
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 7–12,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Online Information Retrieval for Language Learning

Maria Chinkina Madeeswaran Kannan Detmar Meurers

Universität Tübingen
LEAD Graduate School

Department of Linguistics
{mchnkina,mkannan,dm}@sfs.uni-tuebingen.de

Abstract

The reading material used in a language
learning classroom should ideally be rich
in terms of the grammatical constructions
and vocabulary to be taught and in line
with the learner’s interests. We devel-
oped an online Information Retrieval sys-
tem that helps teachers search for texts
appropriate in form, content, and read-
ing level. It identifies the 87 grammati-
cal constructions spelled out in the official
English language curriculum of schools
in Baden-Württemberg, Germany. The
tool incorporates a classical efficient al-
gorithm for reranking the results by as-
signing weights to selected constructions
and prioritizing the documents containing
them. Supplemented by an interactive vi-
sualization module, it allows for a multi-
faceted presentation and analysis of the re-
trieved documents.

1 Introduction

The learner’s exposure to a language influences
their acquisition of it. The importance of input in
second language (L2) learning has been repeatedly
emphasized by the proponents of major Second
Language Acquisition theories (Krashen, 1977;
Gass and Varonis, 1994; Swain, 1985), with psy-
cholinguists highlighting the significance of fre-
quency and perceptual salience of target construc-
tions (e.g., Slobin, 1985).

In line with this research, a pedagogical ap-
proach of input flood (Trahey and White, 1993) is
extensively used by L2 teachers. However, manu-
ally searching for linguistically rich reading ma-
terial takes a lot of time and effort. As a re-
sult, teachers often make use of easily accessible
schoolbook texts. However, this limits the choice

of texts, and they are typically less up-to-date and
less in line with students’ interests than authentic
texts. In the same vein, a survey conducted by Pur-
cell et al. (2012) revealed that teachers expect their
students to use online search engines in a typical
research assignment with a very high probability
of 94%, compared to the 18% usage of printed or
electronic textbooks.

With this in mind, we developed an online In-
formation Retrieval (IR) system that uses efficient
algorithms to retrieve, annotate and rerank web
documents based on the grammatical construc-
tions they contain. The paper presents FLAIR1

(Form-Focused Linguistically Aware Information
Retrieval), a tool that provides a balance of con-
tent and form in the search for appropriate reading
material.

2 Overview and Architecture

The FLAIR pipeline can be broadly reduced to
four primary operations – Web Search, Text
Crawling, Parsing and Ranking. As demonstrated
by the diagram in Figure 1, the first three opera-
tions are delegated to the server as they require the
most resources. Ranking, however, is performed
locally on the client endpoint to reduce latency.

Web Crawling

We chose to use Microsoft Bing2 as our primary
search engine given its readily available Java bind-
ings. By default, the top 20 results are fetched for
any given search query. A basic filter is applied
to exclude web documents with low text content.
The search is conducted repeatedly until the result-
ing list of documents contains at least 20 items.

1The online tool is accessible at: http://purl.org/
icall/flair

2http://bing.com

7

Figure 1: FLAIR architecture.

Text Extraction
The Text Extractor makes use of the Boilerpipe
library3 extracting plain text with the help of its
DefaultExtractor. The choice is motivated by the
high performance of the library as compared to
other text extraction techniques (Kohlschütter et
al., 2010).

Parsing
Text parsing is facilitated by the Stanford
CoreNLP library4 (Manning et al., 2014), which
was chosen for its robust, performant and open-
source implementation. Our initial prototype used
the standard PCFG parser for constituent parsing,
but its cubic time complexity was a significant is-
sue when parsing texts with long sentences. We
therefore switched to a shift-reduce implementa-
tion5 that scales linearly with sentence and parse
length. While it resulted in a higher memory over-
head due to its large language models, it allowed
us to substantially improve the performance of our
code.

Ranking
The final stage of the pipeline involves ranking
the results according to a number of grammati-
cal constructions and syntactic properties. Each
parameter can be assigned a specific weight that
then affects its ranking relative to the other pa-
rameters. The parsed data is cached locally on

3https://code.google.com/p/boilerpipe/
4http://nlp.stanford.edu/software/

corenlp.shtml
5http://nlp.stanford.edu/software/

srparser.shtml

the client side for each session. This allows us
to perform the ranking calculations on the local
computer, thereby avoid a server request-response
roundtrip for each re-ranking operation.

