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Abstract

We introduce GoWvis1, an interactive web
application that represents any piece of
text inputted by the user as a graph-of-
words and leverages graph degeneracy and
community detection to generate an ex-
tractive summary (keyphrases and sen-
tences) of the inputted text in an un-
supervised fashion. The entire analysis
can be fully customized via the tuning of
many text preprocessing, graph building,
and graph mining parameters. Our sys-
tem is thus well suited to educational pur-
poses, exploration and early research ex-
periments. The new summarization strat-
egy we propose also shows promise.

1 Introduction

The term independence assumption made by the
traditional Bag-of-Words (BoW) representation of
text comes with many limitations. One approach
that challenges this assumption is the Graph-of-
Words model (GoW). As shown in Figure 1, it rep-
resents a textual document as a graph whose ver-
tices are unique terms in the document and whose
edges capture term co-occurrence within a win-
dow of predetermined, fixed size, that is slided
over the entire document from start to finish.

This approach is statistical, as terms are linked
based on local context of co-occurrence only, re-
gardless of any semantic or syntactic information
(Distributional Hypothesis). Unlike BoW, GoW
encodes term dependency and term order (via di-
rected edges). The strength of the dependence be-
tween two words can also be captured by assigning
a weight to the edge that links them. While other
definitions can be used, we consider here edge

1https://safetyapp.shinyapps.io/
GoWvis/
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Figure 1: Graph-of-Words representation with POS-based screening, and
directed, weighted edges. Non-(nouns and adjectives) in italic.

weights to be integers matching co-occurrence
counts.

GoW can be tracked back to the works of (Mi-
halcea and Tarau, 2004) and (Erkan and Radev,
2004) who applied it to the tasks of unsupervised
keyword extraction and extractive single docu-
ment summarization. Notably, the former effort
ranked nodes based on a modified version of the
PageRank algorithm.

Recently, (Rousseau and Vazirgiannis, 2015)
showed that degeneracy-based approaches (i.e.,
extracting dense, cohesive subgraphs) could out-
perform PageRank for unsupervised keyword ex-
traction. We will show in subsection 3.4 how com-
bining this strategy with graph clustering may im-
prove summarization performance for multitopic
documents. Other NLP tasks on which GoW-
based approaches have reached new state-of-the-
art include ad-hoc information retrieval (Rousseau
and Vazirgiannis, 2013) and document classifica-
tion (Rousseau et al., 2015; Malliaros and Skianis,
2015). The high success, promising potential and
visual nature of the GoW representation was the
impetus for the development of GoWvis.
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The remainder of this paper is organized as fol-
lows: Section 2 provides some background on
graph degeneracy and community detection, Sec-
tion 3 presents our system, and finally, Section 4
concludes and discusses future work.

2 Graph mining

2.1 Graph degeneracy

k-core. A core of order k (or k-core) of a graph G
is a maximal connected subgraph of G in which
every vertex v has at least degree k (Seidman,
1983). It is a relaxation of a clique: a k-core
with k + 1 members is a subgraph where every
two nodes are adjacent, that is, a clique (Luce and
Perry, 1949). In the classical unweighted case,
edge weights are not taken into account and thus
the degree of a node v is simply equal to the num-
ber of its neighbors. In the weighted (or general-
ized) case, the degree of a vertex v is the sum of
the weights of its incident edges.

k-core decomposition. The k-core decomposi-
tion of a graph G is the list of all its cores from 0
(G itself) to kmax (its main core). It forms a hi-
erarchy of subgraphs that are recursively included
in one another and whose cohesiveness and size
respectively increases and decreases with k (Seid-
man, 1983). A linear (resp. linearithmic) time al-
gorithm for k-core decomposition can be found in
(Batagelj and Zaveršnik, 2002) for the unweighted
(resp. weighted) case. Both algorithms implement
a pruning process that removes the lowest degree
node at each step.

The core number of a node is the highest or-
der of a core that contains this node. Nodes with
high core numbers have the desirable property of
not only being central (like nodes with high de-
gree centrality) but also part of cohesive subgraphs
with other central nodes (i.e., the other members
of the upper cores). For this reason, they make,
among other things, influential spreaders (Kitsak
et al., 2010) and good keywords (Rousseau and
Vazirgiannis, 2015).

