
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 37–42,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Real-Time Discovery and Geospatial Visualization of Mobility and
Industry Events from Large-Scale, Heterogeneous Data Streams

Leonhard Hennig∗, Philippe Thomas∗, Renlong Ai∗, Johannes Kirschnick∗, He Wang∗,
Jakob Pannier†, Nora Zimmermann†, Sven Schmeier∗, Feiyu Xu∗, Jan Ostwald†,

Hans Uszkoreit∗
∗DFKI, Berlin, firstname.lastname@dfki.de

† DB Systel, Berlin, firstname.lastname@deutschebahn.com

Abstract

Monitoring mobility- and industry-
relevant events is important in areas such
as personal travel planning and supply
chain management, but extracting events
pertaining to specific companies, transit
routes and locations from heterogeneous,
high-volume text streams remains a
significant challenge. We present Spree,
a scalable system for real-time, automatic
event extraction from social media, news
and domain-specific RSS feeds. Our
system is tailored to a range of mobility-
and industry-related events, and processes
German texts within a distributed lin-
guistic analysis pipeline implemented
in Apache Flink. The pipeline detects
and disambiguates highly ambiguous
domain-relevant entities, such as street
names, and extracts various events with
their geo-locations. Event streams are
visualized on a dynamic, interactive map
for monitoring and analysis.

1 Introduction

Monitoring relevant news and events is of cen-
tral importance in many economic and personal
decision processes, such as supplier/supply chain
management, market research, and personal travel
planning. Social media, news sites, but also more
specialized information systems such as on-line
traffic and public transport information sources,
provide valuable streams of text messages that can
be used to improve decision making processes.
For example, a sourcing department of a com-
pany may wish to monitor world-wide news for
disruptive or risk-related events pertaining to their
suppliers (e.g. natural disasters, strikes, liquid-
ity risks), while a traveler wants to be informed

about traffic events related to her itinerary (e.g.
delays, cancellations). We thus want to extract
and recognize events from message streams that
mention very specific entities, such as compa-
nies, locations, or routes. For example, from the
sentence “On Friday, Amazon employees once
more went on strike in the company’s shipping
center in Leipzig.”, we would like to extract a
strike event with arguments time=Friday, organi-
zation=Amazon, and location=Leipzig.

Detecting such events in textual message
streams raises a number of challenges. Social me-
dia streams, such as Twitter, are of very high vol-
ume and often contain duplicated, imprecise and
potentially non-trustworthy information. They are
written in a very informal, not always grammat-
ically well-formed style (Osborne et al., 2014),
which cannot easily be processed with standard
linguistic tools. News sites provide well-formed
texts, but their content is very heterogeneous and
often hard to separate from non-relevant web page
elements. Both types of sources relate informa-
tion about an unbounded number of topics, which
means that relevant messages need to be distin-
guished from irrelevant data. Domain-specific in-
formation sources, on the other hand, are topic-
focused, but employ a wide variety of formats,
from telegraph style texts to table entries. Process-
ing such sources hence often requires customized
analysis pipelines as well as domain adaptation
of existing linguistic tools. We also typically re-
quire that documents are processed in (near) real-
time in order to enable timely responses to im-
portant events. Finally, utilizing domain-specific,
large entity datasets raises additional challenges
for named entity recognition and linking, includ-
ing significantly more cross-type ambiguities (e.g.
synonymous street and transport stop names) and
a higher rate of ambiguous, long-tail entities (e.g.,
there is a “main street” or “bus route #1” in many

37



towns).
We introduce Spree, a scalable platform

for real-time, fine-grained event extraction and
geospatial visualization (Section 2). It is de-
signed to process German texts from social media,
news, web sites and traffic information sources in
a distributed, scalable, and fault-tolerant manner
(Section 3). These features are realized by im-
plementing the system’s main components within
the Apache Flink framework (Alexandrov et al.,
2014), a big data analytics platform which pro-
vides a high through-put, streaming computing en-
vironment. Events are automatically detected and
geo-located within a linguistic analysis pipeline
(Section 4), and visualized for the end user in a
web-based application (Section 5). The system in
its current version is tailored to the mobility and
supply chain domains, and allows users to moni-
tor and analyze messages for a range of events.

