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Abstract

We present improvements to our in-

cremental proposition-based summariser,

which is inspired by Kintsch and van

Dijk’s (1978) text comprehension model.

Argument overlap is a central concept in

this summariser. Our new model replaces

the old overlap method based on distribu-

tional similarity with one based on lex-

ical chains. We evaluate on a new cor-

pus of 124 summaries of educational texts,

and show that our new system outper-

forms the old method and several state-

of-the-art non-proposition-based summar-

isers. The experiment also verifies that

the incremental nature of memory cycles

is beneficial in itself, by comparing it to a

non-incremental algorithm using the same

underlying information.

1 Introduction

Automatic summarisation is one of the big artifi-

cial intelligence challenges in a world of informa-

tion overload. Many summarisers, mostly extract-

ive, have been developed in recent years (Radev

et al., 2004; Mihalcea and Tarau, 2004; Wong et

al., 2008; Celikyilmaz and Hakkani-Tür, 2011).

Research is moving beyond extraction in various

directions: One could perform text manipulation

such as compression as a separate step after extrac-

tion (Knight and Marcu, 2000; Cohn and Lapata,

2008), or alternatively, one could base a summary

on an internal semantic representation such as the

proposition (Lehnert, 1981; McKeown and Radev,

1995).

One summarisation model that allows manip-

ulation of semantic structures of texts was pro-

posed by Kintsch and van Dijk (1978, henceforth

KvD). It is a model of human text processing,

where the text is turned into propositions and

processed incrementally, sentence by sentence.

The final summary is based on those propositions

whose semantic participants (arguments) are well-

connected to others in the text and hence likely to

be remembered by a human reading the text, under

the assumption of memory limitations.

Such a deep model is attractive because it

provides the theoretical possibility of perform-

ing inference and generalisation over propositions,

even if current NLP technology only supports

shallow versions of such manipulations. This

gives it a clear theoretical advantage over non-

propositional extraction systems whose informa-

tion units are individual words and their connec-

tions, e.g. centroids or random-walk models.

We present in this paper a new KvD-based

summariser that is word sense-aware, unlike our

earlier implementation (Fang and Teufel, 2014).

§2 explains the KvD model with respect to sum-

marisation. §3 and §4 explain why and how we

use lexical chains to model argument overlap, a

phenomenon which is central to KvD-style sum-

marisation. §6 presents experimental evidence

that our model of argument overlap is superior

to the earlier one. Our summariser additionally

beats several extractive state-of-the-art summar-

isers. We show that this advantage does not come

from our use of lexical chains alone, but also from

KvD’s incremental processing.

Our second contribution concerns a new cor-

pus of educational texts, presented in §5. Part

of the reason why we prefer a genre other than

news is the vexingly good performance of the lead

baseline in the news genre. Traditionally, many

summarisers struggled to beat this baseline (Lin

and Hovy, 2003). We believe that the problem is

partly due to the journalistic style, which calls for

an abstract-like lead. If we want to measure the

content selection ability of summarisers, alternat-
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Figure 1: The KvD-inspired incremental summarisation model.

ive data sets are needed. Satisfyingly, we find that

on our corpus the lead baseline is surpassable by

intelligent summarisers.

2 The KvD Model

The KvD model is a cognitive account of human

text comprehension. In our KvD-inspired model

(Figure 1), the summariser constructs a list of pro-

positions as a meaning representation from a syn-

tactic parse of the input text. A batch of new pro-

positions (◦ in the figure) are processed for each

sentence. At the beginning of a memory cycle,

these new propositions are added to a coherence

tree, which represents the working memory. They

attach to the existing propositions on the tree with

which they have the strongest overlap in argu-

ments. At the end of a cycle, as a simulation of

limited memory, only a few important proposi-

tions are carried over to the next cycle, while the

others are “forgotten” (represented by ×). This se-

lection is based on the location of propositions in

the tree, using the so-called leading edge strategy;

propositions that are on more recent edges, or that

are attached higher, are more likely to be retained.

The model attempts all future attachments using

only the propositions in working memory, and al-

lows to reuse forgotten ones only if this strategy

runs into problems (when a new proposition could

not otherwise be attached).

KvD suggest that the decision whether a pro-

position should be included in the final summary

depends on three factors: a) the number of cycles

where it was retained in working memory, b)

whether it is a generalisation, and c) whether it is

a meta-statement (or macro-proposition).

