
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 337–343,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Text Simplification as Tree Labeling

Joachim Bingel
Centre for Language Technology

University of Copenhagen
bingel@hum.ku.dk

Anders Søgaard
Centre for Language Technology

University of Copenhagen
soegaard@hum.ku.dk

Abstract

We present a new, structured approach to
text simplification using conditional ran-
dom fields over top-down traversals of
dependency graphs that jointly predicts
possible compressions and paraphrases.
Our model reaches readability scores com-
parable to word-based compression ap-
proaches across a range of metrics and hu-
man judgements while maintaining more
of the important information.

1 Introduction

Sentence-level text simplification is the problem
of automatically modifying sentences so that they
become easier to read, while maintaining most of
the relevant information in them. This can benefit
applications as pre-processing for machine trans-
lation (Bernth, 1998) and assisting technologies
for readers with reduced literacy (Carroll et al.,
1999; Watanabe et al., 2009; Rello et al., 2013).

Sentence-level text simplification ignores sen-
tence splitting and reordering, and typically fo-
cuses on compression (deletion of words) and
paraphrasing or lexical substitution (Cohn and
Lapata, 2008). We include paraphrasing and lexi-
cal substitution here, while previous work in sen-
tence simplification has often focused exclusively
on deletion. Approaches that address compres-
sion and paraphrasing (or more tasks) integrally
include (Zhu et al., 2010; Narayan and Gardent,
2014; Mandya et al., 2014).

Simplification beyond deletion is motivated by
Pitler’s (2010) observation that abstractive sen-
tence summaries written by humans often “include
paraphrases or synonyms (‘said’ versus ‘stated’)
and use alternative syntactic constructions (‘gave
John the book’ versus ‘gave the book to John’).”
Such lexical or syntactic alternations may con-

tribute strongly to the readability of a sentence if
they replace difficult words with shorter or more
familiar ones, in particular for low-literacy readers
(Rello et al., 2013). Our joint approach to deletion
and paraphrasing works against the limitation that
abstractive simplifications “are not capable of be-
ing generated by [...] most sentence compression
algorithms” (Pitler, 2010).

Furthermore, a central concern in text simplifi-
cation is to ensure the grammaticality of the out-
put, especially with low-proficiency readers as the
target audience. Our approach to this problem is to
remove or paraphrase entire syntactic units in the
original sentence, thus avoiding to remove phrase
heads without removing their arguments or mod-
ifiers. Like Filippova and Strube (2008), we rely
on dependency structures rather than constituent
structures, which promises more robust syntactic
analysis and allows us to operate on discontinuous
syntactic units.

Contributions We present a sentence simplifi-
cation model which is, to the best of our knowl-
edge, the first model that uses structured predic-
tion over dependency trees and models compres-
sion and paraphrasing jointly. Our model uses
Viterbi decoding rather than scoring of all can-
didates and outputs probabilities reflecting model
confidence.

2 Data

We use the publicly available Google compres-
sion data set,1 which consists of 10,000 English
sentence triples with (1) the original sentence as
present in the body of an online news article, (2)
a headline based on the original sentence, and (3)
a compression that is automatically derived from
the original such that it only contains word forms

1http://storage.googleapis.com/
sentencecomp/compressiondata.json
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Figure 1: An example simplification tree

present in the original, preserving their order. The
following sentence triple exemplifies these differ-
ent versions:

(1) In official documents released earlier this
month it appears the Queen of England
used the wrong name for the Republic of
Ireland when writing to president Patrick
Hillery.

(2) Queen elizabeth ii used wrong name for
Republic

(3) The Queen of England used the wrong
name for the Republic of Ireland.

The data is pre-processed with the Stanford
CoreNLP tools (Manning et al., 2014), retrieving
lemmas, parts-of-speech, named entities and de-
pendency trees. We reserve the first 200 sentences
from the data set for evaluation, the next 200 for
tuning parameters (including the used PPDB ver-
sions, see next paragraph), and use the remaining
9,600 sentences for training our model.

Deletion and paraphrase targets As our ap-
proach operates on dependency trees, aiming to
prune or paraphrase subtrees from the dependency
tree of a sentence, we identify deleted or para-
phrased subtrees, marking their heads with a cor-
responding label. A subtree receives a Delete label
if none of the words subsumed by this subtree oc-
cur in the compressed version of the sentence.

