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Abstract

META is developed to unite machine
learning, information retrieval, and natu-
ral language processing in one easy-to-use
toolkit. Its focus on indexing allows it to
perform well on large datasets, supporting
online classification and other out-of-core
algorithms. META’s liberal open source
license encourages contributions, and its
extensive online documentation, forum,
and tutorials make this process straight-
forward. We run experiments and show
META’s performance is competitive with
or better than existing software.

1 A Unified Framework

As NLP techniques become more and more ma-
ture, we have great opportunities to use them to
develop and support many applications, such as
search engines, classifiers, and integrative applica-
tions that involve multiple components. It’s possi-
ble to develop each application from scratch, but
it’s much more efficient to have a general toolkit
that supports multiple application types.

Existing tools tend to specialize on one partic-
ular area, and as such there is a wide variety of
tools one must sample when performing different
data science tasks. For text-mining tasks, this is
even more apparent; it is extremely difficult (if not
impossible) to find tools that support both tradi-
tional information retrieval tasks (like tokeniza-
tion, indexing, and search) alongside traditional
machine learning tasks (like document classifica-
tion, regression, and topic modeling).

Table 1 compares META’s many features
across various dimensions. Note that only META
satisfies all the areas while other toolkits focus on
a particular area. In the case where the desired
functionality is scattered, data science students, re-

searchers, and practitioners must find the appro-
priate software packages for their needs and com-
pile and configure each appropriate tool. Then,
there is the problem of data formatting—it is un-
likely that the tools all have standardized upon a
single input format, so a certain amount of “data
munging” is required. All of this detracts from the
actual task at hand, which has a marked impact on
productivity.

The goal of the META project is to address
these issues. In particular, we provide a uni-
fying framework for existing machine learning
and natural language processing algorithms, al-
lowing researchers to quickly run controlled ex-
periments. We have modularized the feature gen-
eration, instance representation, data storage for-
mats, and algorithm implementations; this allows
users to make seamless transitions along any of
these dimensions with minimal effort. Finally,
META is dual-licensed under the University of
Illinois/NCSA Open Source Licence and the MIT
License to reach the broadest audience possible.

Due to space constraints, in this paper, we only
delve into META’s natural language processing
(NLP), information retrieval (IR), and machine
learning (ML) components in section 3. However,
we briefly outline all of its components here:

Feature generation. META has a collection of
tokenizers, filters, and analyzers that convert raw
text into a feature representation. Basic features
are n-gram words, but other analyzers make use
of different parts of the toolkit, such as POS tag n-
grams and parse tree features. An arbitrary num-
ber of feature representations may be combined;
for example, a document could be represented as
unigram words, bigram POS tags, and parse tree
rewrite rules. Users can easily add their own fea-
ture types as well, such as sentence length distri-
bution in a document.

Search. The META search engine can store
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Indri Lucene MALLET LIBLINEAR SVMMULT scikit CoreNLP META
IR IR ML/NLP ML ML ML/NLP ML/NLP all

Feature generation X X X X X X
Search X X X
Classification X X X X X X
Regression X X X X X X
POS tagging X X X
Parsing X X
Topic models X X X
n-gram LM X
Word embeddings X X X
Graph algorithms X
Multithreading X X X X X

Table 1: Toolkit feature comparison. Citations for all toolkits may be found in their respective comparison sections.

document feature vectors in an inverted index and
score them with respect to a query. Rankers
include vector space models such as Okapi
BM25 (Robertson et al., 1994) and probabilistic
models like Dirichlet prior smoothing (Zhai and
Lafferty, 2004). A search demo is online1.

Classification. META includes a normalized
adaptive stochastic gradient descent (SGD) im-
plementation (Ross et al., 2013) with pluggable
loss functions, allowing creation of an SVM clas-
sifier (among others). Both `1 (Tsuruoka et al.,
2009) and `2 regularization are supported. Ensem-
ble methods for binary classifiers allow multiclass
classification. Other classifiers like naı̈ve Bayes
and k-nearest neighbors also exist. A confusion
matrix class and significance testing framework al-
low evaluation and comparison of different meth-
ods and feature representations.

Regression. Regression via SGD predicts
real-valued responses from featurized documents.
Evaluation metrics such as mean squared error and
R2 score allow model comparison.

