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Abstract

Machine comprehension tests the sys-
tem’s ability to understand a piece of text
through a reading comprehension task.
For this task, we propose an approach us-
ing the Abstract Meaning Representation
(AMR) formalism. We construct mean-
ing representation graphs for the given
text and for each question-answer pair by
merging the AMRs of comprising sen-
tences using cross-sentential phenomena
such as coreference and rhetorical struc-
tures. Then, we reduce machine compre-
hension to a graph containment problem.
We posit that there is a latent mapping of
the question-answer meaning representa-
tion graph onto the text meaning represen-
tation graph that explains the answer. We
present a unified max-margin framework
that learns to find this mapping (given a
corpus of texts and question-answer pairs),
and uses what it learns to answer questions
on novel texts. We show that this approach
leads to state of the art results on the task.

1 Introduction

Learning to efficiently represent and reason with
natural language is a fundamental yet long-
standing goal in NLP. This has led to a series of
efforts in broad-coverage semantic representation
(or “sembanking”). Recently, AMR, a new seman-
tic representation in standard neo-Davidsonian
(Davidson, 1969; Parsons, 1990) framework has
been proposed. AMRs are rooted, labeled graphs
which incorporate PropBank style semantic roles,
within-sentence coreference, named entities and
the notion of types, modality, negation, quantifi-
cation, etc. in one framework.

In this paper, we describe an approach to use
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Text: ... Katie also has a dog, but he does not like Bows. ... His name is Sammy. ...

Hypothesis: Sammy is the name of Katie’s dog.
Question: What is the name of Katie’s dog. Answer: Sammy

Figure 1: Example latent answer-entailing structure from the MCTest
dataset. The question and answer candidate are combined to generate a hy-
pothesis. This hypothesis is AMR parsed to construct a hypothesis meaning
representation graph after some post-processing (§ 2.1). Similar processing
is done for each sentence in the passage as well. Then, a subset (not neces-
sarily contiguous) of these sentence meaning representation graphs is found.
These representation subgraphs are further merged using coreference informa-
tion, resulting into a structure called the relevant text snippet graph. Finally, the
hypothesis meaning representation graph is aligned to the snippet graph. The
dashed red lines show node alignments, solid red lines show edge alignments,
and thick solid black arrow shows the rhetorical structure label (elaboration).

AMR for the task of machine comprehension. Ma-
chine comprehension (Richardson et al., 2013)
evaluates a machine’s understanding by posing a
series of multiple choice reading comprehension
tests. The tests are unique as the answer to each
question can be found only in its associated texts,
requiring us to go beyond simple lexical solutions.
Our approach models machine comprehension as
an extension to textual entailment, learning to out-
put an answer that is best entailed by the pas-
sage. It works in two stages. First, we construct
a meaning representation graph for the entire pas-
sage (§ 2.1) from the AMR graphs of compris-
ing sentences. To do this, we account for cross-
sentence linguistic phenomena such as entity and
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Figure 2: The AMR parse for the hypothesis in Figure 1. The person nodes
are merged to achieve the hypothesis meaning representation graph.

event coreference, and rhetorical structures. A
similar meaning representation graph is also con-
structed for each question-answer pair. Once we
have these graphs, the comprehension task hence-
forth can be reduced to a graph containment prob-
lem. We posit that there is a latent subgraph of
the text meaning representation graph (called snip-
pet graph) and a latent alignment of the question-
answer graph onto this snippet graph that entails
the answer (see Figure 1 for an example). Then,
we propose a unified max-margin approach (§ 2.2)
that jointly learns the latent structure (subgraph
selection and alignment) and the QA model. We
evaluate our approach on the MCTest dataset and
achieve competitive or better results than a number
of previous proposals for this task.

2 The Approach

2.1 The Meaning Representation Graphs

We construct the meaning representation graph us-
ing individual sentences AMR graphs and merging
identical concepts (using entity and event corefer-
ence). First, for each sentence AMR, we merge
nodes corresponding to multi-word expressions
and nodes headed by a date entity (“date-entity”),
or a named entity (“name”) or a person entity
(“person”). For example, the hypothesis meaning
representation graph in Figure 1 was achieved by
merging the AMR parse shown in Figure 2.