We identify paraphrased subsequences in an
original sentence by looking up the subsequence
string in the Paraphrase Database (PPDB) (Gan-
itkevitch et al., 2013) and testing if one of its pos-
sible paraphrases occurs in the headline version of
the sentence in question. The Paraphrase Database
1.0 is a set of phrasal and lexical pairs that were
automatically acquired from bilingual parallel cor-
pora, and thus contain a portion of flawed para-
phrase pairs. The database comes in a number
of different sizes, where small editions are re-
stricted to high-precision paraphrases with rela-
tively high paraphrase probabilities. As the two
smallest editions of PPDB only yield a very low
number of paraphrase targets (less than 100 in the

entire Google compression data set), we opt to em-
ploy a medium-sized version of the resource (size
‘L’) and find a total of 510 phrasal and lexical
paraphrases in the corpus.

3 Method

We assume that text simplification is a genera-
tive process on syntactic dependency graphs with
a paraphrase dictionary. A dependency graph
G = (V,A) is a labeled directed graph in
the standard graph-theoretic sense and consists
of nodes, V , and arcs, A, such that for sen-
tence S = w0w1 . . . wn and label set R, V ⊆
{w0, w1, . . . , wn}, and A ⊆ V × R × V hold,
and if (wi, r, wj) ∈ A then (wi, r

′, wj) 6= A for
all r′ 6= r. We restrict the dependency graphs
to the class of trees, i.e., for (wi, r, wj) ∈ A, if
(wk, r, wj) ∈ A then k = i.

The generative process traverses the tree in a
top-down fashion, deleting or paraphrasing sub-
trees (see Figure 1). Note that elements in sub-
trees dominated by a deleted node are automati-
cally deleted (analogously for paraphrases).

For each dependency tree G = (V,A) in a
training set of T sentences, we derive an in-
put sequence of K-dimensional feature vectors
x = x1, . . . , xn and an output sequence of
y = y1, . . . , yn. Our tree-to-string simplification
model is a second-order linear-chain conditional
random field (CRF)

p(y|x) =
1

Z(x)

n∏
i=1

exp{
K∑

k=1

θkfk(yt, yt−1, xt)}

with yi = Delete if and only if xi represents the
least upper bound in G covering a deleted span
in the training data, and yi = Paraphrase if and
only if xi represents the least upper bound in G
covering a paraphrased span in the training data.
For example, if the entire sentence is deleted, and
(w0, r, wi) ∈ A, then yi = Delete (but yj = Leave
for j 6= i).

This encoding means that theoretically we can
predict to paraphrase a subtree that is dominated
by a node which is in turn predicted to be deleted
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(or vice versa). However, once an operation is car-
ried out on a subtree, none of its dominated nodes
are considered in the remainder of the top-down
simplification process. Giving preference to op-
erations at higher-level syntactic environments in
this manner serves as a mechanism to resolve am-
biguities in the decision process by taking a wider
context into account.

Furthermore, predicting a node to get para-
phrased at the right corner of a deleted subtree
can potentially influence labeling decisions out-
side this subtree as a consequence of the dynamic-
program Viterbi decoding. We acknowledge that
this is a theoretical drawback of the presented ap-
proach, but given that we do not observe any such
dependency graphs in our data, we do not expect
this to be a serious problem in most cases.

Whenever our model predicts that a subtree be
paraphrased, we look up the respective token se-
quence in PPDB and replace it with the candi-
date paraphrase (if available) that maximises the
product of frequency and translation probability
according to PPDB.

Features for CRF model We train a second-
order CRF model using MarMoT (Mueller et al.,
2013), an efficient higher-order CRF implementa-
tion. The model computes its observational prob-
abilities from features based on properties of the
subtree root token (incl. POS, language model
probability, NE mention, word difficulty), of the
internal structure of the subtree (incl. number of
children, depth, length of sequence), and of the
external grammatical structure (incl. dependency
relation, parent POS, distance from parent, posi-
tion in sentence).

