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Abstract

This paper presents a conversational, mul-
timedia, virtual science tutor for elemen-
tary school students. It is built using
state of the art speech recognition and spo-
ken language understanding technology.
This virtual science tutor is unique in that
it elicits self-explanations from students
for various science phenomena by engag-
ing them in spoken dialogs and guided
by illustrations, animations and interactive
simulations. There is a lot of evidence that
self-explanation works well as a tutorial
paradigm, Summative evaluations indicate
that students are highly engaged in the tu-
toring sessions, and achieve learning out-
comes equivalent to expert human tutors.
Tutorials are developed through a process
of recording and annotating data from ses-
sions with students, and then updating tu-
tor models. It enthusiastically supported
by students and teachers. Teachers report
that it is feasible to integrate into their cur-
riculum.

1 Introduction

According to the 2009 National Assessment of Ed-
ucational Progress (NAEP, 2009), only 34 percent
of fourth-graders, 30 percent of eighth-graders,
and 21 percent of twelfth-graders tested as profi-
cient in science. Thus, over two thirds of U.S. stu-
dents are not proficient in science. The vast major-
ity of these students are in low-performing schools
that include a high percentage of disadvantaged
students from families with low socioeconomic
status, which often include English learners with
low English language proficiency. Analysis of the
NAEP scores in reading, math and science over
the past twenty years indicate that this situation

is getting worse. For example, the gap between
English learners and English-only students, which
is over one standard deviation lower for English
learners, has increased rather than decreased over
the past 20 years. Moreover, science instruction is
often underemphasized in U.S. schools, with read-
ing and math being stressed.

The Program for International Student As-
sessment (PISA), coordinated by the Organiza-
tion for Economic Cooperation and Development
(OECD), is administered every three years in 65
countries across the world. According to their
findings in 2012, the U.S. average science score
was not measurably different from the OECD av-
erage.

Our approach to address this problem is a con-
versational multimedia virtual tutor for elemen-
tary school science. The operating principles for
the tutor are grounded on research from education
and cognitive science where it has been shown that
eliciting self-explanations plays an important role
(Chi et al., 1989; Chi et al., 1994; Chi et al., 2001;
Hausmann and VanLehn, 2007a; Hausmann and
VanLehn, 2007b). Speech, language and charac-
ter animation technologies play a central role be-
cause the focus of the system is on engagement
and spoken explanations by students during spo-
ken dialogs with the virtual tutor. Summative eval-
uations indicate that students are highly engaged
in the tutoring sessions, and achieve learning out-
comes equivalent to expert human tutors (Ward et
al., 2011; Ward et al., 2013). Surveys of partici-
pating teachers indicate that it is feasible to incor-
porate the intervention into their curriculum. Also,
importantly, most student surveys indicate enthu-
siastic support for the system.

Tutorials are developed through an iterative pro-
cess of recording, annotating and analyzing logs
from sessions with students, and then updating tu-
tor models. This approach has been used to de-
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velop over 100 tutorial dialog sessions, of about
15 minutes each, in 8 areas of elementary school
science.

My Science Tutor (MyST) provides a supple-
ment to normal classroom science instruction that
immerses students in a multimedia environment
with a virtual science tutor that models an en-
gaging and effective human tutor. The focus of
the program is to improve each student’s engage-
ment, motivation and learning by helping them
learn to visualize, reason about and explain sci-
ence during conversations with the virtual tutor.
The learning principles embedded in MyST are
consistent with conclusions and recommendations
of the National Research Council Report, “Taking
Science to School: Learning and Teaching Science
in Grades K-8” (NRC, 2007), which emphasizes
the critical importance of scientific discourse in K-
12 science education. The report identifies the fol-
lowing crucial principles of scientific proficiency:

Students who are proficient in science:

1. Know, use, and interpret scientific explana-
tions of the natural world;

2. Generate and evaluate scientific evidence
and explanations;

3. Understand the nature and development of
scientific knowledge; and

4. Participate productively in scientific prac-
tices and discourse.

The report also emphasizes that scientific in-
quiry and discourse is a learned skill, so students
need to be involved in activities in which they
learn appropriate norms and language for produc-
tive participation in scientific discourse and argu-
mentation.