2 System Overview and Architecture

The system was designed based on the following
requirements:

• Combine mobility and industry data from
structured knowledge resources with infor-
mation from highly dynamic, unstructured or
semi-structured document streams

• Identify and extract mobility and industry-
related entities and events from dynamic data
streams

• Enable large-scale, fault-tolerant processing
of data streams in (near) real-time

• Visualize identified events on a dynamic, in-
teractive map

Figure 1 gives an overview of the system ar-
chitecture. The system separates data ingestion
(crawling) from the actual processing, which fa-
cilitates the integration of new data sources. Data
ingestion and processing are loosely coupled via
a message queue (MQ). The streaming process-
ing of documents encompasses three major tasks:
Preprocessing of documents (including HTML-
to-text conversion, boilerplating, and linguistic
preprocessing), entity discovery and linking, and
event extraction. Components are coupled with
a shared document schema which stores annota-
tion results. Annotated documents are persisted to
a distributed index. Additional structured knowl-
edge is stored in relational databases, and served

via REST interfaces. The user interface is imple-
mented as a light-weight web application.

3 Data Sources

This section describes the data streams and knowl-
edge resources that are implemented in the Spree
system. Table 1 shows summary statistics of the
data streams, and Table 2 shows summary statis-
tics of the knowledge resources.

Data Size

Tweets 11.5 M
News 1.2 M
RSS items 12.4 M

Table 1: Data statistics, Jan 1st – Mar 31st, 2016

Type # Concepts Resource

Company 112,347 Internal Dataset
City 27,075 OpenStreetMap
Street 104,598 OpenStreetMap
Station 9,860 Deutsche Bahn
Route 25,907 Deutsche Bahn

Table 2: Data statistics for knowledge resources

3.1 Data Streams

All source data streams are handled with in-
dividual crawlers, which push documents to
Kafka MQ1 for further processing by the analysis
pipeline (see Section 4).

Twitter We use the Twitter Search API2 to
obtain a topically focused streaming sample of
tweets. For our current system, we define the
search filter using a list of approximately 150
domain-relevant users/channels and 300 search
terms. Channels include e.g. airline companies,
traffic information sources, and railway compa-
nies. Search terms comprise event-related key-
words such as “traffic jam” or “roadworks”, but
also major highway names, railway route identi-
fiers, and airport codes. This limits the number of
tweets to approximately 50.000 per day, at a rate
of about 35 tweets a minute.

News We retrieve news pages and general web

1kafka.apache.org
2dev.twitter.com/rest/public/search

38



Web,
APIs

Crawler

Event 
Extraction

RE ModelsEL Models
Lexicons, 

Rules, 
Models

Fr
on

te
nd

Index
(Solr)M

Q
 

(K
af

ka
)

Doc
Schema

Entity Discovery & 
Linking

Candidate 
Retrieval

Topic Filtering

Preprocessing

Doc
Schema

Knowledge 
Base(s)

Text Processing Streaming Architecture (Simplified)

RE
ST

Apache Flink

Figure 1: System architecture

sites using the uberMetrics Search API3, which
provides an interface to more than 400 million web
sources that are crawled on a regular basis. The
API allows us to define complex boolean search
queries to filter the set of web pages that our sys-
tem needs to process. We employ the same search
terms as for Twitter, and limit the language to Ger-
man. This provides approximately 13.200 docu-
ments per day (9/min).

RSS Feeds We implemented custom crawlers
for a representative set of approximately 100 RSS
feeds that provide traffic and transportation infor-
mation. Feed sources include federal and state po-
lice, radio stations, and air travel sources. The
feeds are fetched at regular intervals, yielding ap-
proximately 136.000 feed items per day (95/min).

3.2 Knowledge Bases

We integrate several types of knowledge resources
for domain-specific named entity recognition, en-
tity linking and event extraction. All resources are
stored in a PostgreSQL relational database.