For its explanatory power and simplicity, the

model has been well-received not only in the fields

of cognitive psychology (Paivio, 1990; Lave,

1988) and education (Gay et al., 1976), but also

in the summarisation community (Moens et al.,

2003; Uyttendaele et al., 1998; Hahn and Reimer,

1984).

We presented the first computational prototype

of the model that follows the proposition-centric

processing closely (Fang and Teufel, 2014). Of

the factors mentioned above, only the first is mod-

elled in this summariser (called FT14). That is, we

use the frequency of a proposition being retained

in memory as the only indicator of its summary-

worthiness. This is a simplification due to the fact

that robust inference is beyond current NLP cap-

ability. Additionally, macro-propositions depend

on domain-specific schema, whereas our system

aims to be domain-independent.

Zhang et al. (2016) presented a summar-

iser based on a later cognitive model by Kintsch

(1998). Instead of modelling importance of pro-

positions directly, their summariser computes the

importance of words by spreading activation cyc-

lically, but extracts at proposition level.

Although the summariser presented in the cur-

rent paper, a newer version of FT14, is capable

of sub-sentential content selection, we present its

output in the form of extracted sentences that con-

tain the most summary-worthy propositions. This

is different from FT14, where we used a token-

based extraction method. A better output would

of course be an abstract based on the selected pro-

positions, but we currently do not have a language

generation module and can therefore evaluate only

the content selection ability of our summariser.

3 Argument Overlap

The central mechanism of the KvD model is ar-

gument overlap of propositions, and it is key to

successful content selection. This is because there

are often multiple propositions on the tree where

a new proposition could attach, of varying attract-

iveness. The task therefore boils down to ranking

attachments, for instance by the strength of over-

lap, and the position in the tree.

Figure 2 is an example of competing attachment
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Figure 2: Possible attachments of a new proposition.

sites. Three subtrees in the working memory are

shown, containing propositions that correspond to

the text pieces 1) [fire was] a gift randomly de-

livered in the form of lightning, forest fire or burn-

ing lava, 2) fire-lighting was revolutionised by

the discovery of the element, and 3) iron pyrites,

a compound that contains sulphur, respectively.

The new proposition corresponds to the text paper

tipped with phosphorus. It can attach in subtree

2, because phosphorus is a kind of element; it can

also attach in subtree 3, because both phosphorus

and sulphur are chemicals.

The definition of argument overlap is conceptu-

ally simple, namely reference of the arguments to

the same concept, which can be an entity, an event,

or a class of things. In KvD’s manual demonstra-

tion of the algorithm, the resolution of textual ex-

pressions to concepts relies on human intelligence.

A “perfect” coreference resolver is arguably all

we need, but coreference as currently defined ex-

cludes generics, abstract concepts, paraphrases,

bridging connections (Weischedel et al., 2007) and

several other relevant linguistic phenomena. This

means an insufficient number of possible overlaps

are found by current coreference systems, if no

further information is used. How exactly to model

argument overlap for a KvD summariser is there-

fore open to exploration.

We use other sources of information that ad-

dresses topicality and semantic relatedness, in

combination with coreference resolution. In FT14,

that source was the distributional similarity of

words, normalised with respect to their distract-

ors in context to achieve numerically comparable

overlap scores. In this paper, we argue that us-

ing the shared membership in lexical chains as the

other source provides a better basis for ranking ar-

gument overlap.

FT14’s overlap detection runs into problems in

the situation above (Figure 2). Under FT14’s

definition of argument overlap as distributional se-

mantic distance, the link between paper and form

is as strong as the other possibilities, which leads

to the attachment of the new proposition as a child

node of the root proposition of subtree 1 due to

higher tree level. This attachment uses the wrong

sense of the polysemous word form (“form/8 – a

printed document with spaces in which to write”).

In our new ranking of attachment sites, lexical

chains enable us to reject the spurious attachment,

as we will now explain.

4 Our Lexical Chain-Based System

In our new model, argument overlap is computed

using lexical chains (Barzilay and Elhadad, 1997),

a construct that combines the ideas of topicality

and word sense clusters. A lexical chain is an

equivalence class of expressions found in the text

whose presumed senses in context are related to

the same concept or topic. For the example in

the last section, in our system form is correctly re-

solved to sense 2, not sense 8, and as form/2

and paper/1 are not members of the same lex-

ical chain, the wrong attachment is prevented.