2 The MyST Application

MyST provides students with the scaffolding,
modeling and practice they need to learn to rea-
son and talk about science. Students learn science
through natural spoken dialogs with the virtual tu-
tor Marni, a 3-D computer character. Marni asks
students open-ended questions related to illustra-
tions, silent animations or interactive simulations
displayed on the computer screen.

Figure 1 shows the student’s screen with Marni
asking questions about media displayed in a tuto-
rial. The student’s computer shows a full screen

window that contains Marni, a display area for
presenting media and a display button that indi-
cates the listening status of the system. Marni pro-
duces accurate visual speech, with head and face
movements that are synchronized with her speech.
The media facilitate dialogs with Marni by help-
ing students visualize the science they are dis-
cussing. The primary focus of dialogs is to elicit
explanations from students. MyST compares the
student’s spoken explanations to reference expla-
nations for the lesson by matching the extracted
semantic roles using the Phoenix parser (Ward,
1991), then presents follow-on questions and me-
dia, to help the student construct a correct explana-
tion of the phenomena being studied. The virtual
tutor Marni, who speaks with a recorded human
voice, is designed to model an effective human tu-
tor that the student can relate to and work with to
learn science. MyST provides a non-threatening
and supportive environment for students to express
their ideas. The dialogs scaffold learning by pro-
viding students with support when needed until
they can apply new skills and knowledge indepen-
dently.

MyST is intended to be used as an intervention
for struggling students, with intended users being
K-12 science students. While it should prove a
benefit to all students, struggling students should
benefit most. Depending on the recording condi-
tions and ambient noise, as well as the character-
istics of the student and session, the recognition
word error rate ranges from low 20s to mid-40s.
MyST will contain tutorials for 3 topics per grade,
with content aligned with NGSS. For each topic,
students engage in an average of 10 spoken dia-
log sessions with the tutor, lasting approximately
20 minutes each. oThe MyST tutorial sessions are
in addition to the normal classroom instruction for
the module. Tutoring sessions can be assigned as
homework or during regular school hours, at the
teacher’s discretion. In the initial studies, tutor-
ing was always done during regular school hours.
Teachers specify the space in the school to be used,
generally any relatively quiet room. Students are
sent to use the system a few at a time, depending
on how many computers are available (5 comput-
ers per classroom were used in the efficacy study).
All students are given a demo at the beginning of
the school year and given a chance to ask ques-
tions. Teachers schedule time for students, but stu-
dents log on and use the system without supervi-
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Figure 1: A snapshot of the screen as seen by a student.

sion, so it has minimal impact on teacher time or
other human resources. In studies thus far, surveys
report that teachers did not have problems using
the system and it did not interfere with their other
activities.

The application will eventually be deployed us-
ing a Software as a Service (SaaS) model. It will
run on a server and students will access it through
their browser. If internet service is not available or
reliable, it can be run stand-alone and the data up-
loaded when service is available. Both content and
user populations will evolve and system models
need to incorporate dynamic adaptation in an effi-
cient way. Data from all user sessions is logged in
a database and is available for continuous evalua-
tion and re-training of system models. The system
is designed to work well even if it doesn’t under-
stand the user, but becomes more engaging and ef-
ficient as it understands the user better. As training
data grows model parameters become more accu-
rate and more explicit models are trained, such as
acoustic models for ELL students. Unsupervised
training is combined with active learning to op-

timize use of the data for tuning system models.
Teachers in the initial studies did not feel that they
would have a problem implementing the system.

3 Theoretical Framework

The theory of change, and theoretical and empir-
ical support Science curricula are structured with
new concepts building on those already encoun-
tered. Struggling students fall further and fur-
ther behind if they don’t understand the content
of each topic. Research has demonstrated that hu-
man tutors are effective (Bloom, 1984; Madden
and Slavin, 1989), media presentations are effec-
tive (Mayer, 2001) and QtA dialog strategies are
effective (Murphy and Edwards, 2005). A system
that emulates a human tutor using media presen-
tations to focus a student’s attention and conduct-
ing a QtA-style dialog with the student should also
be effective. This additional time spent thinking
and talking about the science concepts covered in
class will enable students who would have fallen
behind to understand the content of the current
investigation so they will be prepared to partic-
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ipate in and understand subsequent topics. Stu-
dent learning will increase because they are ex-
cited about and engaged by interesting and infor-
mative presentations that help them visualize and
understand the science and because they will learn
to engage in conversations in which they construct,
reflect on and revise mental models and explana-
tions about the science they are seeing and trying
to explain. MyST dialogs are designed to provide
students with understandable multimedia scenar-
ios, explanations and challenges and a support-
ive social context for communication and learn-
ing. Science is introduced through scenarios that
students can relate to and make sense of, and pro-
vide a context for introducing and using science
vocabulary and making connections between vo-
cabulary, objects, concepts and their prior knowl-
edge. Multimedia learning tools show and explain
science, and then enable students to revisit the me-
dia and explain the science in their own words.