4 Evaluation

Baselines In the following experiments, we
compare our approach to state-of-the-art ap-
proaches to sentence compression and joint com-
pression/paraphrasing. For the first of these two
categories, we consider the LSTM system de-
scribed in Filippova et al. (2015) as well as the
results reported therein for the MIRA system (Mc-
Donald, 2006). As a joint approach, we consider
Reluctant Trimmer (RT), a simplification system
that employs synchronous dependency grammars
(Mandya et al., 2014). Since the LSTM system re-
quires great amounts of training data, which were
not available to us, we cannot reproduce its out-

Recall Precision F1

Reluctant Trimmer

to
ke

ns

Delete 54.60 20.23 29.52
Paraphrase 01.67 66.67 03.27
Leave 52.27 78.54 54.60

Tree Labeling

su
bt

re
es Delete 43.31 67.54 52.77

Paraphrase 23.85 50.89 32.48
Leave 94.29 84.82 89.30

to
ke

ns

Delete 49.67 77.16 60.44
Paraphrase 21.16 51.52 30.00
Leave 80.33 50.91 62.32

Table 1: Performance on joint deletion and para-
phrasing detection for our tree labeling system
(evaluating both on entire subtrees and token level)
as well as for the RT baseline (tokens only).
Note that RT is trained on the (Simple) English
Wikipedia, not on the Google compressions, and
therefore the results may not be directly compara-
ble.

put and therefore limit our comparison of human
rankings to the eleven output examples provided
in the paper.

F-Scores We first evaluate our tree labeling
model (TL) on its ability to predict subtree dele-
tion and paraphrasing (i.e. whether a subtree
should be paraphrased, independent of the actual
replacement). The results for this evaluation setup,
as well as word-level performance, are listed in
Table 1 and compared to RT. Note that for dele-
tion and paraphrasing, our model consistently has
higher precision than recall, thus generating more
confident simplifications and less ungrammatical
output.

Automated Readability Scores Table 2 reports
the compression ratio (CR, percentage of retained
words) as well as automated readability scores that
our model achieves on the test set and compares it
to the output of the RT baseline. Our system man-
ages to compress the original texts by more than
one third, but the gold simplifications (headlines
and compressions) are still considerably shorter.

Our approach improves readability as mea-
sured by the Flesch Reading Ease score2 (Flesch,

2The negative value that the headlines receive for this met-
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Data version CR↓ Flesch↑ Dale-C.↓

Original — 49.15 9.55
Headlines 0.32* -80.77* 17.61*
Compressions 0.40* 70.80* 9.56
TL output 0.62* 56.25* 9.30*
RT output 0.86* 60.65* 9.27*

Table 2: Compression ratios and automatic read-
ability scores for the Google compression data set,
compared to the system output. Readability is in-
dicated by a high Flesh Reading Ease score and a
low Dale-Chall score. * indicates differences com-
pared to the original sentences that are significant
at p < 10−3.

System Readability Informativeness
MIRA 4.31 3.55
LSTM 4.51 3.78
TL 4.14 4.01

RT (11) 3.09 4.12
LSTM (11) 4.23 3.42
TL (11) 4.21 4.15

Table 3: Mean readability and informativeness rat-
ings for the first 200 sentences in the Google data
(upper) and for the 11 sample sentences listed in
Filippova et al. (2015) (lower).

1948) and the Dale-Chall formula (Dale and Chall,
1948). The former score measures textual diffi-
culty as a function of sentence length and the num-
ber of syllables per word, while the latter aims to
estimate a US school grade level at which a text
can be well understood, based on a vocabulary list.
Both metrics deem the output of our system eas-
ier to read than the original texts, while the Dale-
Chall formula also rates our system better than the
gold simplifications.

Human Readability Ratings Following Filip-
pova et al. (2015) in their evaluation setup for
the sake of comparability, we ask raters to as-
sign scores on a one-to-five Likert scale to the first
200 sentences from the Google compression data
paired with the output of our system. Each pair
is rated by three native or near-native speakers of
English.

The raters are asked to evaluate the sentence

ric is due to an over-representation of longer words in head-
lines.

pairs for readability and informativeness. The
former, following Filippova et al. (2015), “cov-
ers the grammatical correctness, comprehensibil-
ity and fluency of the output.” The latter metric
pertains to the relation between the original sen-
tence and the system output as it “measures the
amount of important content preserved in the com-
pression.”

Table 3 compares the performance of our model
to the figures reported in Filippova et al. (2015) for
their LSTM model and McDonald’s (2006) system
(MIRA). For a comparison with the same judges,
we repeat the evaluation with the 11 sample out-
put compressions listed in Filippova et al. (2015)as
well as the respective output from Reluctant Trim-
mer; see the lower part of Table 3. The results
suggest that, compared to the compression-only
LSTMs, our approach yields comparable perfor-
mance in terms of readability, while maintaining
more of the central information in the original sen-
tences. Compared to RT, our system does con-
siderably better in terms of readability and retains
slightly more of the important information.

