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Abstract

The computing cost of many NLP tasks in-
creases faster than linearly with the length
of the representation of a sentence. For
parsing the representation is tokens, while
for operations on syntax and semantics it
will be more complex. In this paper we
propose a new task of sentence chunking:
splitting sentence representations into co-
herent substructures. Its aim is to make
further processing of long sentences more
tractable. We investigate this idea exper-
imentally using the Dependency Minimal
Recursion Semantics (DMRS) representa-
tion.

1 Introduction

Long sentences pose a challenge in many Nat-
ural Language Processing (NLP) tasks, such as
parsing or translation. We propose chunking as
a way of making such sentences more tractable
before further processing. Chunking a sentence
means cutting a complex sentence into grammat-
ical constituents that can be processed indepen-
dently and then recombined without loss of infor-
mation. Such an operation can be defined both on
the surface string of a sentence and on its semantic
representation, and is applicable to a wide range of
tasks.

Some approaches to parsing have space and
time requirements which are much worse than lin-
ear in sentence length. This can lead to practical
difficulties in processing. For example, the ACE
processor1 running the English Resource Gram-
mar (ERG) (Copestake and Flickinger, 2000) re-
quires roughly 530 MB of RAM to parse Sen-
tence 1. In fact, longer and more complicated sen-

1Woodley Packard’s Answer Constraint Engine, http:
//sweaglesw.org/linguistics/ace/

tences can cause the parser to time out or run out
of memory before a solution is found.

(1) Marcellina has hired Bartolo as her coun-
sel, since Figaro had once promised to
marry her if he should default on a loan
she had made to him, and she intends to
enforce that promise.

Chunking would make processing of long sen-
tences more tractable. For example, we aim to
split sentences like Sentence 1 into chunks 2a–d.

(2) a. Marcellina has hired Bartolo as her
counsel.

b. Figaro had once promised to marry
her.

c. He should default on a loan she made
to him.

d. She intends to enforce that promise.

Each of these shorter sentences can be parsed with
less than 20 MB, requiring in total less than a fifth
of RAM needed to parse the full sentence.

What exactly constitutes a valid chunk has to
be considered in the context of the task which we
want to simplify by chunking. In this sense a po-
tentially useful analogy could be made to the use
of factoids in summarisation (Teufel and Van Hal-
teren, 2004; Nenkova et al., 2007). However, we
can make some general assumptions about the na-
ture of ‘good’ chunks. They have to be semanti-
cally and grammatically self-contained parts of the
larger sentence.

Sentence chunking resembles clause splitting as
defined by the CoNLL-2001 shared task (Tjong
et al., 2001). Each of the chunks a–d is a fi-
nite clause, although each consists of multiple
smaller clauses. This points to a crucial differ-
ence between sentence chunking and clause split-
ting which justifies treating them as separate tasks.
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We define chunking in terms of its purpose as a
pre-processing step and because of that it is more
restrictive. Not every clause boundary is a chunk
boundary. A key aspect of sentence chunking is
deciding where to place a chunk border so that the
resulting chunks can be processed and recombined
without loss of information.

Another difference between sentence chunking
and clause splitting is the domain of the task.
Clause splitting is performed on the surface string
of a sentence, while we can define chunking not
only on the surface representation but also on more
complex ones, such a graph-based semantic repre-
sentation.

There are two reasons why chunking a semantic
representation is a good idea:

1. Many operations on graphs have worse than
linear complexity, some types of graph
matching are NP-complete. Chunking se-
mantic representations can make their manip-
ulation more tractable (Section 1.1).

2. Such a form of chunking, apart from being
useful in its own right, can also help chunking
surface sentences (Section 1.2).

1.1 Chunking semantic representations

In this paper we describe an approach to sen-
tence chunking based on Dependency Minimal
Recursion Semantics (DMRS) graphs (Copestake,
2009). We chunk a sentence by dividing its seman-
tic representation into subgraphs corresponding to
logical chunks. The link structure of a DMRS
graph reveals appropriate chunk boundaries. Since
we envision chunking to be one of the steps in a
processing pipeline, we prioritize precision over
coverage to minimize error propagation. The goal
is to chunk fewer sentences but correctly rather
than more but with low precision.