We chose the classical IR algorithm BM25
(Robertson and Walker, 1994) as the basis for our
ranking model. It helps to avoid the dominance
of one single grammatical construction over the
others and is independent of the normalization
unit as it uses a ratio of the document length to the
average document length in the collection. The
final score of each document determines its place
in the ranking and is calculated as:

G(q, d) =
∑

t∈q∩d
(k+1)×tft,d

tft,d+k×(1−b+b× |d|
avdl

)
× log N+1

dft

where q is a FLAIR query containing one or
more linguistic forms, t is a linguistic form, d is
a document, tft,d is the number of occurrences
of t in d, |d| is document length, avdl is the
average document length in the collection, dft is
the number of documents containing t, and k is
a free parameter set to 1.7. The free parameter b
specifies the importance of the document length.
The functionality of the tool allows the user to
adjust the importance of the document length with
a slider that assigns a value from 0 to 1 to the
parameter b.

2.1 Technical Implementation

FLAIR is written in Java and implemented as a
Java EE web application. The core architecture re-
volves around a client-server implementation that

8

uses WebSocket (Fette and Melnikov, 2011) and
Ajax (Garrett and others, 2005) technologies for
full-duplex, responsive communication. All server
operations are performed in parallel, and each op-
eration is divided into subtasks that are executed
asynchronously. Operations initiated by the client
are dispatched as asynchronous messages to the
server. The client then waits for a response from
the latter, which are relayed as rudimentary push
messages encoded in JSON.6 By using WebSock-
ets to implement the server endpoint, we were able
to reduce most of the overhead associated with
HTTP responses.

The sequence of operations performed within
the client boundary is described as follows:

1. Send search query to server and initiate web
search

2. Wait for completion signal from server

3. Initiate text parsing

4. Wait for completion signal from server

5. Request parsed data from server

6. Cache parsed data

7. Re-rank results according to parameters

The sequence of operations performed within the
server boundary is described as follows:

1. Receive search query from client

2. Begin web search operation:

(a) Fetch top N valid search results
(b) For each search result, fetch page text
(c) Signal completion

3. Wait for request from client

4. Begin text parsing operation:

(a) For each valid search result, parse text
and collate data

(b) Signal completion

5. Wait for request from client

6. Send parsed data to client

6http://json.org

3 FLAIR Interface

The main layout consists of four elements – a set-
tings panel, a search field, a list of results, and a
reading interface, where the identified target con-
structions are highlighted. The interactive visual-
ization incorporates the technique of parallel coor-
dinates used for visualizing multivariate data (In-
selberg and Dimsdale, 1991).

The visualization provides an overview of the
distribution of the selected linguistic characteris-
tics in the set of retrieved documents. Vertical
axes represent parameters – linguistic forms, num-
ber of sentences, number of words and the read-
ability score, and each polyline stands for a doc-
ument having certain linguistic characteristics and
thus, going through different points on the param-
eter axes. The interactive design allows for more
control over a user-selected set of linguistic char-
acteristics. Users can select a range of values for
one or more constructions to precisely identify and
retrieve documents.

Figures 2 and 3 demonstrate FLAIR in use: The
user has entered the query Germany and selected
Past Perfect and Present Perfect as target con-
structions. After reranking the 20 retrieved docu-
ments, the interactive visualization was used to se-
lect only the documents with a non-zero frequency
of both constructions.

4 Detection of Linguistic Forms

We based our choice of the 87 linguistic forms on
the official school curriculum for English in the
state of Baden-Württemberg, Germany.7 As most
of the linguistic structures listed there do not have
a one-to-one mapping to the standard output of
NLP tools, we used a rule-based approach to ap-
proximate them.

For closed word classes, string matching (e.g.,
articles) or look-up lists (e.g, prepositions) can be
used to differentiate between their forms. How-
ever, detection of some grammatical constructions
and syntactic structures requires a deeper syntactic
analysis. Identification of the degrees of compar-
ison of long adjectives requires keeping track of
two consequent tokens and their POS tags, as is
the case with the construction used to that cannot
be simply matched (cf. the passive ”It is used to
build rockets”). More challenging structures, such

7The curricula for grades 2, 4, 6, 8, 10 are accessible on
the website of the education portal of Baden-Württemberg:
http://bildung-staerkt-menschen.de

9

Figure 2: FLAIR interface: the settings panel, the list of results and the reading interface.

Figure 3: The visualization component of FLAIR. Vertical axes correspond to text characteristics and the
lines going through the axes represent documents.

as real and unreal conditionals and different gram-
matical tenses, are identified by means of complex
patterns and additional constraints. For a more
elaborate discussion of the detection of linguistic
forms, the pilot evaluation and the use cases, see
Chinkina and Meurers (2016).

