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Abstract

Morphological reinflection is the task of
generating a target form given a source
form, a source tag and a target tag. We
propose a new way of modeling this
task with neural encoder-decoder models.
Our approach reduces the amount of re-
quired training data for this architecture
and achieves state-of-the-art results, mak-
ing encoder-decoder models applicable to
morphological reinflection even for low-
resource languages. We further present a
new automatic correction method for the
outputs based on edit trees.

1 Introduction

Morphological analysis and generation of previ-
ously unseen word forms is a fundamental prob-
lem in many areas of natural language process-
ing (NLP). Its accuracy is crucial for the success
of downstream tasks like machine translation and
question answering. Accordingly, learning mor-
phological inflection patterns from labeled data is
an important challenge.

The task of morphological reinflection (MRI)
consists of producing an inflected form for a given
source form, source tag and target tag. A spe-
cial case is morphological inflection (MI), the
task of finding an inflected form for a given
lemma and target tag. An English example is
“tree”+PLURAL→ “trees”. Prior work on MI and
MRI includes machine learning models and mod-
els that exploit the paradigm structure of the lan-
guage (Ahlberg et al., 2015; Dreyer, 2011; Nicolai
et al., 2015).

In this work, we propose the neural encoder-
decoder MED – Morphological Encoder-Decoder
– a character-level sequence-to-sequence attention
model that is a language-independent solution for

MRI. In contrast to prior work, we train a single
model that is trained on all source to target map-
pings of the language that are attested in the train-
ing set. This radically reduces the amount of train-
ing data needed for the encoder-decoder because
most MRI patterns occur in many source-target tag
pairs. In our model design, what is learned for one
pair can be transferred to others.

The key enabler for this single-model approach
is a novel representation we use for MRI. We en-
code the input as a single sequence of (i) the mor-
phological tags of the source form, (ii) the mor-
phological tags of the target form and (iii) the se-
quence of letters of the source form. The output is
the sequence of letters of the target form. As the
decoder produces each letter, the attention mech-
anism can focus on the input letter sequence for
parts of the output that simply copy the input. For
other parts of the output, e.g., an inflectional end-
ing that is predicted using the target tags, the at-
tention mechanism can focus on the target mor-
phological tags. In more complex cases, simulta-
neous attention can be paid to subsequences of all
three input types – source tags, target tags and in-
put letter sequence. We can train a single generic
encoder-decoder per language on this represen-
tation that can handle all tag pairs, thus making
it possible to make efficient use of the available
training data. MED outperformed other systems
on the SIGMORPHON16 shared task1 for all ten
languages that were covered (Kann and Schütze,
2016; Cotterell et al., 2016).

We also present POET – Prefer Observed Edit
Trees – a new generic method for correcting the
output of an MRI system. The combination of
MED and POET is state-of-the-art or close to it on
a CELEX-based evaluation of MRI even though
this evaluation makes it difficult to exploit gener-

1ryancotterell.github.io/
sigmorphon2016/
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alizations across tag pairs.

2 Model Description

Neural network model. Our model is based on
the network architecture proposed by Bahdanau
et al. (2014) for machine translation.2 They de-
scribe the model in detail; unless we explicitly say
so in the description of our model below, we use
the same network configuration as Bahdanau et al.
(2014).

Bahdanau et al. (2014)’s model is an extension
of the recurrent neural network (RNN) encoder-
decoder developed by Cho et al. (2014) and
Sutskever et al. (2014). The encoder of the latter
consists of an RNN that reads an input sequence of
vectors x and encodes it into a fixed-length context
vector c, computing hidden states ht and c by

ht = f(xt, ht−1), c = q(h1, ..., hTx) (1)

with nonlinear functions f and q. The decoder is
trained to predict each output yt dependent on c
and previous predictions y1, ..., yt−1:

p(y) =
Ty∏
t=1

p(yt|{y1, ..., yt−1}, c) (2)

with y = (y1, ..., yTy) and each conditional prob-
ability being modeled with an RNN as

p(yt|{y1, ..., yt−1}, c) = g(yt−1, st, c) (3)

where g is a nonlinear function and st is the hidden
state of the RNN.

Bahdanau et al. (2014) proposed an attention-
based extension of this model that allows different
vectors ct for each step by automatic learning of
an alignment model. Additionally, they made the
encoder bidirectional: each hidden state hj at time
step j does not only depend on the preceding, but
also on the following input:

hj =
[−→
hT

j ;
←−
hT

j

]T

(4)

The formula for p(y) changes as follows:

p(y) =
Ty∏
t=1

p(yt|{y1, ..., yt−1}, x) (5)

=
Ty∏
t=1

g(yt−1, st, ct) (6)

2Our implementation of MED is based on
github.com/mila-udem/blocks-examples/
tree/master/machine_translation.

with st being an RNN hidden state for time t
and ct being the weighted sum of the annota-
tions (h1, ..., hTx) produced by the encoder, using
the attention weights. Further descriptions can be
found in (Bahdanau et al., 2014).

