of event argument an-
notations in model training to ensure a fairer com-
parison to the teams participating in the KBP 2016
Event Nugget Detection and Coreference task.

3 Model

3.1 Overview
Our model, which is a structured conditional ran-
dom field, operates at the document level. Specif-
ically, given a test document, we first extract from
it (1) all single-word nouns and verbs and (2) all
words and phrases that have appeared at least once
as a trigger in the training data. We treat each of
these extracted words and phrases as a candidate
event mention.3 The goal of the model is to make
joint predictions for the candidate event mentions
in a document. Three predictions will be made for
each candidate event mention that correspond to
the three tasks in the model: its trigger subtype, its
anaphoricity, and its antecedent.

Given this formulation, we define three types of
output variables:

• Event subtype variables t = (t1, . . . , tn). Each
ti takes a value in the set of 18 event subtypes
defined in KBP 2016 or NONE, which indi-
cates that the event mention is not a trigger.

• Anaphoricity variables a = (a1, . . . , an).
Each ai is either ANAPHORIC or NOT

ANAPHORIC.
• Coreference variables c = (c1, . . . , cn), where
ci ∈ {1, . . . , i − 1, NEW}. In other words,
the value of each ci is the id of its antecedent,
which can be one of the preceding event men-
tions or NEW (if the event mention underly-
ing ci starts a new cluster).

Each candidate event mention is associated with
exactly one coreference variable, one event sub-
type variable, and one anaphoricity variable. Our
model induces the following log-linear probability
distribution over these variables:

p(t,a, c|x; Θ) ∝ exp(
∑

i

θifi(t,a, c,x))

3According to the KBP annotation guidelines, each word
may trigger multiple event mentions (e.g., murder can trig-
ger two event mentions with subtypes Life.Die and Con-
flict.Attack). Hence, our treating each extracted word as a
candidate event mention effectively prevents a word from
triggering multiple event mentions. Rather than complicate
model design by relaxing this simplifying assumption, we
present an alternative, though partial, solution to this prob-
lem wherein we allow each event mention to be associated
with multiple event subtypes. See the Appendix for details.

92

Figure 1: Unary factors for the three tasks, the
variables they are connected to, and the possible
values of the variables. Unary factors encode task-

specific features. Each factor is connected to the correspond-

ing output node. The features associated with a factor are

used to predict the value of the output node it is connected to

when a model is run independently of other models.

where θi ∈ Θ is the weight associated with feature
function fi and x is the input document.

3.2 Features
Given that our model is a structured conditional
random field, the features can be divided into two
types: (1) task-specific features, and (2) cross-
task features, which capture the interactions be-
tween a pair of tasks. We express these two types
of features in factor graph notation. The task-
specific features are encoded in unary factors, each
of which is connected to the corresponding vari-
able (Figure 1). The cross-task features are en-
coded in binary or ternary factors, each of which
couples the output variables from two tasks (Fig-
ure 2). Next, we describe these two types of fea-
tures. Each feature is used to train models for both
English and Chinese unless otherwise stated.

3.2.1 Task-Specific Features
We begin by describing the task-specific features,
which are encoded in unary factors, as well as each
of the three independent models.

3.2.1.1 Trigger Detection
When applied in isolation, our trigger detection
model returns a distribution over possible subtypes
given a candidate trigger. Each candidate trigger t
is represented using t’s word, t’s lemma, word bi-
grams formed with a window size of three from
t, as well as feature conjunctions created by pair-
ing t’s lemma with each of the following features:

Figure 2: Binary and ternary factors. These higher-

order factors capture cross-task interactions. The binary

anaphoricity and trigger factors encourage anaphoric men-

tions to be triggers. The binary anaphoricity and coreference

factors encourage non-anaphoric mentions to start a NEW

coreference cluster. The ternary trigger and coreference fac-
tors encourage coreferent mentions to be triggers.

the head word of the entity syntactically closest to
t, the head word of the entity textually closest to
t, the entity type of the entity that is syntactically
closest to t, and the entity type of the entity that is
textually closest to t.4 In addition, for event men-
tions with verb triggers, we use the head words and
the entity types of their subjects and objects as fea-
tures, where the subjects and objects are extracted
from the dependency parse trees obtained using
Stanford CoreNLP (Manning et al., 2014). For
event mentions with noun triggers, we create the
same features that we did for verb triggers, except
that we replace the subjects and verbs with heuris-
tically extracted agents and patients. Finally, for
the Chinese trigger detector, we additionally cre-
ate two features from each character in t, one en-
coding the character itself and the other encoding
the entry number of the corresponding character in
a Chinese synonym dictionary.5

3.2.1.2 Event Coreference
We employ a mention-ranking model for event
coreference that selects the most probable an-
tecedent for a mention to be resolved (or NEW

if the mention is non-anaphoric) from its set of
candidate antecedents. When applied in isola-
tion, the model is trained to maximize the condi-

4We train a CRF-based entity extraction model for jointly
identifying the entity mentions and their types. Details can
be found in Lu et al. (2016).