Research has demonstrated that having students
produce explanations improves learning (Chi et
al., 1989; Chi et al., 2001; King, 1994; King et
al., 1988; Palincsar and Brown, 1984). In a series
of studies, Chi et al. (1989; 2001) found that hav-
ing college students generate self-explanations of
their understanding of physics problems improved
learning. Self-explanation also improved learn-
ing about the circulatory system by eighth grade
students in a controlled experiment (Chi et al.,
1994). Hausmann and Van Lehn (2007a; 2007b)
note that: “self-explaining has consistently been
shown to be effective in producing robust learn-
ing gains in the laboratory and in the classroom.”
Experiments by Hausmann and Van Lehn (Haus-
mann and VanLehn, 2007a) indicate that it is the
process of actively producing explanations, rather
than the accuracy of the explanations, that makes
the biggest contribution to learning.

4 Semantic Underpinnings

The patterns used in MyST to extract frames from
student responses are trained from annotated data.
The specification of tutorial semantics begins with
creating a narrative. A tutorial narrative is a set of
natural language statements that express the con-
cepts to be discussed in as simple a form as possi-
ble. These do not represent the questions that the
system asks, but are the set of points that the stu-
dent should express.

The narrative represents what an ideal explana-

tion from a student would look like. The narra-
tive statements are manually annotated to reflect
the desired semantic parses. These parsed state-
ments define the domain of the tutorial. The initial
grammar patterns are extracted from the narratives
and have all of the roles and entities that will be
discussed, but only a few (or one) ways of express-
ing them. As the system is used, the grammar is
expanded to cover the various ways students artic-
ulate their understandings of the science concepts.
This is done by annotating recordings of student
responses generated in real use. So the life cy-
cle of the natural language processing model for a
module is:

1. Create and annotate a narrative to define the
domain of the tutorial

2. Field the system to collect data from real
users

3. Sample incoming data and annotate
4. Evaluate current model and re-train
5. Repeat step 3-4 as long as the module is used

As the system is used, it logs all transac-
tions and records student speech. When tutori-
als are deployed for live use, incoming data are
processed automatically to assess system confi-
dence in the interpretation of student responses.
High-confidence items are added to the training
database, and low confidence sessions are selected
for transcription and annotation. The system also
provides a text input mode that students can use to
interact with the Avatar. Once annotated, the data
are added to the training set and system models
(acoustic models, language models and extraction
patterns) are retrained. Periodically, data are sam-
pled for test sets and a learning curve is plotted
for each module. All elements of this process are
automatic except for transcription and annotation.

The semantics of each domain are constrained,
but student responses can vary greatly in the ways
they choose to express concepts and terms. It takes
time, effort and data to get good coverage of stu-
dent responses. Semantic annotation for the sys-
tem consists of annotating:

Entities—The basic concepts talked about in
the session and the phrases that would be consid-
ered synonyms. Electricity could be expressed as
electricity, energy, power, current or electrical en-
ergy. Coverage of term synonyms from annotated
data is generally achieved fairly quickly. Roles—
How the entities in an event or concept are related
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to each other. The larger problem is to attain cov-
erage of the patterns discriminating between pos-
sible role assignments. Not only is there more dis-
fluency and variability here, annotating them is a
more difficult task for someone not trained to do
it. Currently, it takes about one hour for a highly-
trained annotator to mark up the data collected in
a single 20-minute tutorial session.