POS tagging. META contains a linear-chain
conditional random field for POS tagging and
chunking applications, learned using `2 regular-
ized SGD (Sutton and McCallum, 2012). It also
contains an efficient greedy averaged perceptron
tagger (Collins, 2002).

Parsing. A fast shift-reduce constituency parser
using generalized averaged perceptron (Zhu et al.,
2013) is META’s grammatical parser. Parse tree
featurizers implement different types of structural
tree representations (Massung et al., 2013). An
NLP demo online presents tokenization, POS-
tagging, and parsing2.

Topic models. META can learn topic

1https://meta-toolkit.org/search-demo.html
2https://meta-toolkit.org/nlp-demo.html

models over any feature representation using
collapsed variational Bayes (Asuncion et al.,
2009), collapsed Gibbs sampling (Griffiths and
Steyvers, 2004), stochastic collapsed variational
Bayes (Foulds et al., 2013), or approximate dis-
tributed LDA (Newman et al., 2009).

n-gram language models (LMs). META takes
an ARPA-formatted input3 and creates a language
model that can be queried for token sequence
probabilities or used in downstream applications
like SyntacticDiff (Massung and Zhai, 2015).

Word embeddings. The GloVe algorithm (Pen-
nington et al., 2014) is implemented in a streaming
framework and also features an interactive seman-
tic relationship demo. Word vectors can be used
in other applications as part of the META API.

Graph algorithms. Directed and undirected
graph implementations exist and various algo-
rithms such as betweenness centrality, PageRank,
and myopic search are available. Random graph
generation models like Watts-Strogatz and prefer-
ential attachment exist. For these algorithms see
Easley and Kleinberg (2010).

Multithreading. When possible, META algo-
rithms and applications are parallelized using C++
threads to make full use of available resources.

2 Usability

Consistency across components is a key fea-
ture that allows META to work well with large
datasets. This is accomplished via a three-layer
architecture. On the first layer, we have tokeniz-
ers, analyzers, and all the text processing that ac-
companies them. Once a document representa-
tion is determined, this tool chain is run on a cor-
pus. The indexes are the second layer; they pro-

3http://www.speech.sri.com/projects/srilm/
manpages/ngram-format.5.html
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vide an efficient format for storing processed data.
The third layer—the application layer—interfaces
solely with indexes. This means that we may use
the same index for running an SVM as we do to
evaluate a ranking function, without processing
the data again.

Since all applications use these indexes, META
supports out-of-core classification with some clas-
sifiers. We ran our large classification dataset that
doesn’t fit in memory—Webspam (Webb et al.,
2006)—using the sgd classifier. Where LIBLIN-
EAR failed to run, META was able to finish the
classification in a few minutes.

Besides using META’s rich built-in feature gen-
eration, it is possible to directly use LIBSVM-
formatted data. This allows preprocessed datasets
to be run under META’s algorithms. Additionally,
META’s forward index (used for classifica-
tion), is easily convertible to LIBSVM format. The
reverse is also true: you may do feature genera-
tion with META, and use it to generate input for
any other program that supports LIBSVM format.

META is hosted publicly on GitHub4, which
provides the project with community involvement
through its bug/issue tracker and fork/pull request
model. Its API is heavily documented5, allowing
the creation of Web-based applications (listed in
section 1). The project website contains several tu-
torials that cover the major aspects of the toolkit6

to enable users to get started as fast as possible
with little friction. Additionally, a public forum7

is accessible for all users to view and participate in
user support topics, community-written documen-
tation, and developer discussions.

A major design point in META is to allow for
most of the functionality to be configured via a
configuration file. This enables minimal effort ex-
ploratory data analysis without having to write (or
recompile) any code. Designing the code in this
way also encourages the components of the system
to be pluggable: the entire indexing process, for
example, consists of several modular layers which
can be controlled by the configuration file.

An example snippet of a config file is given
below; this creates a bigram part-of-speech ana-
lyzer. Multiple [[analyzers]] sections may
be added, which META automatically combines
while processing input.