5The dictionary is available from http://ir.hit.edu.cn/. An
entry number in this dictionary conceptually resembles a
synset id in WordNet (Fellbaum, 1998).

93

tional likelihood of collectively resolving the men-
tions to their correct antecedents in the training
texts (Durrett and Klein, 2013). Below we de-
scribe the features used to represent the candidate
antecedents for the mention to be resolved, mj .
Features representing the NULL candidate an-
tecedent: Besides mj’s word and mj’s lemma,
we employ feature conjunctions given their useful-
ness in entity coreference (Fernandes et al., 2014).
Specifically, we create a conjunction between
mj’s lemma and the number of sentences preced-
ing mj , as well as a conjunction between mj’s
lemma and the number of mentions preceding mj

in the document.
Features representing a non-NULL candidate
antecedent, mi: mi’s word, mi’s lemma,
whether mi and mj have the same lemma, and fea-
ture conjunctions including: (1) mi’s word paired
with mj’s word, (2) mi’s lemma paired with mj’s
lemma, (3) the sentence distance between mi and
mj paired with mi’s lemma and mj’s lemma, (4)
the mention distance between mi and mj paired
with mi’s lemma and mj’s lemma, (5) a quadru-
ple consisting of mi and mj’s subjects and their
lemmas, and (6) a quadruple consisting of mi and
mj’s objects and their lemmas.

3.2.1.3 Anaphoricity Determination
When used in isolation, the anaphoricity model re-
turns the probability that the given event mention
is anaphoric. To train the model, we represent each
event mention mj using the following features: (1)
the head word of each candidate antecedent paired
with mj’s word, (2) whether at least one candi-
date antecedent has the same lemma as that of mj ,
and (3) the probability that mj is anaphoric in the
training data (if mj never appears in the training
data, this probability is set to 0.5).

3.2.2 Cross-Task Interaction Features
Cross-task interaction features are associated with
the binary and ternary factors.

3.2.2.1 Trigger Detection and Anaphoricity
We fire features that conjoin each candidate event
mention’s event subtype, the lemma of its trigger
and its anaphoricity.

3.2.2.2 Trigger Detection and Coreference
We define our joint coreference and trigger detec-
tion factors such that the features defined on sub-
type variables ti and tj are fired only if current
mention mj is coreferent with preceding mention

mi. These features are: (1) the pair of mi and
mj’s subtypes, (2) the pair of mj’s subtype and
mi’s word, and (3) the pair of mi’s subtype and
mj’s word.

3.2.2.3 Coreference and Anaphoricity
We fire a feature that conjoins event mention mj’s
anaphoricity and whether or not a non-NULL an-
tecedent is selected for mj .

3.3 Training

We learn the model parameters Θ from a set of
d training documents, where document i contains
content xi, gold triggers t∗i and gold event coref-
erence partition C∗

i . Before learning, there are a
couple of issues we need to address.

First, we need to derive gold anaphoricity la-
bels a∗i from C∗

i . This is straightforward: the
first mention of each coreference chain is NOT

ANAPHORIC, whereas the rest are ANAPHORIC.
Second, we employ gold event mentions for

model training, but training models only on gold
mentions is not sufficient: for instance, a trigger
detector trained solely on gold mentions will not
be able to classify a candidate event mention as
NONE during testing. To address this issue, we
additionally train the models on candidate event
mentions corresponding to non-triggers. We cre-
ate these candidate event mentions as follows. For
each word w that appears as a true trigger at least
once in the training data, we create a candidate
event mention from each occurrence of w in the
training data that is not annotated as a true trigger.

Third, since our model produces event corefer-
ence output in the form of an antecedent vector
(with one antecedent per event mention), it needs
to be trained on antecedent vectors. However,
since the coreference annotation for each docu-
ment i is provided in the form of a clustering C∗

i ,
we follow previous work on entity coreference res-
olution (Durrett and Klein, 2013): we sum over
all antecedent structures A(C∗

i) that are consis-
tent with C∗

i (i.e., the first mention of a cluster has
antecedent NEW, whereas each of the subsequent
mentions can select any of the preceding mentions
in the same cluster as its antecedent).