The main core of a graph yields a fast (but
rough) approximation of its densest subgraph. In-
deed, it may contain in some cases a very large
portion of the nodes of the graph. As (Seid-
man, 1983) puts it, k-cores should be regarded as
seedbeds within which it is possible to find more
cohesive subgraphs.

k-truss. A triangle-based extension of k-core
that yields densest subgraphs is k-truss (Cohen,

2008). More precisely, the k-truss of a graph G
is the largest subgraph of G in which every edge
belongs to at least k− 2 cycle subgraphs of length
3 (i.e., triangles). Put differently, every edge in the
k-truss joins two vertices that have at least k − 2
common neighbors.

k-truss decomposition. The k-truss decompo-
sition of a graph G is the set of all its k-trusses
from k − 2 to kmax. The k-trusses correspond to
densely connected subsets of the k-cores that can
be viewed as their essential parts (Malliaros et al.,
2016). The maximal k-truss thus yields a smaller
and denser subgraph of G that better approximates
its densest subgraph. Nevertheless, the finer reso-
lution of the k-truss decomposition comes at the
cost of a greater complexity, polynomial in the
number of edges (Wang and Cheng, 2012).

By analogy with k-core, the truss number of
an edge is the highest order of a truss the edge be-
longs to. By extension, we define the truss number
of a node as the maximum truss number of its in-
cident edges, like in (Malliaros et al., 2016).

We wrote our own implementation of weighted
k-core in R (R Core Team, 2015). For unweighted
k-core, we used the igraph package (Csardi and
Nepusz, 2006), and for k-truss, the C++ imple-
mentation offered by (Wang and Cheng, 2012).

2.2 Community detection

While the k-core and k-truss decomposition algo-
rithms converge towards the unique most cohesive
subgraph of a graph, the task of community de-
tection consists in clustering a graph into multi-
ple groups within which connections are dense and
between which they are sparse (Fortunato, 2010).

Many community detection algorithms have
been proposed, of which some of the most pop-
ular are listed below. The fundamental Modularity
function used by the first three algorithms mea-
sures the strength of the partition of a graph by
comparing the number of within-group edges to
the expected such number in a null model (New-
man and Girvan, 2004).

The fast greedy algorithm (Clauset et al., 2004)
merges at each step the pair of nodes that yields
the largest gain in modularity until a single com-
munity remains. The best partition is the one as-
sociated with the greatest modularity value.

The multi-level (or Louvain) algorithm (Blon-
del et al., 2008) first aggregates each node with
one of its neighbors such that the gain in modu-
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larity is maximized. Then, the groupings obtained
at the first step are turned into nodes, yielding a
new graph. This two-step process iterates until a
peak in modularity is attained and no more change
occurs.

The walktrap algorithm (Pons and Latapy,
2005) uses agglomerative hierarchical clustering
with a random walk-based distance between ver-
tices to obtain a set of subdivisions of the graph.
The optimal clustering is given by the level of the
hierarchy that maximizes modularity.

Finally, the infomap algorithm (Rosvall and
Bergstrom, 2008) optimizes the map equation to
find an optimal compression of a description of
information flow in the graph. Unlike other afore-
mentioned algorithms, infomap works for directed
networks.

We used the R wrappers of the igraph C im-
plementations of the algorithms presented above.
Note that all igraph implementations can (option-
ally) take edge weights into account. Unless men-
tioned, all other parameters remained at their de-
fault values.

3 GoWvis

Our system was developed in R Shiny (Chang et
al., 2015), and can be broken down into the four
modules shown in Figure 2. The steps are sequen-
tial except the last two which are performed in
parallel. In what follows, we present the tuning
parameters involved at each step and discuss their
individual impact (all other parameters being held
constant).

1) Text

Preprocessing 

2) GoW building

3) GoW mining
4a) GoW plotting 

4b) Text 

Summarization 

Figure 2: System architecture

3.1 Text preprocessing
The first module cleans the inputted text by (1)
removing special characters, punctuation marks
except the ones indicative of sentence boundary
(used by the second module, see subsection 3.2)
and intra-word dashes, (2) removing numbers ex-
cept dates (like “2016”), and (3) tokenizing. In
addition to R built-in functions, the stringr pack-
age (Wickham, 2015) is used here. Also, text is

split into sentences using the implementation of
the Apache OpenNLP Maxent sentence detector
offered by the openNLP R package (Hornik, 2015).
The list of sentences is eventually passed to the
fourth module (see subsection 3.4). Additionally,
the user is provided with the following tuning pa-
rameters:

Keep only nouns and adjectives? Boolean, de-
faults to TRUE. Uses openNLP’s implementation
of the Apache OpenNLP Maxent POS tagger to
perform part-of-speech (POS) tagging. Then, fol-
lowing (Mihalcea and Tarau, 2004), only nouns
and adjectives are kept.

Stopwords removal. Boolean, defaults to
TRUE. Only actionable if no POS-based screen-
ing is performed. Removes common English stop-
words2 from the SMART information retrieval
system.