4https://github.com/meta-toolkit/meta/
5https://meta-toolkit.org/doxygen/namespaces.html
6https://meta-toolkit.org/
7https://forum.meta-toolkit.org/

[[analyzers]]
method = "ngram-pos"
ngram = 2
filter = [{type = "icu-tokenizer"},

{type = "ptb-normalizer"}]
crf-prefix = "crf/model/folder"

A simple class hierarchy allows users to add fil-
ters, analyzers, ranking functions, and classifiers
with full integration to the toolkit (e.g. one may
specify user-defined classes in the config file). The
process for adding these is detailed in the META
online tutorials.

This low barrier of entry experiment setup ease
led to META’s use in text mining and analysis
MOOCs reaching over 40,000 students8,9.

Multi-language support is hard to do correctly.
Many toolkits sidestep this issue by only support-
ing ASCII text or the OS language; META sup-
ports multiple (non-romance) languages by de-
fault, using the industry standard ICU library10.
This allows META to tokenize arbitrarily-encoded
text in many languages.

Unit tests ensure that contributors are confident
that their modifications do not break the toolkit.
Unit tests are automatically run after each commit
and pull request, so developers immediately know
if there is an issue (of course, unit tests may be run
manually before committing). The unit tests are
run in a continuous integration setup where META
is compiled and run on Linux, Mac OS X11, and
Windows12 under a variety of compilers and soft-
ware development configurations.

3 Experiments

We evaluate META’s performance in NLP, IR, and
ML tasks. All experiments were performed on a
workstation with an Intel(R) Core(TM) i7-5820K
CPU, 16 GB of RAM, and a 4 TB 5900 RPM disk.

3.1 Natural Language Processing
META’s part-of-speech taggers for English pro-
vide quite reasonable performance. It provides a
linear-chain CRF tagger (CRF) as well as an av-
eraged perceptron based greedy tagger (AP). We
report the token level accuracy on sections 22–24
of the Penn Treebank, with a few prior model re-
sults trained on sections 0–18 in Table 3. “Hu-
man annotators” is an estimate based on a 3% er-
ror rate reported in the Penn Treebank README

8https://www.coursera.org/course/textretrieval
9https://www.coursera.org/course/textanalytics

10http://site.icu-project.org/
11https://travis-ci.org/meta-toolkit/meta
12https://ci.appveyor.com/project/skystrife/meta
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CoreNLP META
Training Testing F1 Training Testing F1

Greedy 7m 27s 18.6s 86.7 17m 31s 12.9s 86.98.85 GB 1.53 GB 0.79 GB 0.29 GB

Beam (4) 6h 10m 43s 46.8s 89.9 2h 17m 25s 59.2s 88.110.84 GB 3.83 GB 2.29 GB 0.94 GB

Table 2: (NLP) Training/testing performance for the shift-reduce constituency parsers. All models were trained for 40 iterations
on the standard training split of the Penn Treebank. Accuracy is reported as labeled F1 from evalb on section 23.

Extra Data Accuracy
Human annotators 97.0%

CoreNLP X 97.3%
LTag-Spinal 97.3%

SCCN X 97.5%
META (CRF) 97.0%

META (AP) 96.9%

Table 3: (NLP) Part-of-speech tagging token-level accura-
cies. “Extra data” implies the use of large amounts of extra
unlabeled data (e.g. for distributional similarity features).

Docs Size |D|avg |V |
Blog06 3,215,171 26 GB 782.3 10,971,746
Gov2 25,205,179 147 GB 515.5 21,203,125

Table 4: (IR) The two TREC datasets used. Uncleaned ver-
sions of blog06 and gov2 were 89 GB and 426 GB respec-
tively.

and is likely overly optimistic (Manning, 2011).
CoreNLP’s model is the result of Manning (2011),
LTag-Spinal is from Shen et al. (2007), and SCCN
is from Søgaard (2011). Both of META’s taggers
are within 0.6% of the existing literature.

META and CoreNLP both provide implementa-
tions of shift-reduce constituency parsers, follow-
ing the framework of Zhu et al. (2013). These can
be trained greedily or via beam search. We com-
pared the parser implementations in META and
CoreNLP along two dimensions—speed, mea-
sured in wall time, and memory consumption,
measured as maximum resident set size—for both
training and testing a greedy and beam search
parser (with a beam size of 4). Training was per-
formed on the standard training split of sections 2–
21 of the Penn Treebank, with section 22 used as
a development set (only used by CoreNLP). Sec-
tion 23 was held out for evaluation. The results are
summarized in Table 2.