Next, we learn the model parameters to max-
imize the following conditional likelihood of the
training data with L1 regularization:

L(Θ) =

d∑

i=1

log
∑

c∗∈A(C∗
i)

p′(t∗i ,a
∗
i , c

∗|xi; Θ)+λ‖Θ‖1

94

In this objective, p′ is obtained by augment-
ing the distribution p (defined in Section 3.1) with
task-specific parameterized loss functions:

p′(t,a, c|xi; Θ) ∝ p(t,a, c|xi; Θ) exp[αtlt(t, t
∗)

+ αala(a,a
∗) + αclc(c, C

∗)]

where lt, la and lc are task-specific loss functions,
and αt, αa and αc are the associated weight pa-
rameters that specify the relative importance of the
three tasks in the objective function.

Softmax-margin, the technique of integrating
task-specific loss functions into the objective func-
tion, was introduced by Gimpel and Smith (2010)
and subsequently used by Durrett and Klein
(2013, 2014). By encoding task-specific knowl-
edge, these loss functions can help train a model
that places less probability mass on less desirable
output configurations.

Our loss function for event coreference, lc, is
motivated by the one Durrett and Klein (2013) de-
veloped for entity coreference. It is a weighted
sum of the counts of three error types:

lc(c, C
∗) = αc,FAFA(c, C∗)+αc,FNFN(c, C∗)

+ αc,WLWL(c, C∗)

where FA(c, C∗) is the number of non-anaphoric
mentions misclassified as anaphoric, FN(c, C∗)
is the number of anaphoric mentions misclassified
as non-anaphoric, and WL(c, C∗) is the number
of incorrectly resolved anaphoric mentions.

Our loss function for trigger detection, lt, is pa-
rameterized in a similar way, having three param-
eters associated with three error types: αt,FT is
associated with the number of non-triggers mis-
classified as triggers, αt,FN is associated with the
number of triggers misclassified as non-triggers,
and αt,WL is associated with the number of trig-
gers labeled with the wrong subtype.

Finally, our loss function for anaphoricity deter-
mination, la, is also similarly parameterized, hav-
ing two parameters: αa,FA and αa,FN are asso-
ciated with the number of false anaphors and the
number of false non-anaphors, respectively.

Following Durrett and Klein (2014), we use
AdaGrad (Duchi et al., 2011) to optimize our ob-
jective with λ = 0.001 in our experiments.

3.4 Inference

Inference, which is performed during training and
decoding, involves computing the marginals for a

variable or a set of variables to which a factor con-
nects. For efficiency, we perform approximate in-
ference using belief propagation rather than exact
inference. Given that convergence can typically
be reached within five iterations of belief propaga-
tion, we employ five iterations in all experiments.

Performing inference using belief propagation
on the full factor graph defined in Section 3.1 can
still be computationally expensive, however. One
reason is that the number of ternary factors grows
quadratically with the number of event mentions
in a document. To improve scalability, we restrict
the domains of the coreference variables. Rather
than allow the domain of coreference variable cj
to be of size j, we allow a preceding mention mi to
be a candidate antecedent of mention mj if (1) the
sentence distance between the two mentions is less
than an empirically determined threshold and (2)
either they are coreferent at least once in the train-
ing data or their head words have the same lemma.
Doing so effectively enables us to prune the un-
likely candidate antecedents for each event men-
tion. As Durrett and Klein (2014) point out, such
pruning has the additional benefit of reducing “the
memory footprint and time needed to build a fac-
tor graph”, as we do not need to create any factor
between mi and mj and its associated features if
mi is pruned. To further reduce the memory foot-
print, we additionally restrict the domains of the
event subtype variables. Given a candidate event
mention created from word w, we allow the do-
main of its subtype variable to include only NONE

as well as those subtypes that w is labeled with at
least once in the training data.

For decoding, we employ minimum Bayes risk,
which computes the marginals of each variable
w.r.t. the joint model and derives the most prob-
able assignment to each variable.

4 Evaluation

4.1 Experimental Setup
We perform training and evaluation on the KBP
2016 English and Chinese corpora. For English,
we train models on 509 of the training documents,
tune parameters on 139 training documents, and
report results on the official KBP 2016 English test
set.6 For Chinese, we train models on 302 of the
training documents, tune parameters on 81 train-
ing documents, and report results on the official

6The parameters to be tuned are the α’s multiplying the
loss functions and those inside the loss functions.