5 Performance Evaluation

Parallelization of the tool allowed us to reduce
the overall processing time by at least a factor
of 25 (e.g., 35 seconds compared to 15 minutes
for top 20 results). However, due to the highly
parallel nature of the system, its performance is
largely dependent on the hardware on which it is
deployed. Amongst the different operations per-
formed by the pipeline, web crawling and text an-
notation prove to be the most time-consuming and
resource-intensive tasks. Web crawling is an I/O

task that is contingent on external factors such as
remote network resources and bandwidth, thereby
making it a potential bottleneck and also an unre-
liable target for profiling. We conducted several
searches and calculated the relative time each op-
eration took. It took around 50-65% of the total
time (from entering the query till displaying a list
of results) to fetch the results and extract the docu-
ments and around 20-30% of the total time to parse
them.

The Stanford parser is responsible for text anno-
tation operations, and its shift-reduce constituent
parser offers best-in-class performance and accu-
racy.8 We analyzed the performance of the parser
on the constructions that our tool depends on for
the detection of linguistic patterns. Among the

8See http://nlp.stanford.edu/software/
srparser.shtml

10

biggest challenges were gerunds that got anno-
tated as either nouns (NN) or gerunds/present par-
ticiples (VBG). Phrasal verbs, such as settle in,
also appeared to be problematic for the parser and
were sometimes not presented as a single entity in
the list of dependencies.

The FLAIR light-weight algorithm for detecting
linguistic forms builds upon the results of the Stan-
ford parser while adding negligible overhead. To
evaluate it, we collected nine news articles with
the average length of 39 sentences by submitting
three search queries and saving the top three re-
sults for each of them. We then annotated all sen-
tences for the 87 grammatical constructions and
compared the results to the system output. Table 1
provides the precision, recall, and F-measure for
selected linguistic forms identified by FLAIR9.

Linguistic target Prec. Rec. F1

Yes/no questions 1.00 1.00 1.00
Irregular verbs 1.00 0.96 0.98
used to 0.83 1.00 0.91
Phrasal verbs 1.00 0.61 0.76
Tenses (Present Simple, ...) 0.95 0.84 0.88
Conditionals (real, unreal) 0.65 0.83 0.73
Mean (81 targets) 0.94 0.90 0.91
Median (81 targets) 1.00 0.97 0.95

Table 1: Evaluating the FLAIR algorithm

As the numbers show, some constructions are eas-
ily detectable (plural irregular noun forms, e.g.,
children) while others cannot be reliably identi-
fied by the parser (conditionals). The reasons for a
low performance are many-fold: the ambiguity of
a construction (real conditionals), the unreliable
output of the text extractor module (simple sen-
tences) or the Stanford Parser (-ing verb forms),
and the FLAIR parser module itself (unreal con-
ditionals). Given the decent F-scores and our
goal of covering the whole curriculum, we include
all constructions into the final system – indepen-
dent of their F-score. As for the effectiveness of
the tool ina real-life setting, full user studies with
language teachers and learners are necessary for
a proper evaluation of distinctive components of
FLAIR (see Section 7).

9The mean and the median are given for 81 targets be-
cause six grammatical constructions did not occur in the test
set.

6 Related Work

While most of the state-of-the-art IR systems de-
signed for language teachers and learners imple-
ment a text complexity module, they differ in how
they treat vocabulary and grammar. Vocabulary
models are built using either word lists (LAWSE
by Ott and Meurers, 2011) or the data from learner
models (REAP by Brown and Eskenazi, 2004).
Grammar is given little to no attention: Bennöhr
(2005) takes into account the complexity of differ-
ent conjunctions in her TextFinder algorithm.

Distinguishing features of FLAIR aimed at mak-
ing it usable in a real-life setting are that (i) it cov-
ers the full range of grammatical forms and cate-
gories specified in the official English curriculum
for German schools, and (ii) its parallel processing
model allows to efficiently retrieve, annotate and
rerank 20 web documents in a matter of seconds.

7 Conclusion and Outlook

The paper presented FLAIR – an Information Re-
trieval system that uses state-of-the-art NLP tools
and algorithms to maximize the number of spe-
cific linguistic forms in the top retrieved texts. It
supports language teachers in their search for ap-
propriate reading material in the following way:

• A parsing algorithm detects the 87 linguistic
constructions spelled out in the official cur-
riculum for the English language.

• Parallel processing allows to fetch and parse
several documents at the same time, making
the system efficient for real-life use.

• The responsive design of FLAIR ensures a
seamless interaction with the system.