Stemming. Boolean, defaults to TRUE. Re-
tains only the stem of each term by implement-
ing Porter’s stemmer with the R SnowballC pack-
age (Bouchet-Valat, 2014). For instance, when
stemming is performed, win and winning are both
collapsed to win. Stemming thus tends to yield
smaller and denser graphs.

The unique words that passed the aforelisted
preprocessing steps are then used as the nodes of
the graph-of-words.

3.2 Graph-of-Words building

The graph-of-words is constructed by adding
edges between the n nodes previously obtained.
Complexity is O(nW ) where W is window size.
The module offers the following tuning parame-
ters:

Window size. Integer between 2 and 12, de-
faults to 3. Specifies the size of the window slided
over the document. Values around 3 and 4 have
been reported to work well (Mihalcea and Tarau,
2004; Malliaros and Skianis, 2015). Note that
the larger the window, the denser the graph, since
more edges are created while the number of nodes
remains constant.

Build on processed text? Boolean, defaults to
TRUE. Whether the window should be slided over
the (1) processed or the (2) unprocessed text. May
yield very different results, depending on the pre-
processing steps that have been applied. Indeed,

2http://jmlr.org/papers/volume5/
lewis04a/a11-smart-stop-list/english.
stop
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two words that are initially very distant in the orig-
inal, unprocessed text and whose co-occurence
would therefore not be captured may end up close
to each other in the processed text if many words
between them (e.g., stopwords) were removed as
a result of preprocessing. Consequently, build-
ing the graph from the processed text tends to
link more distant words and produce denser graphs
than when using the unprocessed text.

Overspan sentences? Boolean, defaults to
TRUE. If FALSE, an edge between two co-
occurring words is only created (or if the edge al-
ready exists, its weight is only incremented) if the
two words belong to the same sentence. The punc-
tuation marks “.”, “;”, “!”, “?”, and “...” are used
here as sentence boundaries.

Color. List, defaults to heat. A set of five
built-in R palettes to color the nodes of the graph,
including the color-blind-friendly gray.colors.
Node colors match their core (or truss) number
(also indicated in a legend) and go darker as k in-
creases.

3.3 Graph-of-Words mining

This module analyzes the graph-of-words returned
at the previous step using graph degeneracy and
community detection. The user can tweak the fol-
lowing parameters to customize the analysis:

Degeneracy. List, defaults to “weighted k-
core”. Choice of the graph decomposition method,
among “k-core”, “weighted k-core”, and “k-
truss”. If “weighted k-core” is selected, the edge
weights appear as edge labels in the plot.

Directed? Boolean, defaults to TRUE. Whether
edge direction should be taken into account in
computing node degree. Only actionable if a
degree-based degeneracy algorithm has been se-
lected (i.e., any but “k-truss”). When TRUE,
edges in the plot feature arrows indicating their di-
rection.

Mode. List, defaults to “all”. Which of the in-
cident edges of a node should be taken into ac-
count in computing its degree, between “all” (all
edges), “in” (incoming edges only), or “out” (out-
going edges only). Only actionable if edge direc-
tion is taken into account, and only impacts the
output of the k-core algorithms. Note that the de-
fault value “all” gives the same results as when
edge direction is ignored, but generates a plot with
arrow edges.

Community detection? List, defaults to “none”.

Choice of the graph clustering algorithm, among
“fast greedy”, “louvain”, “walktrap”, “infomap”,
and “none”. If not “none”, each main community
(see size threshold parameter below) is separately
degenerated. If “walktrap”, the user can select
the length of the random walks between 2 and 8
(defaults to 4). If “infomap”, the user can spec-
ify whether edge direction should be taken into
account. Clustering increases coverage for mul-
titopic documents.

Weighted? Boolean, defaults to FALSE.
Whether edge weights should be used by the com-
munity detection algorithm. Only actionable if the
community detection parameter is not “none”. If
TRUE, the edge weights appear as edge labels in
the plot.

Size threshold. Numeric (from 0.4 to 1.0, by
0.1), defaults to 0.8. Only actionable if the com-
munity detection parameter is not “none”. Per-
centile size threshold used to determine which
communities should be considered to be main
ones. For instance, the default value of 0.8 retains
as main communities the ones whose sizes (i.e.,
number of nodes) exceed that of 80% of all de-
tected communities. As will be further illustrated
in subsection 3.4, this parameter enables the user
to chose whether the summary should cover only
the major or also the subtle topics of the docu-
ment. Nonetheless, diminishing size threshold in-
creases the risk of including irrelevant (or noise)
topics in the summary.

3.4 Text summarization

The fourth module uses the results from the previ-
ous step (graph mining) to (1) extract keyphrases
from and (2) select a subset of the original sen-
tences in the document inputted by the user in an
unsupervised manner. It is performed in paral-
lel with the graph plotting module (see subsection
3.5).