95

English
MUC B3 CEAFe BLANC AVG-F Trigger Anaphoricity

KBP2016 26.37 37.49 34.21 22.25 30.08 46.99 −
INDEP. 22.71 40.72 39.00 22.71 31.28 48.82 27.35
JOINT 27.41 40.90 39.00 25.00 33.08 49.30 31.94

∆ over INDEP. +4.70 +0.18 0.00 +2.29 +1.80 +0.48 +4.59
Chinese

MUC B3 CEAFe BLANC AVG-F Trigger Anaphoricity
KBP2016 24.27 32.83 30.82 17.80 26.43 40.01 −

INDEP. 22.68 32.97 29.96 17.74 25.84 39.82 19.31
JOINT 27.94 33.01 29.96 20.24 27.79 40.53 23.33

∆ over INDEP. +5.26 +0.04 0.00 +2.50 +1.95 +0.71 +4.02

Table 2: Results of all three tasks on the KBP 2016 evaluation sets. The KBP2016 results are those achieved

by the best-performing coreference resolver in the official KBP 2016 evaluation. ∆ is the performance difference between the

JOINT model and the corresponding INDEP. model. All results are expressed in terms of F-score.

KBP 2016 Chinese test set.
Results of event coreference and trigger de-

tection are obtained using version 1.7.2 of the
official scorer provided by the KBP 2016 or-
ganizers. To evaluate event coreference per-
formance, the scorer employs four scoring
measures, namely MUC (Vilain et al., 1995),
B3 (Bagga and Baldwin, 1998), CEAFe (Luo,
2005) and BLANC (Recasens and Hovy, 2011), as
well as the unweighted average of their F-scores
(AVG-F). The scorer reports event mention detec-
tion performance in terms of F-score, consider-
ing a mention correctly detected if it has an ex-
act match with a gold mention in terms of bound-
ary, event type, and event subtype. In addition,
we report anaphoricity determination performance
in terms of the F-score computed over anaphoric
mentions, counting an extracted anaphoric men-
tion as a true positive if it has an exact match with
a gold anaphoric mention in terms of boundary.

4.2 Results and Discussion

Results are shown in Table 2 where performance
on all three tasks (event coreference, trigger detec-
tion, and anaphoricity determination) is expressed
in terms of F-score. The top half of the table shows
the results on the English evaluation set. Specif-
ically, row 1 shows the performance of the best
event coreference system participating in KBP
2016 (Lu and Ng, 2016). This system adopts a
pipeline architecture. It first uses an ensemble of
one-nearest-neighbor classifiers for trigger detec-
tion. Using the extracted triggers, it then applies
a pipeline of three sieves, each of which is a one-

nearest-neighbor classifier, for event coreference.
As we can see, this system achieves an AVG-F
of 30.08 for event coreference and an F-score of
46.99 for trigger detection.

Row 2 shows the performance of the indepen-
dent models, each of which is trained indepen-
dently of the other models. Specifically, each in-
dependent model is trained using only the unary
factors associated with it. As we can see, the in-
dependent models outperform the top KBP 2016
system by 1.2 points in AVG-F for event corefer-
ence and 1.83 points for trigger detection.

Results of our joint model are shown in row 3.
The absolute performance differences between the
joint model and the independent models are shown
in row 4. As we can see, the joint model outper-
forms the independent models for all three tasks:
by 1.80 points for event coreference, 0.48 points
for trigger detection and 4.59 points for anaphoric-
ity determination. Most encouragingly, the joint
model outperforms the top KBP 2016 system for
both event coreference and trigger detection. For
event coreference, it outperforms the top KBP sys-
tem w.r.t. all scoring metrics, yielding an improve-
ment of 3 points in AVG-F. For trigger detection,
it outperforms the top KBP system by 2.31 points.

The bottom half of Table 2 shows the results on
the Chinese evaluation set. The top KBP 2016
event coreference system on Chinese is also the
Lu and Ng (2016) system. While the top KBP sys-
tem outperforms the independent models for both
tasks (by 0.59 points in AVG-F for event coref-
erence and 0.19 points for trigger detection), our
joint model outperforms the independent models

96

English Chinese
Coref Trigger Anaph Coref Trigger Anaph

INDEP. 31.28 48.82 27.35 25.84 39.82 19.31
INDEP.+CorefTrigger +0.39 +0.42 −0.05 +0.95 +0.56 −0.37
INDEP.+CorefAnaph +0.40 −0.08 +3.45 +0.37 +0.04 −0.11