Sentence chunking understood as graph chunk-
ing of a semantic representation can be directly
useful for applications that already use the rep-
resentation. Although we use the DMRS, chunk-
ing could be just as well adapted for other seman-
tic representations, for example AMR (Abstract
Meaning Representation) (Banarescu et al., 2013).
Part of our reason to choose the DMRS frame-
work was the fact that the DMRS format is readily
interchangeable with Minimal Recursion Seman-
tics (MRS). Thanks to this relationship our sys-
tem is compatible with any applications stemming

from the DELPH-IN initiative2.
Horvat et al. (2015) introduce a statistical ap-

proach to realization, in which they treat realiza-
tion like a translation problem. As part of their
approach, they extract grammatical rules based on
DMRS subgraphs. Since operations on subgraphs
are computationally expensive, chunking the sen-
tence before the algorithm is applied could reduce
the complexity of the task.

Another task which could benefit from chunk-
ing is treebanking. LinGO Redwoods 2 (Oepen et
al., 2004) is an initiative aimed at designing and
developing a treebank which supports the HPSG
grammar. The treebank relies on discriminants to
differentiate and choose between possible parses.
Chunking could be used to preferentially select
parses which contain subtrees corresponding to
well-formed chunk subgraphs.

1.2 Towards string chunking

The DMRS-based rule approach cannot be itself
used to improve parsing because it requires a full
parse to find the chunks in the first place. How-
ever, development of the surface chunking ma-
chine learning algorithm can extend applicability
of chunking to parsing and other tasks for which a
deep parse is unavailable.

The alignment between the semantic and sur-
face representations of a sentence allows us to cut
the sentence string into surface chunks. We intend
to use the rule-based approach to create training
data for a minimally supervised machine learning
algorithm.

Following Rei (2013, pp. 11-12) we use the
term ‘minimally supervised’ to mean a system
trained using “domain-specific resources, other
than annotated training data, which could be pro-
duced by a domain-expert in a relatively short
time”. In our case the resource is a small set of
manually coded rules developed through examina-
tion of data.

The ultimate goal of our work is the creation of
a reliable tool which performs chunking of sen-
tence strings without relying on semantic repre-
sentation and deep parsing. The applicability of
chunking would then extend to tasks which cannot
rely on deep parsing, such as statistical machine
translation or parsing itself.

The next sections give more details on the

2Deep Linguistic Processing with HPSG,
www.delph-in.net
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Since I bought a cat, we have had no problems with mice.

ARG1/H

ARG2/H

ARG1/NEQ

ARG2/NEQ

RSTR/H

ARG1/NEQ ARG1/EQ

ARG1/EQRSTR/H ARG2/NEQ

Figure 1: A DMRS graph of a sentence Since I bought a cat, we have had no problems with mice. The
two chunks are marked, while since is separated as a functional chunk and chunking trigger. The links
with circular labels are crucial for chunking.

DELPH-IN framework, DMRS and our approach
to rule-based chunking. We present our prelimi-
nary results in Section 4 and outline our current
investigation focus and future research directions
in Sections 5. Chunking is a new task, however it
is related to several existing ones as discussed in
Section 6.

2 DELPH-IN framework and DMRS

The rule-based chunking system we devel-
oped is based on the English Resource Gram-
mar (ERG) (Flickinger, 2000), a broad-coverage,
symbolic grammar of English. It was developed as
part of DELPH-IN initiative and LinGO3 project.
The ERG uses Minimal Recursion Semantics
(MRS) (Copestake et al., 2005) as its semantic
representation. The MRS format can be trans-
formed into a more readable Dependency Minimal
Recursion Semantics (DMRS) graph (Copestake,
2009), which represents its dependency structure.
The nodes correspond to predicates; edges, re-
ferred to as links, represent relations between
them. An example of a DMRS graph is shown in
Figure 1.

DMRS graphs can be manipulated using two
existing Python libraries. The pyDelphin4 is
a more general MRS-dedicated library. It al-
lows conversions between MRS and DMRS rep-
resentations but internally performs operations on
MRS objects. The pydmrs library5 (Copestake
et al., 2016) is dedicated solely to DMRS manip-
ulations. The work described in Section 4 used
pyDelphin.