The final model is a multilayer network with
a single maxout (Goodfellow et al., 2013) hidden
layer that computes the conditional probability of
each element in the output sequence (a letter in
our case, (Pascanu et al., 2014)). As MRI is less
complex than machine translation, we reduce the
number of hidden units and embedding size. Af-
ter initial experiments, we fixed the hyperparame-
ters of our system and did not further adapt them
to a specific task or language. Encoder and de-
coder RNNs have 100 hidden units each. For train-
ing, we use stochastic gradient descent, Adadelta
(Zeiler, 2012) and a minibatch size of 20. We ini-
tialize all weights in the encoder, decoder and the
embeddings except for the GRU weights in the de-
coder with the identity matrix as well as all biases
with zero (Le et al., 2015). We train all models
for 20,000 iterations. We settled on this number
in early experimentation because training usually
converged before that limit.

MED is an ensemble of five RNN encoder-
decoders. The final decision is made by majority
voting. In case of a tie, the answer is chosen ran-
domly among the most frequent predictions.

Input and output format. We define the al-
phabet Σlang as the set of characters used in the
application language. As each morphological tag
consists of one or more subtags, e.g. “number“ or
“case“, we further define Σsrc and Σtrg as the set
of morphological subtags seen during training as
part of the source tag and target tag, respectively.
Let Sstart and Send be predefined start and end sym-
bols. Then each input of our system is of the for-
mat SstartΣsrc

+Σtrg
+Σlang

+Send. In the same way,
we define the output format as SstartΣlang

+Send.
A sample input for German is

<w> IN=pos=ADJ IN=case=GEN
IN=num=PL OUT=pos=ADJ OUT=case=ACC
OUT=num=PL i s o l i e r t e r </w>. The
system should produce the corresponding output
<w> i s o l i e r t e </w>. The high-level
structure of MED can be seen in Figure 1.

POET. We now describe POET (Prefer Ob-
served Edit Trees), a new generic method for cor-
recting the output of an MRI system. We use it in
combination with MED in this paper, but it can in
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Figure 1: Overview of MED

Figure 2: Edit tree for the inflected form abgesagt “canceled”
and its lemma absagen “to cancel”. The highest node con-
tains the length of the parts before and after the LCS. The left
node in the second row contains the length of the parts before
and after the LCS of abge and ab. The prefix sub indicates
that the node is a substitution operation.

principle be applied to any MRI system.
An edit tree e(σ, τ) specifies a transforma-

tion from a source string σ to a target string τ
(Chrupała, 2008). To compute e(σ, τ), we first
determine the longest common substring (LCS)
(Gusfield, 1997) between σ and τ and then recur-
sively model the prefix and suffix pairs of the LCS.
If the length of LCS is zero for (σ, τ), then e(σ, τ)
is simply the substitution operation that replaces σ
with τ . Figure 2 shows an example.

Let X be a training set for MRI. For each pair
(s, t) of tags, we define:

Es,t ={e′|∃x∈X : e′=e(x), s=S(x), t=T (x)}

where S(x) and T (x) are source and target tags
of x and e(x) is e(σ(x), τ(x)), the edit tree that
transforms the source form into the target form.

Let ρ be a target form predicted by the MRI
system for the source form σ and let s and t be
source and target tags. POET does not change ρ if
e(σ, ρ) ∈ Es,t. Otherwise it replaces ρ with τ :

τ :=
{
τ ′ if e(σ, τ ′) ∈ Es,t, |ρ, τ ′| = 1
ρ else

where |ρ, τ ′| is the Levenshtein distance. If there
are several forms τ ′ with edit distance 1, we select
the one with the most frequent edit tree. Ties are
broken randomly.

We observed that MED sometimes makes er-
rors that are close to the target, but differ by one

edit operation. Those errors are often not covered
by edit trees that are observed in the training data
whereas the correct form is. Thus, substituting a
form not supported by an observed edit tree with a
close one that is supported promises to reduce the
error rate.

The effectiveness of POET depends on a train-
ing set that is large enough to cover the possible
edit trees that can occur in reinflection in a lan-
guage. Thus, if the training set is not large enough
in this respect, then POET will not be beneficial.