INDEP.+TriggerAnaph +0.11 +0.38 +1.35 +0.14 +0.52 +0.02
JOINT−CorefTrigger +0.56 −0.06 +4.41 +0.19 +0.35 +3.34
JOINT−CorefAnaph +0.63 +0.66 +1.46 +1.50 +0.88 +0.28

JOINT−TriggerAnaph +1.89 +0.50 +4.01 +1.65 +0.50 +1.79
JOINT +1.80 +0.48 +4.59 +1.95 +0.71 +4.02

Table 3: Results of model ablations on the KBP 2016 evaluation sets. Each row of ablation results is obtained

by either adding one type of interaction factor to the INDEP. model or deleting one type of interaction factor from the JOINT

model. For each column, the results are expressed in terms of changes to the INDEP. model’s F-score shown in row 1.

for all three tasks: by 1.95 points for event coref-
erence, 4.02 points for anaphoricity determination,
and 0.71 points for trigger detection. Like its En-
glish counterpart, our Chinese joint model outper-
forms the top KBP system for both event corefer-
ence and trigger detection. For event coreference,
it outperforms the top KBP system w.r.t. all but the
CEAFe metric, yielding an absolute improvement
of 1.36 points in AVG-F. For trigger detection, it
outperforms the top KBP system by 0.52 points.

For both datasets, the joint model’s superior per-
formance to the independent coreference model
stems primarily from considerable improvements
in MUC F-score. As MUC is a link-based mea-
sure, these results provide suggestive evidence that
joint modeling has enabled more event corefer-
ence links to be discovered.

4.3 Model Ablations

To evaluate the importance of each of the three
types of joint factors in the joint model, we per-
form ablation experiments.7 Table 3 shows the re-
sults on the English and Chinese datasets when we
add each type of joint factors to the independent
model and remove each type of joint factors from
the full joint model. The results of each task are
expressed in terms of changes to the correspond-
ing independent model’s F-score.

7Chen and Ng (2013) also performed ablation on their
ACE-style Chinese event coreference resolver. However,
given the differences in the tasks involved (e.g., they did not
model event anaphoricity, but included tasks such as event ar-
gument extraction and role classification, entity coreference,
and event mention attribute value computation) and the ab-
lation setup (e.g., they ablated individual tasks/components
in their pipeline-based system in an incremental fashion,
whereas we ablate interaction factors rather than tasks), a di-
rect comparison of their observations and ours is difficult.

Coref-Trigger interactions. Among the three
types of factors, this one contributes the most to
coreference performance, regardless of whether it
is applied in isolation or in combination with the
other two types of factors to the independent coref-
erence model. In addition, it is the most effec-
tive type of factor for improving trigger detec-
tion. When applied in combination, it also im-
proves anaphoricity determination, although less
effectively than the other two types of factors.

Coref-Anaphoricity interactions. When ap-
plied in isolation to the independent models, this
type of factor improves coreference resolution but
has a mixed impact on anaphoricity determina-
tion. When applied in combination with other
types of factors, it improves both tasks, partic-
ularly anaphoricity determination. Its impact on
trigger detection, however, is generally negative.

Trigger-Anaphoricity interactions. When ap-
plied in isolation to the independent models, this
type of factor improves both trigger detection
and anaphoricity determination. When applied in
combination with other types of factors, it still im-
proves anaphoricity determination (particularly on
Chinese), but has a mixed effect on trigger detec-
tion. Among the three types of factors, it has the
least impact on coreference resolution.

4.4 Error Analysis

Next, we conduct an analysis of the major sources
of error made by our joint coreference model.

4.4.1 Two Major Types of Precision Error
Erroneous and mistyped triggers. Our trigger
model tends to assign the same subtype to event
mentions triggered by the same word. As a result,
it often assigns the wrong subtype to triggers that

97

possess different subtypes in different contexts.
For the same reason, words that are only some-
times used as triggers are often wrongly posited
as triggers when they are not. These two types of
triggers have in turn led to the establishment of in-
correct coreference links.8

Failure to extract arguments. In the absence of
an annotated corpus for training an argument clas-
sifier, we exploit dependency relations for argu-
ment extraction. Doing so proves inadequate, par-
ticularly for noun triggers, owing to the absence
of dependency relations that can be used to reli-
ably extract their arguments. Moreover, using de-
pendency relations does not allow the extraction of
arguments that do not appear in the same sentence
as their trigger. Since the presence of incompat-
ible arguments is an important indicator of non-
coreference, our model’s failure to extract argu-
ments has resulted in incorrect coreference links.