3Linguistic Grammars Online, lingo.stanford.
edu

4https://github.com/delph-in/pydelphin
5https://github.com/delph-in/pydmrs

The ERG is a bidirectional grammar which sup-
ports both parsing and generation. There exist sev-
eral processors, which parse sentences into MRSs
and generate surface forms from MRS represen-
tations using chart generation. In our experiments
we use ACE6 to obtain MRSs and to generate from
them, so that parsing and generation themselves
are performed using already existing DELPH-IN
tools. The chunking algorithm operates on graphs
– we use the pyDelphin and pydmrs libraries
for MRS-DMRS conversion and for manipulating
DMRS objects.

3 DMRS-based chunking

In our research so far we have restricted valid
chunks to finite clauses. A sentence is chunked
correctly if all the chunks are either full finite
clauses with a subject-verb structure or functional
trigger chunks, such as since or and. A chunk can
consist of multiple clauses if it is needed to ensure
that all chunks are satisfactory.

The finite clause restriction was introduced be-
cause well-formedness of finite clauses can be eas-
ily checked and they can be more readily pro-
cessed independently and recombined than other
types of clauses.

We developed the chunking rules through ex-
amination of data and finding structural patterns
in DMRS graphs. Currently chunking is based on
three grammatical constructions: clausal coordi-
nation (3), suboordinating conjunctions (4ab) and
clausal complements (5).

(3) The cat chased a toy and the dog slept un-
der the table.

6Woodley Packard’s Answer Constraint Engine, http:
//sweaglesw.org/linguistics/ace/

95



(4) a. The cat chased a toy because it was
bored.

b. Since the dog slept, Kim didn’t offer it
a snack.

(5) Kim thought that they should talk.

Extending the coverage of the technique to other
structures is one of future directions of investiga-
tion.

We discover potential chunking points by spot-
ting trigger nodes. Those are the nodes which
correspond to coordinating and subordinating con-
junctions, and to verbs with clausal complements.
In the example from Figure 1 since is a trigger.

After a trigger is found, we check whether the
clauses associated with it are finite. We can do
that by following links outgoing from the trig-
ger node which lead to heads of the clauses. We
marked these links in the figure with circular la-
bels. In symmetric constructions, such as coordi-
nation, chunks are separated unambiguously by a
conjunction. In other cases, such as the one in the
example, we can find the chunk border by detect-
ing a gap in the graph’s link structure. No links
outgoing from either of the main chunks span the
gap between cat and we in Figure 1.

4 Preliminary results

So far we evaluated the system using a parsing and
regeneration procedure, leveraging bidirectional-
ity of the ERG. The surface of each sentence was
chunked into substrings based on its semantic rep-
resentation. Each of the resulting surface chunks
was then parsed using the ACE. Next we fed the
top parse for each chunk as input to the ACE gen-
erator, which produced the surface matching the
semantic representation of the chunk. Finally, we
recombined the surfaces generated in this fashion
and compared the results with the original sen-
tence.

The parsing and regeneration is a way of check-
ing whether any information loss was caused by
chunking. We do not attempt to improve pars-
ing, only to evaluate how well the chunks meet
the criteria of well-formedness and applicability
we posit. At the same time this form of evalua-
tion assesses the semantic representation chunk-
ing only indirectly, focusing on the quality of pro-
duced surface chunks. This is desirable in for cre-
ating a good quality dataset for the minimally su-
pervised machine learning algorithm discussed in
Section 1.2.

As our dataset, we used the 1212 release of the
WikiWoods corpus (Flickinger et al., 2010) which
is a snapshot of Wikipedia from July 2008. The
entire corpus contains 44,031,336 entries, from
which we selected only long sentences, viz. sen-
tences with more than 40 nodes in their DMRS
graph. Additionally we filtered out some non-
sentential entries.

We compared the results obtained using the
DMRS-based system with a simple string-based
heuristic baseline, similar to one of the techniques
used currently in statistical machine translation
community7. The baseline attempts to chunk 67%
of long sentences it encounters, compared with
25% attempted by the DMRS-based approach. As
a result, the absolute number of sentences the
baseline chunks correctly is greater but low pre-
cision makes the heuristic approach highly unreli-
able. Any application which used it would require
a lot of human supervision. The DMRS-based
procedure correctly chunks 42.0% of sentences in
which it finds chunking opportunities, while base-
line correctly chunks only 19.6% of sentences.