Next, we select the subset of sentence AMRs
corresponding to sentences needed to answer the
question. This step uses cross-sentential phe-
nomena such as rhetorical structures1 and en-
tities/event coreference. The coreferent enti-
ties/event mentions are further merged into one
node resulting in a graph called the relevant text
snippet graph. A similar process is also per-

1Rhetorical structure theory (Mann and Thompson, 1988)
tells us that sentences with discourse relations are related to
each other. Previous works in QA (Jansen et al., 2014) have
shown that these relations can help us answer certain kinds of
questions. As an example, the “cause” relation between sen-
tences in the text can often give cues that can help us answer
“why” or “how” questions. Hence, the passage meaning rep-
resentation also remembers RST relations between sentences.

formed with the hypothesis sentences (generated
by combining the question and answer candidate)
as shown in Figure 1.

2.2 Max-Margin Solution

For each question qi ∈ Q, let ti be the corre-
sponding passage text and Ai = {ai1, . . . , aim}
be the set of candidate answers to the question.
Our solution casts the machine comprehension
task as a textual entailment task by converting
each question-answer candidate pair (qi, aij) into
a hypothesis statement hij . We use the question
matching/rewriting rules described in Cucerzan
and Agichtein (2005) to get the hypothesis state-
ments. For each question qi, the machine com-
prehension task reduces to picking the hypothe-
sis ĥi that has the highest likelihood of being en-
tailed by the text ti among the set of hypotheses
hi = {hi1, . . . , him} generated for the question
qi. Let h∗i ∈ hi be the hypothesis corresponding
to the correct answer.

As described, we use subgraph matching to help
us model the inference. We assume that the se-
lection of sentences to generate the relevant text
snippet graph and the mapping of the hypothe-
sis meaning representation graph onto the passage
meaning representation graph is latent and infer
it jointly along with the answer. We treat it as a
structured prediction problem of ranking the hy-
pothesis set hi such that the correct hypothesis h∗i
is at the top of this ranking. We learn a scoring
function Sw(t, h, z) with parameter w such that
the score of the correct hypothesis h∗i and corre-
sponding best latent structure z∗i is higher than the
score of the other hypotheses and corresponding
best latent structures. In a max-margin fashion, we
want that Sw(ti, h

∗
i , z
∗
i ) > S(ti, hij , zij) + 1− ξi

for all hj ∈ h \ h∗ for some slack ξi. Writing the
relaxed max margin formulation:

min
||w||

1

2
||w||22 + C

∑
i

max
zij ,hij∈hi\h∗i

Sw(ti, hij , zij) + ∆(h∗i , hij)

−C
∑

i

Sw(ti, h
∗
i , z∗i ) (1)

We use 0-1 cost, i.e. ∆(h∗i , hij) = 1(h∗i 6=
hij). If the scoring function is convex then this
objective is in concave-convex form and hence
can be solved by the concave-convex program-
ming procedure (CCCP) (Yuille and Rangara-
jan, 2003). We assume the scoring function to
be linear:Sw(t, h, z) = wTψ(t, h, z). Here,
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ψ(t, h, z) is a feature map discussed later. The
CCCP algorithm essentially alternates between
solving for z∗i , zij ∀j s.t. hij ∈ hi \ h∗i and w
to achieve a local minima. In the absence of in-
formation regarding the latent structure z we pick
the structure that gives the best score for a given
hypothesis i.e. arg maxz Sw(t, h, z).

2.3 Scoring Function and Inference
Now, we define the scoring function Sw(t, h, z).
Let the hypothesis meaning representation graph
be G′ = (V ′, E′). Our latent structure z decom-
poses into the selection (zs) of relevant sentences
that lead to the text snippet graph G, and the map-
ping (zm) of every node and edge in G′ onto G.
We define the score such that it factorizes over
the nodes and edges in G′. The weight vector w
also has three components ws, wv and we corre-
sponding to the relevant sentences selection, node
matches and edge matches respectively. An edge
in the graph is represented as a triple (v1, r, v2)
consisting of the enpoint vertices and relation r.