4.4.2 Three Major Types of Recall Error
Missing triggers. Our trigger model fails to
identify trigger words that are unseen or rarely-
occurring in the training data. As a result, many
coreference links cannot be established.
Lack of entity coreference information. Entity
coreference information is useful for event coref-
erence because the corresponding arguments of
two event mentions are typically coreferent. Since
our model does not exploit entity coreference in-
formation, it treats two lexically different event ar-
guments as non-coreferent/unrelated. This in turn
weakens its ability to determine whether two event
mentions are coreferent. This issue is particularly
serious in discussion forum documents, where it
is not uncommon to see pronouns serve as sub-
jects and objects of event mentions. The situation
is further aggravated in Chinese documents, where
zero pronouns are prevalent.
Lack of contextual understanding. Our model
only extracts features from the sentence in which
an event mention appears. However, additional
contextual information present in neighboring sen-
tences may be needed for correct coreference res-
olution. This is particularly true in discussion fo-
rum documents, where the same event may be de-
scribed differently by different people. For exam-

8In our joint model, mentions that are posited as corefer-
ent are encouraged to have the same subtype. While it can
potentially fix the errors involving coreferent mentions that
have different subtypes, it cannot fix the errors in which the
two mentions involved have the same erroneous subtype.

ple, when describing the fact that Tim Cook will
attend Apple’s Istanbul store opening, one person
said “Cook is expected to return to Turkey for
the store opening”, and another person described
this event as “Tim travels abroad YET AGAIN to
be feted by the not-so-high-and-mighty”. It is by
no means easy to determine that return and travel
trigger two coreferent mentions in these sentences.

5 Related Work

Existing event coreference resolvers have
been evaluated on different corpora, such
as MUC (e.g., Humphreys et al. (1997)),
ACE (e.g., Ahn (2006), Chen and Ji (2009),
McConky et al. (2012), Sangeetha and Arock
(2012), Chen and Ng (2015, 2016), Krause et al.
(2016)), OntoNotes (e.g., Chen et al. (2011)),
the Intelligence Community corpus (e.g.,
Cybulska and Vossen (2012), Araki et al. (2014),
Liu et al. (2014)), the ECB corpus (e.g., Lee et al.
(2012), Bejan and Harabagiu (2014)) and its
extension ECB+ (e.g., Yang et al. (2015)), and
ProcessBank (e.g., Araki and Mitamura (2015)).
The newest event coreference corpora are the ones
used in the KBP 2015 and 2016 Event Nugget
Detection and Coreference shared tasks, in which
the best performers in 2015 and 2016 are RPI’s
system (Hong et al., 2015) and UTD’s system
(Lu and Ng, 2016), respectively. The KBP 2015
corpus has recently been used to evaluate Peng et
al.’s (2016) minimally supervised approach and
Lu et al.’s (2016) joint inference approach to event
coreference. With the rarest exceptions (e.g.,
Lu et al. (2016)), existing resolvers have adopted
a pipeline architecture in which trigger detection
is performed prior to coreference resolution.

6 Conclusion

We proposed a joint model of event coreference
resolution, trigger detection, and event anaphoric-
ity determination. The model is novel in its choice
of tasks and the cross-task interaction features.
When evaluated on the KBP 2016 English and
Chinese corpora, our model not only outperforms
the independent models but also achieves the best
results to date on these corpora.

Acknowledgments

We thank the three anonymous reviewers for their
detailed comments. This work was supported in
part by NSF Grants IIS-1219142 and IIS-1528037.

98

References
David Ahn. 2006. The stages of event extraction.

In Proceedings of the COLING/ACL Workshop on
Annotating and Reasoning about Time and Events.
pages 1–8.

Jun Araki, Zhengzhong Liu, Eduard Hovy, and Teruko
Mitamura. 2014. Detecting subevent structure for
event coreference resolution. In Proceedings of the
Ninth International Conference on Language Re-
sources and Evaluation, pages 4553–4558.

Jun Araki and Teruko Mitamura. 2015. Joint event trig-
ger identification and event coreference resolution
with structured perceptron. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 2074–2080.

Amit Bagga and Breck Baldwin. 1998. Algorithms
for scoring coreference chains. In Proceedings of
the Linguistic Coreference Workshop at The First In-
ternational Conference on Language Resources and
Evaluation, pages 563–566.

Cosmin Adrian Bejan and Sanda Harabagiu. 2014. Un-
supervised event coreference resolution. Computa-
tional Linguistics 40(2):311–347.