3 Experiments

We compare MED with the three models of Dreyer
et al. (2008) as well as with two recently pro-
posed models: (i) discriminative string transduc-
tion (Durrett and DeNero, 2013; Nicolai et al.,
2015), the SIGMORPHON16 baseline, and (ii)
Faruqui et al. (2015)’s encoder-decoder model.3

We call the latter MODEL*TAG as it requires
training as many models as there are target tags.

We evaluate MED on two MRI tasks: CELEX
and SIGMORPHON16.

CELEX. This task is based on complete inflec-
tion tables for German extracted from CELEX.
For this experiment we follow Dreyer et al. (2008).
We use four pairs of morphological tags and corre-
sponding word forms from the German part of the
CELEX morphological database. The 4 different
transduction tasks are: 13SIA→ 13SKE, 2PIE→
13PKE, 2PKE → z and rP → pA.4 An example
for this task would be to produce the output ges-
teuert (target tag pA) for the source steuert (source
tag rP). To do so, the system has to learn that the
prefix ge-, which is used for many participles in
German, has to be added to the beginning of the
original word form.

We use the same data splits as Dreyer et al.
(2008), dividing the original 2500 samples for
each tag into five folds, each consisting of 500
training and 1000 development and 1000 test sam-
ples. We train a separate model for each fold and
report exact match accuracy, averaged over the five
folds, as our final result.

3For our experiments we ran the code available at
github.com/mfaruqui/morph-trans. We used the
enc-dec-attn model as overall results for the CELEX task
were better than with the sep-morph model.

413SIA=1st/3rd sg. ind. past; 13SKE=1st/3rd sg. sub-
junct. pres.; 2PIE=2nd pl. ind. pres.; 13PKE=1st/3rd pl.
subjunct. pres.; 2PKE=2nd. pl. subjunct. pres.; z=infinitive;
rP=imperative pl.; pA=past part.
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E

rP

D
re

ye
r backoff 82.8 88.7 74.7 69.9

lat-class 84.8 93.6 75.7 81.8
lat-region 87.5 93.4 87.4 84.9
baseline 77.6 95.1 82.5 69.6
MODEL*TAG 76.4 92.1 83.4 81.8
MED 82.3 94.4 86.8 83.9
MED+POET 83.9 95.0 87.6 84.0

Table 1: Exact match accuracy of MRI on CELEX. Re-
sults of (Dreyer et al., 2008)’s model are from their pa-
per; backoff: ngrams+x model; lat-class: ngrams+x+latent
class model; lat-region: ngrams+x+latent class+latent re-
gion model; baseline: SIGMORPHON16 baseline.

SIGMORPHON16. This task covers eight lan-
guages and does not provide complete paradigms,
but only a set of quadruples, each consisting of
word form, source tag, target tag and target form.
The main difference to CELEX is that the number
of tag pairs is large, resulting in much less training
data per tag pair. The number of tag pairs varies
by language with Georgian being an extreme case;
it has 28 tag pairs in dev that appear less than 10
times in train. For each language, we have around
12,800 training and 1600 development samples.
We report exact match accuracy on the develop-
ment set, as the final test data of the shared task is
not publically available yet.

4 Results

Table 1 gives CELEX results. MED+POET is bet-
ter than prior work on one task, close in perfor-
mance on two and worse by a small amount on the
third. Unlike Dreyer et al. (2008)’s models, MED
does not use any hand-crafted features. MED’s re-
sults are weakest on 13SIA. Typical errors on this
task include epenthesis (e.g., zirkle vs. zirkele) and
irregular verbs (e.g., abhing vs. abhängte).

For SIGMORPHON16, Table 2 shows that
MED outperforms the baseline for all eight lan-
guages. Absolute performance and variance is
probably influenced by type of morphology (e.g.,
templatic vs. agglutinative), regularity of the lan-
guage, number of different tag pairs and other fac-
tors. MED performs well even for complex and
diverse languages like Arabic, Finnish, Navajo
and Turkish, suggesting that the type of attention-
based encoder-decoder we use – single-model, us-
ing an explicit morphological representation – is a
good choice for MRI.

MED
baseline average ensemble

Arabic 58.8 83.1 (0.4) 88.8
Finnish 64.6 92.5 (0.8) 95.6
Georgian 91.5 95.7 (0.3) 97.3
German 87.7 92.1 (0.5) 95.1
Navajo 60.9 85.0 (1.1) 91.1
Russian 85.6 84.2 (0.3) 88.4
Spanish 95.6 96.3 (0.3) 97.5
Turkish 54.9 94.7 (1.3) 97.6

Table 2: Exact match accuracy of MRI on SIG-
MORPHON16; baseline: SIGMORPHON16 baseline;
MED/average: average of five MED models (standard devia-
tion in parentheses); MED/ensemble: majority voting of five
MED models.