Sw(t, h, z) = wT
s f(G′, G, t, h, zs)

+
∑

v′∈V ′
wT

v f(v′, zm(v′)) +
∑

e′∈E′
wT

e f(e′, zm(e′))

Here, t is the text corresponding to the hypoth-
esis h, and f are parts of the feature map ψ to be
described later. z(v′) maps a node v′ ∈ V ′ to a
node in V . Similarly, z(e′) maps an edge e′ ∈ E′
to an edge in E.

Next, we describe the inference procedure i.e.
how to select the structure that gives the best score
for a given hypothesis. The inference is per-
formed in two steps: The first step selects the
relevant sentences from the text. This is done
by simply maximizing the first part of the score:
zs = arg maxzs

wT
s f(G′, G, t, h, zs). Here, we

only consider subsets of 1, 2 and 3 sentences as
most questions can be answered by 3 sentences
in the passage. The second step is formulated as
an integer linear program by rewriting the scoring
function. The ILP objective is:

∑
v′∈V ′

∑
v∈V

zv′,vw
T
v f(v′, v) +

∑
e′∈E′

∑
e∈E

ze′,ew
T
e f(e′, e)

Here, with some abuse of notation, zv′,v and
ze′,e are binary integers such that zv′,v = 1 iff z
maps v′ onto v else zv′,v = 0. Similarly, ze′,e = 1
iff z maps e′ onto e else ze′,e = 0. Additionally,
we have the following constrains to our ILP:

• Each node v′ ∈ V ′ (or each edge e′ ∈ E′) is
mapped to exactly one node v ∈ V (or one
edge e ∈ E). Hence:

∑
v∈V zv′,v = 1 ∀v′

and
∑

e∈E ze′,e = 1 ∀e′

• If an edge e′ ∈ E′ is mapped to an edge
e ∈ E, then vertices (v1

e′ , v
2
e′) that form the

end points of e′ must also be aligned to ver-
tices (v1

e , v
2
e) that form the end points of e.

Here, we note that AMR parses also have in-
verse relations such as “arg0-of”. Hence, we
resolve this with a slight modification. If nei-
ther or both relations (corresponding to edges
e′ and e) are inverse relations (case 1), we en-
force that v1

e′ align with v1
e and v2

e′ align with
v2
e . If exactly one of the relations is an in-

verse relation (case 2), we enforce that v1
e′

align with v2
e and v2

e′ align with v1
e . Hence,

we introduce the following constraints:

ze′e ≤ zv1
e′v

1
e

and ze′e ≤ zv2
e′v

2
e
∀e′.e in case 1

ze′e ≤ zv1
e′v

2
e

and ze′e ≤ zv2
e′v

1
e
∀e′.e in case 2

2.4 Features

Our feature function ψ(t, h, z) decomposes into
three parts, each corresponding to a part of the la-
tent structure.

The first part corresponds to relevant sentence
selection. Here, we include features for match-
ing local neighborhoods in the sentence subset and
the hypothesis: features for matching bigrams, tri-
grams, dependencies, semantic roles, predicate-
argument structure as well as the global syntac-
tic structure: a graph kernel for matching AMR
graphs of entire sentences (Srivastava and Hovy,
2013). Before computing the graph kernel, we re-
verse all inverse relation edges in the AMR graph.
Note that if a sentence subset contains the answer
to the question, it should intuitively be similar to
the question as well as to the answer. Hence,
we add features that are the element-wise prod-
uct of features for the subset-question match and
subset-answer match. In addition to features for
the exact word/phrase match of the snippet and the
hypothesis, we also add features using two para-
phrase databases: ParaPara (Chan et al., 2011) and
DIRT (Lin and Pantel, 2001). These databases
contain paraphrase rules of the form string1 →
string2. ParaPara rules were extracted through
bilingual pivoting and DIRT rules were extracted
using the distributional hypothesis. Whenever we
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have a substring in the text snippet that can be
transformed into another using any of these two
databases, we keep match features for the sub-
string with a higher score (according to the cur-
rent w) and ignore the other substring. Finally,
we also have features corresponding to the RST
(Mann and Thompson, 1988) links to enable infer-
ence across sentences. RST tells us that sentences
with discourse relations are related to each other
and can help us answer certain kinds of questions
(Jansen et al., 2014). For example, the “cause”
relation between sentences in the text can often
give cues that can help us answer “why” or “how”
questions. Hence, we have additional features -
conjunction of the rhetorical structure label from a
RST parser and the question word as well.