Bin Chen, Jian Su, Sinno Jialin Pan, and Chew Lim
Tan. 2011. A unified event coreference resolution by
integrating multiple resolvers. In Proceedings of the
Fifth International Conference on Natural Language
Processing. pages 102–110.

Chen Chen and Vincent Ng. 2013. Chinese event
coreference resolution: Understanding the state of
the art. In Proceedings of the 6th International Joint
Conference on Natural Language Processing. pages
822–828.

Chen Chen and Vincent Ng. 2015. Chinese event
coreference resolution: An unsupervised probabilis-
tic model rivaling supervised resolvers. In Proceed-
ings of Human Language Technologies: The 2015
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics.
pages 1097–1107.

Chen Chen and Vincent Ng. 2016. Joint inference over
a lightly supervised information extraction pipeline:
Towards event coreference resolution for resource-
scarce languages. In Proceedings of the 30th AAAI
Conference on Artificial Intelligence. pages 2913–
2920.

Zheng Chen and Heng Ji. 2009. Graph-based event
coreference resolution. In Proceedings of the 2009
Workshop on Graph-based Methods for Natural
Language Processing (TextGraphs-4), pages 54–57.

Agata Cybulska and Piek Vossen. 2012. Using se-
mantic relations to solve event coreference in text.
In Proceedings of the LREC Workshop on Semantic
Relations-II Enhancing Resources and Applications,
pages 60–67.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research 12:2121–2159.

Greg Durrett and Dan Klein. 2013. Easy victories and
uphill battles in coreference resolution. In Proceed-
ings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 1971–1982.

Greg Durrett and Dan Klein. 2014. A joint model for
entity analysis: Coreference, typing, and linking.
Transactions of the Association for Computational
Linguistics 2:477–490.

Christiane Fellbaum. 1998. WordNet: An Electronical
Lexical Database. MIT Press, Cambridge, MA.

Eraldo Rezende Fernandes, Cı́cero Nogueira dos San-
tos, and Ruy Luiz Milidiu. 2014. Latent trees for
coreference resolution. Computational Linguistics
40(4):801–835.

Kevin Gimpel and Noah A Smith. 2010. Softmax-
margin CRFs: Training log-linear models with cost
functions. In Human Language Technologies: The
2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 733–736.

Yu Hong, Di Lu, Dian Yu, Xiaoman Pan, Xiaobin
Wang, Yadong Chen, Lifu Huang, and Heng Ji.
2015. RPI BLENDER TAC-KBP2015 system de-
scription. In Proceedings of the Eighth Text Analysis
Conference.

Kevin Humphreys, Robert Gaizauskas, and Saliha Az-
zam. 1997. Event coreference for information ex-
traction. In Proceedings of the ACL/EACL Work-
shop on Operational Factors in Practical, Robust
Anaphora Resolution for Unrestricted Texts, pages
75–81.

Sebastian Krause, Feiyu Xu, Hans Uszkoreit, and Dirk
Weissenborn. 2016. Event linking with sentential
features from convolutional neural networks. In
Proceedings of the 20th SIGNLL Conference on
Computational Natural Language Learning, pages
239–249.

Heeyoung Lee, Marta Recasens, Angel Chang, Mihai
Surdeanu, and Dan Jurafsky. 2012. Joint entity and
event coreference resolution across documents. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning, pages
489–500.

Zhengzhong Liu, Jun Araki, Eduard Hovy, and Teruko
Mitamura. 2014. Supervised within-document event
coreference using information propagation. In Pro-
ceedings of the Ninth International Conference on
Language Resources and Evaluation, pages 4539–
4544.

99

Zhengzhong Liu, Jun Araki, Teruko Mitamura, and Ed-
uard Hovy. 2016. CMU-LTI at KBP 2016 event
nugget track. In Proceedings of the Ninth Text Anal-
ysis Conference.

Jing Lu and Vincent Ng. 2016. UTD’s event nugget
detection and coreference system at KBP 2016. In
Proceedings of the Ninth Text Analysis Conference.

Jing Lu, Deepak Venugopal, Vibhav Gogate, and Vin-
cent Ng. 2016. Joint inference for event corefer-
ence resolution. In Proceedings of the 26th Inter-
national Conference on Computational Linguistics,
pages 3264–3275.

Xiaoqiang Luo. 2005. On coreference resolution per-
formance metrics. In Proceedings of Human Lan-
guage Technology Conference and Conference on
Empirical Methods in Natural Language Process-
ing, pages 25–32.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55–60.