The evaluation method with which we obtained
these results was harsh. It required all non-
functional chunks to be finite clauses. If even one
of many chunks was not a finite clause, we counted
the entire sentence as chunked incorrectly. Some
errors occurred in the final step of the evaluation:
generation from chunk’s surface string. We re-
quired a high similarity between the reconstructed
sentence and the original. For example, according
to the ERG lexicon, St and Street have the same
semantic representation and the generator can’t
choose between them. If a generated string con-
tained Baker Street when the original used Baker
St, the difference would be penalised even though
the two are equivalent. More than one mistake of
this kind in a sentence would be enough to reject
the result as incorrect.

A significant percentage of errors stems from
the dataset itself. Sentences and parses in the
WikiWoods dataset were not checked by humans.
In fact, not all Wikiwoods entries are grammatical
sentences and many of them could not be easily
filtered out. Bearing that in mind we briefly re-
peated the experiment with a smaller WeScience
corpus8 (Ytrestøl et al., 2009). Like WikiWoods,

7Cambridge SMT system: Source sentence chop-
ping, http://ucam-smt.github.io/tutorial/
basictrans.html#chopping

8http://moin.delph-in.net/WeScience
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Algorithm (Dataset) Precision Correct Incorrect Attempted
DMRS-based (WikiWoods) 42.0% 3036 4195 24.9%
Baseline (WikiWoods) 19.6% 3783 15526 66.6%
DMRS-based (WeScience) 62.7% 106 63 22.7%
Baseline (WeScience) 14.2% 60 362 56.7%

Table 1: Performance of the DMRS-based chunking algorithm and the baseline on the WikiWoods and
WeScience datasets. Precision is the percentage of attempted sentences which were chunked correctly,
while Correct and Incorrect columns give absolute numbers of correctly and incorrectly chunked sen-
tences. Attempted column is the percentage of sentences for which a chunking opportunity was found
and attempted.

it originates from Wikipedia but has been checked
by human annotators.

Indeed, the chunking procedure performs much
better on the human-checked dataset: 62.7% cor-
rect chunkings as compared with 42% for Wiki-
Woods (Table 1), indicating the algorithm’s sensi-
tivity to parsing errors.

The error analysis of the WeScience experiment
reveals that over 25% of the errors made by the
rules-based system can be explained by the pres-
ence of grammatical structures which the rules
did not account for. Increasing the coverage of
structures used for chunking should decrease the
number of errors of this origin. Another common
source of errors were adverbs and prepositional
phrases left behind after chunking sentences be-
ginning with However, when. . . or For example,
if. . . . We address this issue in the newer version of
the system.

For comparison, the string heuristics baseline
makes chunking decisions based solely on the
presence of trigger words, such as and, without
the knowledge of what clauses are involved. The
position of good chunking boundaries is often de-
termined by dependencies between distant parts
of the surface, which are difficult to capture with
string-based rules, but are clearly reflected in the
DMRS link structure. This results in the baseline
yielding unsatisfactory chunks like those under-
lined in Sentence 6.

(6) The dog barked and chased the cat.

5 Current work and future research

Currently we are preparing a different evalua-
tion technique which will directly compare DMRS
representations of chunks and the original sen-
tence, eliminating the generation step responsi-
ble for many errors. In the new evaluation chunk
graphs are matched against the full graph using

the pyDmrs matching module (Copestake et al.,
2016) which scores the degree of the match on a
continuous scale.

We are also cooperating with the authors of the
statistical approach to realisation (Horvat et al.,
2015) on incorporating chunking into their graph
manipulations. We hope to use their system for
extrinsic evaluation.

Sentences which would most benefit from
chunking are also, not accidentally, sentences with
which parsers struggle most. Chunking often fails
because the parse on which we base it is incor-
rect. In the future we would like to experiment
with considering a number of parses instead of just
the top one. This would enable us to mix chunking
into the correct parse selection procedure.

One of the investigation directions is extend-
ing the catalogue of grammatical structures on
which we base the chunks. Some syntactical
structures we consider as extensions are relative
clauses, verb phrase coordinations, gerund-based
adjuncts, parentheticals and appositions. Their in-
clusion would increase the coverage and quality of
chunks, crucial for our purposes.