The second part corresponds to node matches.
Here, we have features for (a) Surface-form match
(Edit-distance), and (b) Semantic word match
(cosine similarity using SENNA word vectors
(Collobert et al., 2011) and “Antonymy” ‘Class-
Inclusion’ or ‘Is-A’ relations using Wordnet).

The third part corresponds to edge matches. Let
the edges be e = (v1, r, v2) and e′ = (v′1, r′, v′2)
for notational convenience. Here, we introduce
two features based on the relations - indicator that
the two relations are the same or inverse of each
other, indicator that the two relations are in the
same relation category – categories as described
in Banarescu et al. (2013). Then, we introduce
a number of features based on distributional rep-
resentation of the node pairs. We compute three
vertex vector compositions (sum, difference and
product) of the nodes for each edge proposed in
recent representation learning literature in NLP
(Mitchell and Lapata, 2008; Mikolov et al., 2013)
i.e. v1 � v2 and v′1 � v′2 for � = {+,−,×}.
Then, we compute the cosine similarities of the
resulting compositions producing three features.
Finally we introduce features based on the struc-
tured distributional semantic representation (Erk
and Padó, 2008; Baroni and Lenci, 2010; Goyal
et al., 2013) which takes the relations into account
while performing the composition. Here, we use a
large text corpora (in our experiments, the English
Wikipedia) and construct a representation matrix
M (r) ⊂ V × V for every relation r (V is the
vocabulary) where, the ijth element M (r)

ij has the
value log(1+x) where x is the frequency for the ith

and jth vocabulary items being in relation r in the
corpora. This allows us to compose the node and

relation representations and compare them. Here
we compute the cosine similarity of the compo-
sitions (v1)TM (r) and (v′1)TM (r′), the compo-
sitions M (r)v2 and M (r′)v′2 and their repective
sums (v1)TM (r) + M (r)v2 and (v′1)TM (r′) +
M (r′)v′2 to get three more features.

2.5 Negation and Multi-task Learning

Next, we borrow two ideas from Sachan et al.
(2015) namely, negation and multi-task learning,
treating different question types in the machine
comprehension setup as different tasks.

Handling negation is important for our model
as facts align well with their negated versions.
We use a simple heuristic. During training, if we
detect negation (using a set of simple rules that
test for presence of negation words (“not”, “n’t”,
etc.)), we flip the corresponding constraint, now
requiring that the correct hypothesis to be ranked
below all the incorrect ones. During test phase if
we detect negation, we predict the answer corre-
sponding to the hypothesis with the lowest score.

QA systems often include a question classifica-
tion component that divides the questions into se-
mantic categories based on the type of the ques-
tion or answers expected. This allows the model
to learn question type specific parameters when
needed. We experiment with three task classifi-
cations proposed by Sachan et al. (2015). First
is QClassification, which classifies the question,
based on the question word (what, why, what,
etc.). Next is the QAClassification scheme, which
classifies questions into different semantic classes
based on the possible semantic types of the an-
swers sought. The third scheme, TaskClassifica-
tion classifies the questions into one of 20 subtasks
for Machine Comprehension proposed in Weston
et al. (2015). We point the reader to Sachan et al.
(2015) for details on the multi-task model.