Katie McConky, Rakesh Nagi, Moises Sudit, and
William Hughes. 2012. Improving event co-
reference by context extraction and dynamic feature
weighting. In Proceedings of the 2012 IEEE Inter-
national Multi-Disciplinary Conference on Cogni-
tive Methods in Situation Awareness and Decision
Support, pages 38–43.

Teruko Mitamura, Zhengzhong Liu, and Eduard Hovy.
2016. Overview of TAC-KBP 2016 event nugget
track. In Proceedings of the Ninth Text Analysis
Conference.

Vincent Ng. 2010. Supervised noun phrase coreference
research: The first fifteen years. In Proceedings of
the 48th Annual Meeting of the Association for Com-
putational Linguistics. pages 1396–1411.

Thien Huu Nguyen, Adam Meyers, and Ralph Grish-
man. 2016. New York University 2016 system for
KBP event nugget: A deep learning approach. In
Proceedings of Ninth Text Analysis Conference.

Haoruo Peng, Yangqiu Song, and Dan Roth. 2016.
Event detection and co-reference with minimal su-
pervision. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Pro-
cessing. pages 392–402.

Marta Recasens and Eduard Hovy. 2011. BLANC:
Implementing the Rand Index for coreference eval-
uation. Natural Language Engineering 17(4):485–
510.

S. Sangeetha and Michael Arock. 2012. Event coref-
erence resolution using mincut based graph clus-
tering. In Proceedings of the Fourth International
Workshop on Computer Networks & Communica-
tions pages 253–260.

Zhiyi Song, Ann Bies, Stephanie Strassel, Tom Riese,
Justin Mott, Joe Ellis, Jonathan Wright, Seth Kulick,
Neville Ryant, and Xiaoyi Ma. 2015. From light
to rich ERE: Annotation of entities, relations, and
events. In Proceedings of the 3rd Workshop on
EVENTS, pages 89–98.

Marc Vilain, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman. 1995. A model-
theoretic coreference scoring scheme. In Proceed-
ings of the Sixth Message Understanding Confer-
ence, pages 45–52.

Sam Wiseman, Alexander M. Rush, Stuart Shieber, and
Jason Weston. 2015. Learning anaphoricity and an-
tecedent ranking features for coreference resolution.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1416–1426.

Bishan Yang, Claire Cardie, and Peter Frazier. 2015.
A hierarchical distance-dependent Bayesian model
for event coreference resolution. Transactions of the
Association for Computational Linguistics 3:517–
528.

Appendix: Handling Words that Trigger
Multiple Event Mentions

In KBP, a word can trigger multiple event men-
tions. However, since we create exactly one can-
didate event mention from each extracted word in
each test document, our model effectively prevents
a word from triggering multiple event mentions.
This poses a problem: each word cannot be as-
sociated with more than one event subtype. This
appendix describes how we (partially) address this
issue that involves allowing each event mention to
be associated with multiple event subtypes.

To address this problem, we preprocess the gold
trigger annotations in the training data as follows.
First, for each word triggering multiple event men-
tions (with different event subtypes), we merge
their event mentions into one event mention hav-
ing the combined subtype. In principle, we can
add each of these combined subtypes into our
event subtype inventory and allow our model to
make predictions using them. However, to avoid
over-complicating the prediction task (by having
a large subtype inventory), we only add the three
most frequently occurring combined subtypes in
the training data to the inventory. Merged men-
tions whose combined subtype is not among the
most frequent three will be unmerged in order to
recover the original mentions so that the model can
still be trained on them.

100

To train our joint model, however, the trigger
annotations and the event coreference annotations
in the training data must be consistent. Since we
modified the trigger annotations (by merging event
mentions and allowing combined subtypes), we
make two modifications to the event coreference
annotations to ensure consistency between the two
sets of annotations. First, let C1 and C2 be two
event coreference chains in a training document
such that the set of words triggering the event
mentions in C1 (with subtype t1) is the same as
that triggering the event mentions in C2 (with sub-
type t2). If each of the event mentions in C1 was
merged with the corresponding event mention in
C2 during the aforementioned preprocessing of the
trigger annotations (because combining t1 and t2
results in one of the three most frequent combined
subtypes), then we delete one of the two corefer-
ence chains, and assign the combined subtype to
the remaining chain. Finally, we remove any re-
maining event mentions that were merged during
the preprocessing of trigger annotations from their
respective coreference chains and create a single-
ton cluster for each of the merged mentions.

101

	Joint Learning for Event Coreference Resolution