The treatment of clausal complements needs
improvement as well. Some clauses are obligatory
syntactic elements and their removal changes how
the main clause is parsed. We do not address this
issue in the current early version of the system but
the lexicalist nature of the ERG offers a solution.
The information about whether a clausal comple-
ment is obligatory for a given verb is contained in
the grammar’s lexicon and can be leveraged to im-
prove chunking decisions. We aim to include this
mechanism in a later version of the algorithm.

DMRS graphs store information about the
alignment between nodes and surface fragments.
This information allows us to chunk surfaces of
sentences based on the results of graph chunking.
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As discussed in Section 1.2, we intend to create a
training dataset for a machine learning algorithm
which would perform surface chunking. Since, as
the WeScience experiment showed, our rule-based
approach is sensitive to errors in original parses of
full sentences, we might base our training corpus
on the RedWoods treebank, which is larger than
WeScience but still human-checked.

6 Related work

We define sentence chunking as a new task. As
discussed in Introduction, it bears similarity to
clause splitting but because of its definition in
terms of functionality, it has to be considered sep-
arately.

The most important similarity between chunk-
ing and clause splitting is how the two problems
can be defined for the purpose of machine learn-
ing. Clause splitting was the CoNLL-2001 shared
task (Tjong et al., 2001) and the results of that
research can guide the development of a machine
learning system for chunking. Another task which
can provide insights into how to design a suitable
machine learning system is Sentence Boundary
Disambiguation (SBD) task (Walker et al., 2001).

Other research related to chunking was con-
ducted in the context of text simplification. Sen-
tence chunking is a natural step in a simplification
process, among other rewrite operations such as
paraphrase extraction, but the two tasks have dif-
ferent goals. While sentence simplification mod-
ifies sentences, replacing lexical items and rear-
ranging order of information, sentence chunking
aims to preserve as much of the original sentence
as possible.

Chandrasekar et al. (1996) suggested using
dependency structures for simplifying sentences.
The authors gave an example of simplifying rela-
tive clauses that is similar to chunking but outside
of the current scope of our experiments. This re-
search represented early work on automatic syn-
tactic simplification and was succeeded by Sid-
dharthan (2010) who performs simplification by
defining transformation rules over type depen-
dency structures. Siddharthan’s approach mixes
lexical and syntactical transformations and cannot
be directly compared with chunking.

Another example of work on simplification is
a paper by Woodsend and Lapata (2011). The
authors call sentence chunking sentence splitting
and approach it from the perspective of tree-based

Quasi-synchronous Grammar (QG). Their algo-
rithm learns possible chunking points by aligning
the original sentence with two shorter target sen-
tences. Unlike the method we propose, the QG
approach requires a manually created dataset con-
sisting of original and target sentences from which
the rules can be inferred. Unfortunately, it is im-
possible to compare the performance of our sen-
tence chunking and the authors’ sentence splitting.
The QG splitting algorithm is an integral part of
the text simplification system and the paper de-
scribing it does not give any numbers regarding
the performance of individual parts of the system.

7 Conclusions

We defined sentence chunking in terms of its use-
fulness for other tasks. Its aim is to produce
chunks which can be processed and recombined
without loss of information. The procedure can be
defined for both the surface of a sentence and for
its semantic representation.

In our experiments we perform chunking us-
ing rules based on the DMRS graphs of sentences.
Our work is an early attempt at the task so we fo-
cus on easier cases, aiming to gradually increase
coverage. Since chunking is intended as a pre-
processing step for other tasks, the reliability and
precision are more important than chunking as
many sentences as possible. Bearing this in mind,
we are satisfied to report that according to pre-
liminary experiments, our chunking procedure at-
tempted 25% of all sentences in the dataset and
it chunked 42% of these correctly. For compari-
son, a baseline using heuristics attempted to chunk
67% of sentences, but only 19.6% of these sen-
tences were chunked correctly.

The DMRS-based graph chunking can be used
to improve existing systems such as the statisti-
cal realization algorithm (Horvat et al., 2015) or
to guide the selection of parses for LinGO Red-
Woods 2 treebank (Oepen et al., 2004).

The surface chunking machine learning tool
will extend the applicability of chunking even
further. Eliminating the immediate reliance on the
parse could allow chunking to replace the string
heuristics for machine translation and to influence
parsing itself, reducing the difficulty of the task.
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