3 Experiments

Datasets: We use MCTest-500 dataset (Richard-
son et al., 2013), a freely available set of 500 sto-
ries (300 train, 50 dev and 150 test) and associated
questions to evaluate our model. Each story in
MCTest has four multiple-choice questions, each
with four answer choices. Each question has ex-
actly one correct answer. Each question is also
annotated as ‘single’ or ‘multiple’. The questions
annotated ‘single’ require just one sentence in the
passage to answer them. For ‘multiple’ questions
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it should not be possible to find the answer to the
question with just one sentence of the passage. In a
sense, ‘multiple’ questions are harder than ‘single’
questions as they require more complex inference.
We will present the results breakdown for ‘single’
or ‘multiple’ category questions as well.
Baselines: We compare our approach to the fol-
lowing baselines: (1-3) The first three baselines
are taken from Richardson et al. (2013). SW and
SW+D use a sliding window and match a bag of
words constructed from the question and the can-
didate answer to the text. RTE uses textual en-
tailment by selecting the hypothesis that has the
highest likelihood of being entailed by the pas-
sage. (4) LEX++, taken from Smith et al. (2015)
is another lexical matching method that takes
into account multiple context windows, question
types and coreference. (5) JACANA uses an off
the shelf aligner and aligns the hypothesis state-
ment with the passage. (6-7) LSTM and QANTA,
taken from Sachan et al. (2015), use neural net-
works (LTSMs and Recursive NNs, respectively).
(8) ATTENTION, taken from Yin et al. (2016),
uses an attention-based convolutional neural net-
work. (9) DISCOURSE, taken from Narasimhan
and Barzilay (2015), proposes a discourse based
model. (10-14) LSSVM, LSSVM+Negation,
LSSVM+Negation (MultiTask), taken from Sachan
et al. (2015) are all discourse aware latent struc-
tural svm models. LSSVM+Negation accounts
for negation. LSSVM+Negation+MTL further in-
coporates multi-task learning based on question
types. Here, we have three variants of multitask
learners based on the three question classification
strategies. (15) Finally, SYN+FRM+SEM, taken
from Wang et al. (2015) proposes a framework
with features based on syntax, frame semantics,
coreference and word embeddings.
Results: We compare our AMR subgraph contain-
ment approach2 where we consider our modifica-
tions for negation and multi-task learning as well
in Table 1. We can observe that our models have
a comparable performance to all the baselines in-
cluding the neural network approaches and all pre-
vious approaches proposed for this task. Further,
when we incorporate multi-task learning, our ap-
proach achieves the state of the art. Also, our ap-
proaches have a considerable improvement over
the baselines for ‘multiple’ questions. This shows

2We tune the SVM parameter C on the dev set. We use
Stanford CoreNLP, HILDA parser (Feng and Hirst, 2014) and
JAMR (Flanigan et al., 2014) for preprocessing.

Single Multiple All

A
M

R

Subgraph 67.28 65.24 66.16
Subgraph+Negation 69.48 66.46 67.83

+M
T

L QClassification 70.59 67.99 69.17
QAClassification 71.32 68.29 69.67

TaskClassification 72.05 68.90 70.33

B
as

el
in

es

SW 54.56 54.04 54.28
SW+D 62.99 58.00 60.26
RTE 69.85 42.71 55.01

LEX++ 69.12 63.34 65.96
JACANA Aligner 58.82 54.88 56.67

LSTM 62.13 58.84 60.33
QANTA 63.23 59.45 61.00

ATTENTION 54.20 51.70 52.90
DISCOURSE 68.38 59.90 63.75

LSSVM 61.12 66.67 64.15
LSSVM+Negation 63.24 66.15 64.83

+M
T

L QClassification 64.34 66.46 65.50
QAClassification 66.18 67.37 66.83

TaskClassification 67.65 67.99 67.83
SYN+FRM+SEM 72.05 67.94 69.94

Table 1: Comparison of variations of our method against several baselines on
the MCTest-500 dataset. The table shows accuracy on the test set of MCTest-
500. All differences between the baselines (except SYN+FRM+SEM) and our
approaches, and the improvements due to negation and multi-task learning are
significant (p < 0.05) using the two-tailed paired T-test.

the benefit of our latent structure that allows us to
combine evidence from multiple sentences. The
negation heuristic helps significantly, especially
for ‘single’ questions (majority of negation cases
in the MCTest dataset are for the “single” ques-
tions). The multi-task method which performs a
classification based on the subtasks for machine
comprehension defined in Weston et al. (2015)
does better than QAClassification that learns the
question answer classification. QAClassification
in turn performs better than QClassification that
learns the question classification only.

These results, together, provide validation for
our approach of subgraph matching over mean-
ing representation graphs, and the incorporation of
negation and multi-task learning.

4 Conclusion

We proposed a solution for reading comprehen-
sion tests using AMR. Our solution builds inter-
mediate meaning representations for passage and
question-answers. Then it poses the comprehen-
sion task as a subgraph matching task by learn-
ing latent alignments from one meaning represen-
tation to another. Our approach achieves compet-
itive or better performance than other approaches
proposed for this task. Incorporation of negation
and multi-task learning leads to further improve-
ments establishing it as the new state-of-the-art.
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