We do not compare to MODEL*TAG here be-
cause it requires training a large number of indi-
vidual networks. This is a disadvantage compared
to MED both in terms of the number of models
that need to be trained and in terms of the effec-
tive use of the small number of training examples
that are available per tag pair.

POET improves the results for all tag pairs for
CELEX. However, initial experiments indicated
that it is not effective for SIGMORPHON16 be-
cause its training sets are not large enough.

5 Analysis

The main innovation of our work is that MED
learns a single model of all MRI patterns of a lan-
guage and thus can transfer what it has learned
from one tag pair to another tag pair. Using
CELEX, we now analyze how much our design
contributes to better performance by conducting
two experiments in which we gradually decrease
the training set in two different ways. (i) Large
general training set. We only reduce the number
of training examples available for a tag pair (s, t)
and retain all other training examples. (ii) Small
training set. We reduce the number of training ex-
amples available for all tag pairs, not just for one.

A typical example of the large general training
set scenario is that familiar second person forms
are rare in genres like encyclopedia and news. So
a training set derived from these genres will be
large, but it will have very few tag pairs whose
target tag is familiar second person.

A typical example of the small training set sce-
nario is that we are dealing with a low-resource
language.

558



 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

A
cc

u
ra

cy

% of training data

MED
MODEL*TAG

Figure 3: Results for the large general training set experi-
ment: effect of reducing the training set for only 2PIE →
13PKE on the accuracy for 2PIE → 13PKE for MED and
MODEL*TAG.
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Figure 4: Results for the small training set experiment: effect
of reducing the training set for all tag pairs on accuracy for
MED and MODEL*TAG.

In the following two experiments, we only re-
duce the training set and do not change the test
set.

Large general training set. We iteratively
halve the training data for 2PIE → 13PKE until
only 6.25% or 32 samples are left. Figure 3 shows
that MED performs well even if only 6.25% of the
training examples for the tag pair remain. In con-
trast, MODEL*TAG struggles to generalize cor-
rectly. This is due to the fact that we train one
single model for all tags, so it can learn from other
tags and transfer what it has learned to the tag pair
that has a small training set.

Small training set. Figure 4 shows results
for reducing the training data equally for all tags.
MED performs much better than the baseline for
less than 50% of the training data. This can be ex-
plained by the fact that MED learns from all given
data at once and thus is able to learn common pat-
terns that apply across different tag pairs.

6 Related Work

Earlier work on morphology includes morpholog-
ical segmentation (Harris, 1955; Hafer and Weiss,
1974; Déjean, 1998) and different approaches for
MRI (Ahlberg et al., 2014; Durrett and DeNero,

2013; Eskander et al., 2013; Nicolai et al., 2015).
Chrupała (2008) defined edit trees and Chrupała
(2008) and Müller et al. (2015) use them for mor-
phological tagging and lemmatization.

In the last years, RNN encoder-decoder models
and RNNs in general were applied to several NLP
tasks. For example, they proved to be useful for
machine translation (Cho et al., 2014; Sutskever et
al., 2014; Bahdanau et al., 2014), parsing (Vinyals
et al., 2015) and speech recognition (Graves and
Schmidhuber, 2005; Graves et al., 2013).

MED bears some resemblance to Faruqui et al.
(2015)’s work. However, they train one network
for every tag pair; this can negatively impact per-
formance for low-resource languages and in gen-
eral when training data are limited. In contrast, we
train a single model for each language. This radi-
cally reduces the amount of training data needed
for the encoder-decoder because most MRI pat-
terns occur in many tag pairs, so what is learned
for one can be transferred to others. To be able
to model all tag pairs of the language together,
we introduce an explicit morphological represen-
tation that enables the attention mechanism of
the encoder-decoder to generalize MRI patterns
across tag pairs.

7 Conclusion and Future Work

We have presented MED, a language independent
neural sequence-to-sequence mapping approach,
and POET, a method based on edit trees for cor-
recting the output of an MRI system. MED ob-
tains results comparable to state-of-the-art systems
for CELEX and establishes the state-of-the-art for
SIGMORPHON16. POET improves results fur-
ther for large training sets. Our analysis showed
that MED outperforms a neural encoder-decoder
baseline system by a large margin, especially for
small training sets.

In future work, we would like to make POET
less dependent on the source tag and thus increase
its accuracy for small training sets. Second, we
will look into ways of taking advantage of ad-
ditional information sources including unlabeled
corpora.
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