5 Extrinsic Evaluation

An assessment was conducted in schools to com-
pare learning gains from human tutoring and
MyST tutoring to business-as-usual classrooms.
Learning gain was measured using standardized
assessments given to students in each condition
before and after each science module. Both tu-
toring conditions had significantly higher learning
gains than the control group. While the effect size
for human tutors vs. control (d=0.68) was larger
than for MyST vs. control (d=0.53), statistical
tests supported the hypothesis of no significant dif-
ference between the two.

A simple two-group comparison using a Re-
peated Measures ANOVA shows a statistically sig-
nificant effect at F=46.4, df 1,759, p <.0001 favor-
ing the treatment group. The interaction between
group and module was also significant at F=9.5, p
< .001. We also used an Analysis of Covariance
(ANCOVA) to compare post-test scores. This pro-
cedure adjusts for pre-test differences while com-
paring the post-test average scores. The two-group
comparison was significant at F=7.4, df 1,768,
p=.018. We also saw a significant interaction be-
tween treatment group and module with F=12.4,
df 3,768. Testing the main effects with a hierarchi-
cal mixed model with students nested within class-
rooms we found a significant effect for the treat-
ment group at F=6.2, df 1,2l7,662, p=0.013. No
significant interaction effect was found for mod-
ule by group.

A written survey was given to the students who
participated in the gas. Measures were taken to
avoid bias wherein students give overly positive
answers to questionnaires. The survey included
questions that asked for ratings of student experi-
ence and impressions of the program and its us-
ability. Across schools, 47% of students said they
would like to talk with Marni after every science
investigation, 62% said they enjoyed working with
Marni “a lot,” and 53% selected “I am more ex-
cited about science” after using the program. Only

4% felt that the tutoring did not help. Teachers
were asked for anonymous feedback to help as-
sess the feasibility of an intervention using the sys-
tem and their perceptions of the impact of the sys-
tem. A teacher survey was given to all participat-
ing teachers directly after their students completed
tutoring. The survey asked teachers about the per-
ceived impact of using Marni for student learn-
ing and engagement, impacts on instruction and
scheduling, willingness to potentially adopt Marni
as part of classroom instruction, and overall favor-
ability toward participating in the research project.
Teachers answered items related to potential barri-
ers in implementing new technology in the class-
room. 100% of responding teachers said that they
felt it had a positive impact on their students, they
would be interested in the program if it were avail-
able and they would recommend it to other teach-
ers. 93% said that they would like to participate in
the project again. 74% indicated that they would
like to have all of their students use the system (not
just struggling students). Following these studies,
Boulder Learning combined the best elements of
the initial systems into the current MyST system,
and with continued funding from IES (Cognition
and Student Learning Goal 3), is conducting an
efficacy study. We are currently in the 3rd year of
a 4 year study. While data collection will continue
for another year, preliminary results support the
learning gain performance from the initial studies.

6 MyST Conversations Corpus of
Student Speech (MCCSC)

We are making a cleaned up version of the corpus
available to the research community1 for free and
for commercial use at a pre-determined cost. The
first release of the corpus v0.1.0 comprises 298
hours of speech out of which 198 hours are man-
ually transcribed. This covers roughly 1.4 million
words of text. We are in the process of cleaning up
about the same amount of collected data for future
distribution.

7 Future Work

In the near future we plan to evaluate applying a
statistical labeler trained on existing corpora to the
task of Role assignment. This approach should
provide increased robustness to novel input and
substantially reduce the human annotation effort
required to attain a given level of coverage. The

1http://corpora.boulderlearning.com/myst
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Proposition Bank (PropBank) provides a corpus of
sentences annotated with domain-independent se-
mantic roles (Palmer et al., 2005). PropBank has
been widely used for the development of machine
learning based Semantic Role Labeling (SRL) sys-
tems. Pradhan et al. (2005) used a rich set of
syntactic and semantic features to obtain a perfor-
mance with F-score in the low-80s. It has been
an integral component of most question answer-
ing systems for the past decade. Since its first
application to the newswire text, PropBank has
been extended to cover many more predicates and
diverse genres in the DARPA OntoNotes project
(Weischedel et al., 2011; Pradhan et al., 2013) and
the DARPA BOLT program. We plan to map Prop-
Bank SRL output onto MyST frames. Domain
specific entity patterns will still need to be applied
to produce the canonical extracted form, but that is
a much simpler task than role assignment and one
more suited to non-linguists.
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