The tool offers input enrichment of online materi-
als. In a broader context of computer-assisted lan-
guage learning, it can be used to support input en-
hancement (e.g., WERTi by Meurers et al., 2010)
and exercise generation (e.g., Language MuseSM

by Burstein et al., 2012).
Recent work includes the integration of the

Academic Word List (Coxhead, 2000) to estimate
the register of documents on-the-fly and rerank
them accordingly. The option of searching for
and highlighting the occurrences of words from
customized vocabulary lists has also been imple-
mented. In addition to the already available length
and readability filters, we are working on the op-
tions to constrain the search space by including

11

support for i) search restricted to specific web do-
mains and data sets, such as Project Gutenberg10

or news pages, and ii) search through one’s own
data set. We also plan to implement and test
more sophisticated text readability formulas (Va-
jjala and Meurers, 2014) and extend our informa-
tion retrieval algorithm. Finally, a pilot online user
study targeting language teachers is the first step
we are taking to empirically evaluate the efficacy
of the tool.

On the technical side, FLAIR was built from
the ground up to be easily scalable and extensible.
Our implementation taps the parallelizability of
text parsing and distributes the task homogenously
over any given hardware. While FLAIR presently
supports the English language exclusively, its ar-
chitecture enables us to add support for more lan-
guages and grammatical constructions with a min-
imal amount of work.

Acknowledgments

This research was funded by the LEAD Gradu-
ate School [GSC1028], a project of the Excellence
Initiative of the German federal and state govern-
ments. Maria Chinkina is a doctoral student at the
LEAD Graduate School.

We would also like to thank the language teach-
ers at Fachsprachzentrum Tübingen for trying out
the tool and providing valuable feedback.

References
Jasmine Bennöhr. 2005. A web-based personalised

textfinder for language learners. Master’s thesis,
University of Edinburgh.

Jonathan Brown and Maxine Eskenazi. 2004. Re-
trieval of authentic documents for reader-specific
lexical practice. In InSTIL/ICALL Symposium 2004.

Maria Chinkina and Detmar Meurers. 2016.
Linguistically-aware information retrieval: Provid-
ing input enrichment for second language learners.
In Proceedings of the 11th Workshop on Innovative
Use of NLP for Building Educational Applications,
San Diego, CA.

Averil Coxhead. 2000. A new academic word list.
TESOL quarterly, 34(2):213–238.

Ian Fette and Alexey Melnikov. 2011. The websocket
protocol.

Jesse James Garrett et al. 2005. Ajax: A new approach
to web applications.

10http://gutenberg.org

Susan M Gass and Evangeline Marlos Varonis. 1994.
Input, interaction, and second language production.
Studies in second language acquisition, 16(03):283–
302.

Alfred Inselberg and Bernard Dimsdale. 1991. Paral-
lel coordinates. In Human-Machine Interactive Sys-
tems, pages 199–233. Springer.

Christian Kohlschütter, Peter Fankhauser, and Wolf-
gang Nejdl. 2010. Boilerplate detection using shal-
low text features. In Proceedings of the third ACM
international conference on Web search and data
mining, pages 441–450. ACM.

Stephen Krashen. 1977. Some issues relating to the
monitor model. On Tesol, 77(144-158).

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Proceedings of 52nd
Annual Meeting of the Association for Computa-
tional Linguistics: System Demonstrations, pages
55–60.

Niels Ott and Detmar Meurers. 2011. Information re-
trieval for education: Making search engines lan-
guage aware. Themes in Science and Technology
Education, 3(1-2):pp–9.

Kristen Purcell, Lee Rainie, Alan Heaps, Judy
Buchanan, Linda Friedrich, Amanda Jacklin, Clara
Chen, and Kathryn Zickuhr. 2012. How teens do
research in the digital world. Pew Internet & Amer-
ican Life Project.

Stephen E Robertson and Steve Walker. 1994. Some
simple effective approximations to the 2-poisson
model for probabilistic weighted retrieval. In Pro-
ceedings of the 17th annual international ACM SI-
GIR conference on Research and development in in-
formation retrieval, pages 232–241.

Dan I Slobin. 1985. Crosslinguistic evidence for the
language-making capacity. The crosslinguistic study
of language acquisition, 2:1157–1256.

Merrill Swain. 1985. Communicative competence:
Some roles of comprehensible input and comprehen-
sible output in its development. Input in second lan-
guage acquisition, 15:165–179.

Martha Trahey and Lydia White. 1993. Positive
evidence and preemption in the second language
classroom. Studies in second language acquisition,
15(02):181–204.

Sowmya Vajjala and Detmar Meurers. 2014. Assess-
ing the relative reading level of sentence pairs for
text simplification. In Proceedings of the 14th Con-
ference of the European Chapter of the Association
for Computational Linguistics (EACL-14), Gothen-
burg, Sweden. Association for Computational Lin-

guistics.

12