Lexical chain algorithms typically use Word-

Net (Miller, 1995) to provide the lexical relations

needed, whereby each synset (synonym set) rep-

resents a concept. Hypernyms and hyponyms are

related to the same topic, and they may be in a

coreference relationship with the concept. To a

lesser extent, the potential for coreference also

holds for siblings of a concept. WordNet relations

therefore give information about concept identity

and topical relatedness, both of which are aspects

of argument overlap.

We implemented Galley and McKeown’s (2003,

henceforth GM03) chaining algorithm, which im-



proves over Barzilay and Elhadad’s and Silber and

McCoy’s (2002) chain definition by introducing

the limitation of “one sense per discourse”, i.e. by

enforcing that all occurrences of the same word

take the same sense in one document. Initially

designed to improve word sense disambiguation

accuracy, GM03’s method has been shown to im-

prove summarisation quality as well (Ercan and

Cicekli, 2008).

In GM03, the edge weight between possible

word senses of two word occurrences depends

on the lexical relation and the textual distance

between them. Each word is disambiguated by

choosing the sense that maximises the sum of

weights of the edges leaving all its occurrences.

Edges that are based on non-selected senses are

then discarded. Once the entire text has been pro-

cessed, each connected component of the graph

represents a lexical chain.

As far as nouns1 are concerned, we follow

GM03’s edge weights, but unlike GM03, we also

allow verbs to enter into chains. We do this in

order to model nominalised event references, and

to provide a sufficient number of possible connec-

tions. Table 1 provides the distance of relations;

weights of verb and derivation relations equal to

the weights of noun relations on the same row. In-

stead of assigning an overlap value of 1 to all pairs

of words in the same chain, the extent of overlap is

given as a∑e∈E de , where E is the set of edges in the

shortest path between the two words in the graph

of lexical relations, de the distance of the lexical

relation of e, and a an attenuation factor we set

at 0.7. This models the transition from concept

sameness to broader relatedness. We found empir-

ically that the introduction of verbs and the graded

overlap value using relation distance improves the

performance of our KvD summariser.

Lexical coverage of this algorithm is good:

WordNet covers 98.3% of all word occurrences al-

lowed into our lexical chains in the experiment in

§6, excluding those POS-tagged as proper nouns.

For unknown words, the system’s backoff strategy

is to form overlap only if the surface strings match.

The structuring of information in a memory tree

and the incremental addition of information, in-

cluding the concept of “forgetting”, are key claims

of the KvD model. But do these manipulations ac-

tually add any value beyond the information con-

1Following Silber and McCoy (2002), we create an addi-
tional chain for each named entity, in addition to those chains
defined by WordNet synsets.

Distance Noun Verb Derivation

0 synonymy
1 hypernymy synonymy noun-to-verb
2 sibling hypernymy

Table 1: Distance of lexical relations.

tained in a global network representing all connec-

tions between all propositions in the text? In such

a network without forgetting or discourse struc-

ture, standard graph algorithms could be used to

determine central propositions. This hypothesis is

tested in §6.

5 New Corpus of Texts and Summaries

We introduce new evaluation materials, created

from the reading sections of Academic Tests of the

Official IELTS Practice Materials (British Council

et al., 2012).

The IELTS is a standardised test of English pro-

ficiency for non-native speakers. The texts cover

various general topics, and resemble popular sci-

ence or educational articles. They are carefully

chosen to be of the same difficulty level, and

understandable by people of any cultural back-

ground. Unlike news text, they also presup-

pose less external knowledge, such as US politics,

which makes it easier to demonstrate the essence

of proposition-based summarisation.

Out of all 108 texts of volumes 1–9, we ran-

domly sampled 31. We then elicited 4 summar-

ies summary for each, written by 14 members of

our university, i.e., a total of 124 summaries.2 We

asked the summarisers to create natural-sounding

text, keeping the length strictly to 100± 2 words.

They were allowed but not encouraged to para-

phrase text.