META consistently uses less RAM than
CoreNLP, both at training time and testing time.
Its training time is slower than CoreNLP for the
greedy parser, but less than half of CoreNLP’s
training time for the beam parser. META’s beam
parser has worse labeled F1 score, likely the result

Indri Lucene MeTA
Blog06 55m 40s 20m 23s 11m 23s
Gov2 8h 13m 43s 1h 59m 42s 1h 12m 10s

Table 5: (IR) Indexing speed.

Indri Lucene MeTA
Blog06 31.02 GB 2.06 GB 2.84 GB
Gov2 170.50 GB 11.02 GB 10.24 GB

Table 6: (IR) Index size.

of its simpler model averaging strategy13. Overall,
however, META’s shift-reduce parser is competi-
tive and particularly lightweight.

3.2 Information Retrieval

META’s IR performance is compared with two
well-known search engine toolkits: LUCENE’s
latest version 5.5.014 and INDRI’s version
5.9 (Strohman et al., 2005)15.

We use the TREC blog06 (Ounis et al.,
2006) permalink documents and TREC gov2 cor-
pus (Clarke et al., 2004). To ensure a more uni-
form indexing environment, all HTML is cleaned
before indexing. In addition, each corpus is con-
verted into a single file with one document per line
to reduce the effects of many file operations.

During indexing, terms are lower-cased, stop
words are removed from a common list of 431 stop
words, Porter2 (META) or Porter (Indri, Lucene)
stemming is performed, a maximum word length
of 32 characters is set, original documents are not
stored in the index, and term position information
is not stored16.

We compare the following: indexing speed (Ta-
ble 5), index size (Table 6), query speed (Table 7),
and query accuracy (Table 8) with BM25 using
k1 = 0.9 and b = 0.4. We use the standard
TREC queries associated with each dataset and

13At training time, both CoreNLP and META perform model averaging, but
META computes the average over all updates and CoreNLP performs cross-
validation over a default of the best 8 models on the development set.

14http://lucene.apache.org/
15Indri 5.10 does not provide source code packages and thus could not be

used. It is also known as LEMUR.
16For Indri, we are unable to disable positions information storage.
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Indri Lucene MeTA
Blog06 55.0s 1.60s 3.67s
Gov2 24m 6.73s 57.53s 1m 3.98s

Table 7: (IR) Query speed.

Indri Lucene MeTA
MAP P@10 MAP P@10 MAP P@10

Blog06 29.13 63.20 29.10 63.60 32.34 64.70
Gov2 25.96 53.69 30.23 59.26 29.97 57.43

Table 8: (IR) Query performance via Mean Average Precision
and Precision at 10 documents.

score each system’s search results with the usual
trec eval program17.

META leads in indexing speed, though we
note that META’s default indexer is multithreaded
and LUCENE does not provide a parallel one18.
META creates the smallest index for gov2 while
LUCENE creates the smallest index for blog06;
INDRI greatly lags behind both. META follows
LUCENE closely in retrieval speed, with INDRI

again lagging. As expected, query performance
between the three systems is relatively even, and
we attribute any small difference in MAP or preci-
sion to idiosyncrasies during tokenization.

3.3 Machine Learning

META’s ML performance is compared with LI-
BLINEAR (Fan et al., 2008), SCIKIT-LEARN (Pe-
dregosa et al., 2011), and SVMMULTICLASS19.
We focus on linear classification with SVM across
these tools (MALLET (McCallum, 2002) does not
provide an SVM, so it is excluded from the com-
parisons). Statistics for the four ML datasets can
be found in Table 9.

The 20news dataset (Lang, 1995)20 is split into
its standard 60% training and 40% testing sets by
post date. The Blog dataset (Schler et al., 2006) is
split into 80% training and 20% testing randomly.
Both of these two textual datasets were prepro-
cessed using META using the same settings from
the IR experiments.