5 Related Work

Several approaches to sentence compression have
been presented in the last decade. Knight and
Marcu (2002) and Turner and Charniak (2005) ap-
ply noisy channel models, using language models
to control for grammaticality. McDonald (2006)
introduces a different approach, discriminatively
training a scoring function, informed by syntac-
tic features, to score all possible subtrees of a
sentence. His work was inspired by Riezler et
al. (2003) scoring substrings generated from LFG
parses. A third approach to sentence compression
is sequence labeling, which has been explored by
Elming et al. (2013) using linear-chain CRFs with
syntactic features, and more recently by Filippova
et al. (2015) and Klerke et al. (2016) using recur-
rent neural networks with LSTM cells.

Most recent approaches to sentence compres-
sion make use of syntactic analysis, either by
operating directly on trees (Riezler et al., 2003;
Nomoto, 2007; Filippova and Strube, 2008; Cohn
and Lapata, 2008; Cohn and Lapata, 2009) or by
incorporating syntactic information in their model
(McDonald, 2006; Clarke and Lapata, 2008).
Recently, however, Filippova et al. (2015) pre-
sented an approach to sentence compression using
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Original Sentence & Simplifications
O OG&E is warning customers about a prepaid debit card scam that is targeting utility customers

across the county.
C OG&E is warning customers about a scam.
R OG&E is warning customers about a debit card scam that is targeting utility customers across

the country.
T OG&E is warning customers regarding a prepaid debit card scam.
O The husband of murdered Melbourne woman Jill Meagher will return to Ireland later this

month “to clear his head” while fighting for parole board changes.
C The husband of murdered woman Jill Meagher will return to Ireland.
R The husband of Melbourne woman Jill Meagher will return to Ireland this month to clear his

head fighting for parole board changes.
T The husband of murdered Melbourne woman Jill Meagher will return to Ireland.
O A research project has found that taxi drivers often don’t know what the speed limit is.
C Taxi drivers don’t know the speed limit is.
R A research project has found that drivers often do not know what the speed limit is.
T A project has found taxi drivers don’t know what the speed limit is.

Table 4: Example output for original sentences (O) as generated by the Reluctant Trimmer baseline (R)
and our tree labeling system (T), as well as the headline-generated Google compressions (C).

LSTMs with word embeddings, with no syntactic
features. We return to working directly on trees,
presenting a tree-to-string model of sentence sim-
plification. Our model has interesting similarities
to (Riezler et al., 2003), but uses Viterbi decod-
ing rather than scoring of all candidates. Also,
it follows Cohn and Lapata (2008) in going be-
yond most of these models, modeling compression
and paraphrasing.

For lexical simplification, most systems typi-
cally use pre-compiled dictionaries (Devlin, 1999;
Inui et al., 2003) and select the synonym candidate
with the highest frequency. More recently, Baeza-
Yates et al. (2015) introduced an algorithm for lex-
ical simplification in Spanish that selects the best
synonym candidate in a context-sensitive fashion.

Cohn and Lapata (2008), Woodsend and Lap-
ata (2011) and Mandya et al. (2014) present joint
approaches to compression and paraphrasing that
are based on (quasi-) synchronous grammars, and
similarly Zhu et al. (2010) take a syntax-based
approach, but employ a probabilistic model of
various simplification operations. Napoles et al.
(2011) do not use syntactic information, but in-
stead employ a character-based metric to compress
and paraphrase.

6 Conclusion

We presented a new approach to sentence sim-
plification that uses linear-chain conditional ran-

dom fields over dependency graphs to jointly pre-
dict compression and paraphrasing of entire syn-
tactic units. The objective of our model is to
delete or paraphrase entire subtrees in dependency
graphs as a strategy to avoid ungrammatical out-
put. Our approach makes innovative use of a
three-fold parallel monolingual corpus that fea-
tures headlines and compressions to learn para-
phrases and deletions, respectively. Human eval-
uation shows that our approach leads to readabil-
ity figures that are comparable to previous state-
of-the-art approaches to the more basic sentence
compression task, and better than previous work
on joint compression and paraphrasing. While
our model does rely on syntactic analysis, it only
needs a tiny fraction (less than 0.5%) of the train-
ing data used by Filippova et al. (2015).
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