Companies We maintain a list of approx. 800K
German companies, which includes many small
and medium enterprises. From this list we selected
a subset of 112,347 companies with ≥ 20 em-
ployees. Company entries comprise information
about the company’s name, judicial form, number
of employees, and industry sector, and are associ-
ated with one or more postal addresses which were

3doc.ubermetrics-technologies.com/
api-reference/

geocoded using Nominatim4. If applicable, entries
are linked to DBpedia5 and Freebase6.

OpenStreetMap OpenStreetMap provides data
dumps7 that we use as a knowledge resource for
location names. In particular, we utilize city, town,
village, highway and road data for Germany, in-
cluding names and geo-shape information.

GTFS Our final resource consists of trans-
portation data of the German railway company
Deutsche Bahn AG. This dataset contains railway
and public transport stops, timetables, and transit
routes, and includes geographical information for
each entity. The data is provided in the commonly
used General Transit Feed Specification (GTFS)
format8.

4 Document Processing Pipeline

This section describes the implementation of the
streaming pipeline to process documents in the
Spree system.

4.1 Data Schema

We store analysis results of individual pipeline
components in a shared document schema that
is inspired by the Common Analysis Structure
(CAS) approach implemented in UIMA (Ferrucci
and Lally, 2004). The schema defines elements,

4nominatim.openstreetmap.org
5dbpedia.org
6freebase.com
7planet.openstreetmap.org
8developers.google.com/transit/gtfs

39



such as documents, sentences, tokens, concepts
and relations. Annotations are either realized as
attributes of these classes, or in a generic fash-
ion using a labeled span scheme. We use Avro9,
a compact binary data format, to serialize docu-
ments between pipeline processing steps.

4.2 Stream Processing
Document processing is implemented in an anal-
ysis pipeline that is realized within the Apache
Flink framework (Alexandrov et al., 2014)10.
Flink’s core is a streaming data flow engine
that provides data distribution, communication,
and fault tolerance for distributed computations
over data streams. All document processors in-
gest messages (documents) from the MQ sys-
tem. This architecture ensures data durability
via Kafka’s replication and disk persistence fea-
tures, and consistent data movement and compu-
tation with Apache Flink. Together, these frame-
works guarantee exactly-once delivery of events,
can handle back pressure in case of data stream
peaks, and provide high throughput. Our sys-
tem thus can easily scale to larger and faster data
streams than those we currently handle, for exam-
ple when extending the system to monitor more
data streams, other languages, or a wider range of
events.

Our document processing implementation reads
messages from Kafka and converts them to the in-
ternal document schema. For news and web sites,
we extract text from the HTML and remove boil-
erplate code11. We perform language detection,
and discard any non-German documents. All re-
maining documents are then passed to the linguis-
tic analysis components, described next.

4.3 Linguistic Analysis
The linguistic analysis components process doc-
uments to detect and geo-locate mobility- and
industry-related entities and events.

Documents are first segmented into sentences
and tokens. We use the Mate Tools suite (Bohnet,
2010) to part-of-speech tag words, and for de-
pendency parsing of sentences. For named en-
tity recognition, we utilize SProUT (Drozdzyn-
ski et al., 2004), which implements a regular
expression-like formalism and gazetteers for de-
tecting concepts in text. SProUT uses rule sets to

9avro.apache.org
10flink.apache.org
11github.com/kohlschutter/boilerpipe

Name Arguments

Accident Road, route, loc, time
Delay Road, route, flight, cause, loc, time
Disaster Type, trigger, casualties, loc, time
Traffic Jam Road, loc, time
Rail Replacem. Route, loc, time
Road Closure Road, cause, loc, time
Acquisition Buyer, acquired, loc, time
Merger Old, new, trigger, loc, time
Spin-off Parent, child, loc, time
Layoffs Company, trigger, number, loc, time
Strike Company, trigger, loc, time
Insolvency Company, trigger, cause, loc, time

Table 3: Event types recognized by our pipeline,
and their arguments.

deal with frequent morphologic variations and ab-
breviations, e.g. “strasse” and “straße” (“street”),
or “Pl.” for “Platz” (“place”). We construct
gazetteers for companies, cities and towns, streets,
transport stops, and transit routes, from the knowl-
edge resources described in Section 3.2. All
gazetteers store name variants, database identifier
information, as well as geo-locations.