The rcv1 dataset (Lewis et al., 2004) was pro-
cessed into a training and testing set using the
prep rcv1 tool provided with Leon Bottou’s
SGD tool21. The resulting training set has 781,265
documents and the testing set has 23,149. The

17http://trec.nist.gov/trec_eval/
18Additionally, we did not feel that writing a correct and threadsafe indexer

as a user is something to be reasonably expected.
19http://www.cs.cornell.edu/people/tj/svm_light/

svm_multiclass.html
20http://qwone.com/˜jason/20Newsgroups/
21http://leon.bottou.org/projects/sgd

Docs Size k Features
20news 18,846 86 MB 20 112,377
Blog 19,320 778 MB 3 548,812
rcv1 804,414 1.1 GB 2 47,152
Webspam 350,000 24 GB 2 16,609,143

Table 9: (ML) Datasets used for k-class categorization.

liblinear scikit SVMmult META

20news 79.4% 74.3% 67.1% 80.1%
2.58s 0.326s 2.54s 0.648s

Blog 75.8% 76.2% 72.2% 72.2%
61.3s 0.801s 17.5s 1.11s

rcv1 94.7% 94.0% 83.6% 94.8%
17.6s 1.66s 2.01s 3.44s

Webspam 7
97.4%

7
99.4%

11m 52s 1m 16s

Table 10: (ML) Accuracy and speed classification results.
Reported time is to both train and test the model. For all
except Webspam, this excludes IO.

Webspam corpus (Webb et al., 2006) consists
of the subset of the Webb Spam Corpus used
in the Pascal Large Scale Learning Challenge22.
The corpus was processed using the provided
convert.py into byte trigrams. The first 80%
of the resulting file is used for training and the last
20% for testing.

In Table 10, we can see that META performs
well both in terms of speed and accuracy. Both
LIBLINEAR and SVMMULTICLASS were unable
to produce models on the Webspam dataset due to
memory limitations and lack of a minibatch frame-
work. For SCIKIT-LEARN and META, we broke
the training data into 4 equal sized batches and
ran one iteration of SGD per batch. The timing
result includes the time to load each chunk into
memory; for META this is from its forward-index
format23 and for SCIKIT-LEARN this is from LIB-
SVM-formatted text files.

4 Conclusion

META is a valuable resource for text mining ap-
plications; it is a viable and competitive alternative
to existing toolkits that unifies algorithms from
NLP, IR, and ML. META is an extensible, con-
sistent framework that enables quick development
of complex application systems.
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Stéphane Ross, Paul Mineiro, and John Langford.
2013. Normalized online learning. In UAI.

Jonathan Schler, Moshe Koppel, Shlomo Arga-
mon, and James W. Pennebaker. 2006. Ef-
fects of Age and Gender on Blogging. In AAAI
Spring Symposium: Computational Approaches
to Analyzing Weblogs.

Libin Shen, Giorgio Satta, and Aravind Joshi.
2007. Guided learning for bidirectional se-
quence classification. In ACL.

Anders Søgaard. 2011. Semi-supervised con-
densed nearest neighbor for part-of-speech tag-
ging. In ACL-HLT .

Trevor Strohman, Donald Metzler, Howard Turtle,
and W. Bruce Croft. 2005. Indri: A language-
model based search engine for complex queries
(extended version). IR 407, University of Mas-
sachusetts.

Charles Sutton and Andrew McCallum. 2012. An
Introduction to Conditional Random Fields. In
Foundations and Trends in Machine Learning.

Yoshimasa Tsuruoka, Jun’ichi Tsujii, and Sophia
Ananiadou. 2009. Stochastic gradient descent
training for l1-regularized log-linear models
with cumulative penalty. In ACLIJCNLP.

Steve Webb, James Caverlee, and Carlton Pu.
2006. Introducing the webb spam corpus: Us-
ing email spam to identify web spam automati-
cally. In CEAS.

ChengXiang Zhai and John Lafferty. 2004. A
Study of Smoothing Methods for Language
Models Applied to Information Retrieval. ACM
Trans. Inf. Syst. 22(2).

Muhua Zhu, Yue Zhang, Wenliang Chen, Min
Zhang, and Jingbo Zhu. 2013. Fast and Accu-
rate Shift-Reduce Constituent Parsing. In ACL.

96