6 Experiment

6.1 Systems and Baselines

We test 7 automatic summarisers against each

other on this evaluation corpus. Our summariser

(O) runs the KvD memory cycles and uses lexical

chains to determine argument overlap. It is not

directly comparable to FT14 due to the difference

in generation method, described in §2. In order

to be able to compare to FT14 nevertheless, we

created a version that uses our new sentence ex-

traction module together with an argument over-

2Max number of summaries per person 31, min num-
ber 2. The summaries are available for download at http:
//www.cl.cam.ac.uk/˜sht25.



O D C M LR TR L

1 .376 .349 .351 .343 .349 .343 .341
2 .122 .094 .088 .092 .087 .094 .100
L .345 .320 .318 .308 .316 .309 .314
SU4 .154 .131 .129 .128 .129 .130 .132

Table 2: ROUGE F-scores by four metrics.

lap module very similar to FT14 but with an even

stronger model for semantic similarity, the cosine

similarity of word embeddings pre-trained using

word2vec (Mikolov et al., 2013) on part of the

Google News dataset (∼ 100 billion words), and

we call this system D.

Another variant, C, tests the hypothesis that

the recurrent KvD processing is not superior than

simpler network analysis. Summariser C con-

structs only one graph, where every two propos-

itions are connected by an edge whose length is

the reciprocal of their argument overlap, and uses

betweenness centrality to determine proposition

importance. We choose betweenness centrality be-

cause we found it to outperform other graph al-

gorithms, including closeness centrality and ei-

genvector centrality.

We also test against the lead baseline (L) and

three well-known lexical similarity-based single

document summarisers: MEAD (Radev et al.,

2004, M), TextRank (Mihalcea and Tarau, 2004,

TR), and LexRank (Erkan and Radev, 2004, LR).

Because the evaluation tool we use is sensit-

ive to text length, fair evaluation demands equal

length of all summaries tested. We obtain output

of exactly 100± 2 words from each summariser

by iteratively requesting longer summaries, and

unless this results in a sentence break within 2

tokens of the 100-word limit, we cut the imme-

diately longer output to exactly 100 words.

6.2 Results

For automated evaluation, we use ROUGE (Lin,

2004), which evaluates a summary by compar-

ing it against several gold standard summaries.

Table 2 shows our results in terms of ROUGE-

1, 2, L and SU4. The metrics are based on the

co-occurrence of unigrams, bigrams, longest com-

mon subsequences, and skip-bigrams (within dis-

tance of 4 and including unigrams), respectively.

Our summariser outperforms all other summar-

isers,3 and is the only summariser that beats the

3We use the paired Wilcoxon test (two-tailed). Differ-
ences between O and each other summariser at p < 0.05. All
differences between all summarisers other than O are insig-

lead baseline.

The fact that our summariser beats D, our KvD

summariser using FT14-style distributional se-

mantics for argument overlap, is clear evidence

that our method of lexical chaining provides a su-

perior model of argument overlap. On this genre,

D performs indistinguishably from the other sum-

marisers. This is in line with our earlier find-

ings for FT14 on DUC (Over and Liggett, 2002)

news texts, where the token extraction-based sum-

mariser was comparable to extractive summarisers

but was outperformed by MEAD. In a qualitat-

ive analysis, we found that a main source of er-

ror in FT14’s system was that it favoured related

but semantically and pragmatically incompatible

terms over compatible paraphrases. This is a side-

effect of the use of co-occurrence, which relies

on syntagmatic rather than paradigmatic similar-

ities, and which is insensitive to word senses. As

a result, context-unaware distributional semantics

allows too many spurious overlaps.

The fact that summariser C is significantly

worse than our summariser shows that the idea

of incrementally maintaining a KvD-style struc-

tured memory is effective for summarisation, des-

pite the simplifications we had to make. This nat-

urally points to the direction of modelling incre-

mental memory updates for summarisation, which

also makes modelling with a recurrent neural net-

work plausible in the future.

The current experiment can be seen as a demon-

stration of the superiority of KvD proposition-

based content selection on a genre of common-

sense, naturally occurring texts. This was the case

even with a inferior “generation” method, namely

sentence extraction. Reading through the propos-

itions, we had the impression that they manage

to capture relevant information about the text in

a much shorter and more modular form than ex-

tracted sentences, although this cannot be demon-

strated with a surface-based methodology such as

ROUGE. Content selection is of course only the

first step of summarisation; we are currently work-

ing on a grammar-based re-generation from the se-

lected propositions.
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