We perform an entity linking step next to dis-
ambiguate the candidate entities of a recognized
concept. Since our system is based on a very
extensive set of company and geo-location en-
tities, entity linking is particularly challenging.
For example, many public transit route names
are identical across German cities (e.g. “S1” for
“train line #1”), and street names are also very of-
ten re-used in different cities. We implement a
straight-forward, geo-location-based disambigua-
tion algorithm. For ambiguous entities, such as
streets, transit stops, or small villages, the algo-
rithm chooses the candidate whose coordinates are
contained in the geo-shape of “larger” entities co-
occurring in the text. In turn, unambiguous stop or
street entities can also be used to resolve “larger”
ambiguous entities, e.g. transit routes, using a
similar strategy. Additionally, Twitter allows users
to tag locations in a message. This can either be a
precise location (longitude, latitude) or a general
location label (e.g., a city name with geo-shape).
For tweets with a location label, we retain only
candidate entities located within the user-tagged
geo-shape, and then apply our disambiguation al-
gorithm.

Finally, our pipeline detects events and event ar-
guments by matching dependency parse trees of
sentences to a set of automatically learned depen-
dency patterns, as proposed by Xu et al. (2007).

40



We define an event in the spirit of the ACE / ERE
guidelines (Linguistic Data Consortium, 2015) as
a n-ary relation with a set of required and op-
tional arguments, which include location and time.
The dependency patterns we use for event detec-
tion are extracted from a manually curated set of
event-specific training sentences, which were an-
notated with event type, argument types, and argu-
ment roles. For Twitter texts, where we typically
cannot expect high-quality dependency parses, we
complement our approach with a key phrase-based
event detection strategy. By carefully selecting
the trigger key phrase set, we can identify event
types with high precision. Table 3 summarizes the
events and arguments recognized by our system.

5 Web Application

Annotated documents are persisted to a distributed
Solr index12. The index stores basic document in-
formation, such as URL, title and text, and addi-
tionally information about extracted entities and
events. It serves as a back-end for the visualiza-
tion component of the system, which is realized as
a light-weight web application. The front-end is
available at http://ta.dfki.de.

Figure 2a shows the main view of the front-end.
The view displays the most recent events on an in-
teractive map. Each icon represents a single event.
Events co-located in a particular area are clustered
to avoid cluttering. The clusters split into indi-
vidual event icons when zooming in on the loca-
tion. The map is updated frequently to refresh the
event set, giving a dynamic view of ongoing de-
velopments. The user interface provides various
filtering options for event types, data sources, and
transport modes, as well as a company search.

Events can be selected, which opens an overlay
with detailed information about the event and its
source document. Details include the event type,
time, and location, as well as an explanatory text
snippet from the source document. The detail view
also shows a set of illustrative supply chains be-
tween companies that may potentially be affected
by the event, see Figure 2b. Since data about sup-
pliers is typically non-public information, we dy-
namically generate example supply chains by ran-
domly selecting a pair of companies in the vicinity
of the event’s location, and computing a route be-
tween them using Mapbox 13.

12lucene.apache.org/solr
13mapbox.com/api-documentation

Selecting a “supply chain problem” involving
a particular company opens another detail view.
This detail view displays information about the af-
fected company, and includes infobox-style facts
from background knowledge bases, but also recent
events and news referencing the company.

6 Evaluation

We conducted a preliminary evaluation of our sys-
tem’s event extraction performance on the dataset
described in Table 1. Figure 3 shows the distri-
bution of recognized events. The largest propor-
tion of events is extracted from Twitter messages.
Company-related events are mostly found in news
articles, while mobility-related events are mainly
reported in Twitter and RSS feeds.

Figure 3: Event distribution for RSS, Twitter and
News.