1. Keyphrase extraction. The terms whose
core (or truss) number is exactly equal to kmax −
p are used as seeds from which keyphrases (n-
grams) are reconstructed. p is an integer parame-
ter between 0 and 10 that lets the user navigate the
core (or truss) hierarchy up and down. If p = 0
(the default), the main core is used. Whenever
kmax ≤ p, the user is informed that their selec-
tion is empty. In practice, one would want to re-
tain all the words whose core (or truss) number is
at least equal to kmax − p, that is, the members
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of the (kmax − p)-core (or truss), and this is in-
deed what we do for sentence selection (see “Sen-
tence selection” paragraph below). Here though,
we only use a single slice of the hierarchy (called
a shell) to make it clear for the user how the pro-
cess of keyword extraction and keyphrase recon-
struction works.

Reconciliation is then performed by pasting to-
gether the seeds that are found adjacent in the orig-
inal, unprocessed text. For example, if “algebra”
and “linear” both belong to the selected shell and
“linear algebra” is present in the text, the two seeds
are collapsed and added to the set of candidate
keyphrases. Duplicates and keyphrases included
in higher order keyphrases are then discarded.

When community detection is used, as already
explained, each main community is separately de-
generated. The entire process of keyterm extrac-
tion and keyphrase reconstruction is then run for
each main community, ensuring that keyphrases
cover the main topics in the document.

Example. We created a two-topic 925-word
document3 by drawing and intertwining an equal
number of sentences from two Wikipedia articles,
one about the website Stack Overflow (SO) and
one about pizza. With all default parameters, the
keyphrases extracted are all about SO: stack over-
flow, user, answer question... However, still with
all default parameters, by simply enabling com-
munity detection (e.g., with “fast greedy”), the
two topics are detected (answer question, pizza
margherita, queen margherita).

Related work. Similarly, (Bougouin et al.,
2013) have used clustering and graph mining for
keyphrase extraction, but the other way around.
They first group candidate keyphrases into topics
via hierarchical clustering (with a word overlap
distance), and then apply PageRank on a complete
graph with topic nodes and edge weights based on
keyphrase offset positions. Closer to our approach
is that of (Grineva et al., 2009). Like us, they also
observe that terms tend to cluster based on topic
and that the largest communities correspond to the
main themes in the document. However, they use
a complete graph where edges are weighted based
on Wikipedia-based semantic relatedness. Addi-
tionally, they select all the terms in the top-ranked
communities whereas we extract only a highly co-
hesive subgraph from each main group.

3https://github.com/Tixierae/examples/
blob/master/sopz.txt

2. Sentence selection. Unlike for keyphrase
extraction, the entire kmax − p core (or truss) is
used here as seedbed. Representative members
are drawn from the list of sentences extracted from
the original document (in subsection 3.1) follow-
ing a three-step process: (1) sentences that do not
contain any term belonging to the selected core
(or truss) are pruned out, (2) the remaining sen-
tences are ranked in decreasing order according
to how many different central terms they feature,
and finally, (3) sentences are selected one at a time
from the top until a certain summary length has
been reached. If two or more sentences have the
same rank, the longest and least redundant is se-
lected, where length is the number of words in
the sentence and redundancy is computed in terms
of word overlap with the current summary (stem-
ming and stopword removal are performed based
on user selection). The summary length tuning pa-
rameter is a decimal number (between 0.01 and
0.51, by 0.05, defaults to 0.01) indicating the per-
centage of total candidate sentences (from step 2
above) to include in the summary. Again, if com-
munity detection is performed, the process is run
separately for each community, enabling coverage
of the main topics in the document. In the pre-
vious example, using community detection gener-
ates a 11:1 compression ratio summary covering
both themes (not shown here due to space limita-
tions).

3.5 Graph plotting

Done in parallel with text summarization. Plots
an interactive, dynamic browser-based represen-
tation of the graph-of-words using igraph and
the visNetwork R package (Almende B.V. and
Thieurmel, 2016).

4 Conclusion and next steps

We have presented GoWvis, a freely accessible
web application providing an engaging illustra-
tion of the GoW concept and how it can be ap-
plied to unsupervised extractive single document
summarization. Through trial and error, users can
navigate the parameter space and develop an in-
tuition as for which parameter values may be op-
timal for a given task and the particular type of
text at hand. Future work should add support for
directed degeneracy algorithms (Giatsidis et al.,
2011). While showing promise, our summariza-
tion approach needs refinement and formal exper-
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iments to quantify how it compares to the state-
of-the-art. When p > 0, taking into account the
core (or truss) numbers of terms could yield better
sentence ranking.
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