To evaluate event extraction accuracy, we man-
ually judge a random sample of 150 documents
(50 per source) for each event. A document is con-
sidered to correctly state an event if it explicitly
reports a past, current or future event. All other
documents are labeled as incorrect.

Table 4 lists the precision scores per source and
micro-averaged across sources for selected event
types. On average, 64% of the identified events
are judged to be correct. Best results are observed
for RSS feeds. This is an expected result, since
traffic information RSS feeds are often well struc-
tured and employ very formalized wording. Some
events types are more reliably observed in spe-
cific sources, e.g. Strike and Layoffs in news. The
overall precision on Twitter is surprisingly high,
with the exception of Traffic Jam events. This can
be attributed to the fact that our key phrase-based
approach used the German word “Stau” (“jam”),
which often appears in non-traffic contexts to de-
note slow or halting progress.

41



(a) Event visualization UI (b) Company view with supply chain route

Figure 2: User interface of the Spree system

Event type Twitter RSS News Avg

Traffic jam 0.28 1.0 – 0.64
Strike 0.58 – 0.66 0.62
Delays 0.74 0.94 0.26 0.65
Disaster 0.52 0.94 0.48 0.57
Layoffs 0.66 – 0.76 0.71

Table 4: Precision of event recognition for se-
lected event types. Empty cells indicate that the
corresponding event did not occur in the given
document type.

7 Conclusion

We have presented Spree, a scalable, real-time
event extraction system for mobility and industry
events. Our system discovers and visualizes events
from heterogeneous data streams, including Twit-
ter, RSS feeds and news documents, on an interac-
tive map. Data streams are automatically filtered
for relevant events, and geo-located using infor-
mation from the extracted entities. Our system
recognizes an extensive set of fine-grained entities
of different types, including companies, streets,
routes and transport stops, and extracts ACE/ERE-
style events, together with their argument fillers,
using a dependency pattern-based approach. Im-
plemented in Apache Flink, it is highly scalable
and allows both batch and streaming processing.

Acknowledgments

This research was partially supported by the
German Federal Ministry of Economics and
Energy (BMWi) through the projects SDW
(01MD15010A) and SD4M (01MD15007B), and
by the German Federal Ministry of Education

and Research (BMBF) through the project BBDC
(01IS14013E).

References
A. Alexandrov, R. Bergmann, S. Ewen, J. Freytag,

F. Hueske, A. Heise, O. Kao, M. Leich, U. Leser,
V. Markl, F. Naumann, M. Peters, A. Rheinländer,
M. Sax, S. Schelter, Ma. Höger, K. Tzoumas, and
D. Warneke. 2014. The Stratosphere Platform for
Big Data Analytics. The VLDB Journal, 23(6):939–
964.

B. Bohnet. 2010. Top accuracy and fast dependency
parsing is not a contradiction. In Proc. of COLING,
pages 89–97.

W. Drozdzynski, H. Krieger, J. Piskorski, U. Schäfer,
and F. Xu. 2004. Shallow processing with unifica-
tion and typed feature structures — foundations and
applications. Künstliche Intelligenz, 1:17–23.

D. Ferrucci and A. Lally. 2004. UIMA: An archi-
tectural approach to unstructured information pro-
cessing in the corporate research environment. Nat.
Lang. Eng., 10(3–4):327–348.

Linguistic Data Consortium. 2015. Rich ERE
annotation guidelines overview. http:
//cairo.lti.cs.cmu.edu/kbp/2015/
event/summary_rich_ere_v4.1.pdf.

M. Osborne, S. Moran, R. McCreadie, A. Von Lunen,
M. Sykora, E. Cano, N. Ireson, C. Macdonald, I. Ou-
nis, Y. He, T. Jackson, F. Ciravegna, and A. O’Brien.
2014. Real-time detection, tracking, and monitoring
of automatically discovered events in social media.
In Proc. of ACL: System Demonstrations, pages 37–
42.

Feiyu Xu, Hans Uszkoreit, and Hong Li. 2007. A
Seed-driven Bottom-up Machine Learning Frame-
work for Extracting Relations of Various Complex-
ity. In Proc. of ACL, pages 584–591.

42


