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Abstract

We investigate the effectiveness of se-
mantic generalizations/classifications for
capturing the regularities of the behavior
of verbs in terms of their metaphoric-
ity. Starting from orthographic word
unigrams, we experiment with various
ways of defining semantic classes for
verbs (grammatical, resource-based, dis-
tributional) and measure the effectiveness
of these classes for classifying all verbs
in a running text as metaphor or non
metaphor.

1 Introduction

According to the Conceptual Metaphor theory
(Lakoff and Johnson, 1980), metaphoricity is a
property of concepts in a particular context of use,
not of specific words. The notion of a concept is a
fluid one, however. While write and wrote would
likely constitute instances of the same concept ac-
cording to any definition, it is less clear whether
eat and gobble would. Furthermore, the Con-
ceptual Metaphor theory typically operates with
whole semantic domains that certainly generalize
beyond narrowly-conceived concepts; thus, save
and waste share a very general semantic feature of
applying to finite resources – it is this meaning el-
ement that accounts for the observation that they
tend to be used metaphorically in similar contexts.

In this paper, we investigate which kinds of gen-
eralizations are the most effective for capturing
regularities of metaphor usage.

2 Related Work

Most previous supervised approaches to verb
metaphor classification evaluated their systems on
selected examples or in small-scale experiments

(Tsvetkov et al., 2014; Heintz et al., 2013; Tur-
ney et al., 2011; Birke and Sarkar, 2007; Gedigan
et al., 2006), rather than using naturally occurring
continuous text, as done here. Beigman Klebanov
et al. (2014) and Beigman Klebanov et al. (2015)
are the exceptions, used as a baseline in the current
paper.

Features that have been used so far in super-
vised metaphor classification address concreteness
and abstractness, topic models, orthographic uni-
grams, sensorial features, semantic classifications
using WordNet, among others (Beigman Klebanov
et al., 2015; Tekiroglu et al., 2015; Tsvetkov et al.,
2014; Dunn, 2014; Heintz et al., 2013; Turney et
al., 2011). Of the feature sets presented in this pa-
per, all but WordNet features are novel.

3 Semantic Classifications

In the following subsections, we describe the dif-
ferent types of semantic classifications; Table 1
summarizes the feature sets.

Name Description #Features
U orthographic unigram varies
UL lemma unigram varies
VN-Raw VN frames 270
VN-Pred VN predicate 145
VN-Role VN thematic role 30
VN-RoRe VN them. role filler 128
WordNet WN lexicographer files 15
Corpus distributional clustering 150

Table 1: Summary of feature sets. All features are
binary features indicating class membership.

3.1 Grammar-based

The most minimal level of semantic generalization
is that of putting together verbs that share the same
lemma (lemma unigrams, UL). We use NLTK
(Bird et al., 2009) for identifying verb lemmas.

101



3.2 Resource-based

VerbNet: The VerbNet database (Kipper et al.,
2006) provides a classification of verbs accord-
ing to their participation in frames – syntactic pat-
terns with semantic components, based on Levin’s
classes (Levin, 1993). Each verb class is anno-
tated with its member verb lemmas, syntactic con-
structions in which these participate (such as tran-
sitive, intransitive, diathesis alternations), seman-
tic predicates expressed by the verbs in the class
(such as motion or contact), thematic roles (such
as agent, patient, instrument), and restrictions on
the fillers of these semantic roles (such as pointed
instrument).

VerbNet can thus be thought of as providing a
number of different classifications over the same
set of nearly 4,000 English verb lemmas. The
main classification is based on syntactic frames, as
enacted in VerbNet classes. We will refer to them
as VN-Raw classes. An alternative classification
is based on the predicative meaning of the verbs;
for example, the verbs assemble and introduce are
in different classes based on their syntactic beha-
vior, but both have the meaning component of to-
gether, marked in VerbNet as a possible value of
the Predicate variable. Similarly, shiver and faint
belong to different VerbNet classes in terms of
syntactic behavior, but both have the meaning el-
ement of describing an involuntary action. Using
the different values of the Predicate variable, we
created a set of VN-Pred classes. We note that the
same verb lemma can occur in multiple classes,
since different senses of the same lemma can have
different meanings, and even a single sense can
express more than one predicate. For example, the
verb stew participates in the following classes of
various degrees of granularity: cause (shared with
2,912 other verbs), use (with 700 other verbs), ap-
ply heat (with 49 other verbs), cooked (with 49
other verbs).

Each VerbNet class is marked with the thematic
roles its members take, such as agent or benefi-
ciary. Here again, verbs that differ in syntactic
behavior and in the predicate they express could
share thematic roles. For example, stew and prick
belong to different VerbNet classes and share only
the most general predicative meanings of cause
and use, yet both share a thematic role of instru-
ment. We create a class for each thematic role
(VN-Role).

Finally, VerbNet provides annotations of the re-

strictions that apply to fillers of various thematic
roles. For example, verbs that have a thematic
role of instrument can have the filler restricted
to being inanimate, body part, concrete, pointy,
solid, and others. Across the various VerbNet
classes, there are 128 restricted roles (such as in-
strument pointy). We used those to generate VN-
RoRe classes.

WordNet: We use lexicographer files to clas-
sify verbs into 15 classes based on their general
meaning, such as verbs of communication, con-
sumption, weather, and so on.

3.3 Corpus-based

We also experimented with automatically-
generated verb clusters as semantic classes. We
clustered VerbNet verbs using a spectral cluster-
ing algorithm and lexico-syntactic features. We
selected the verbs that occur more than 150 times
in the British National Corpus, 1,610 in total, and
clustered them into 150 clusters (Corpus).

We used verb subcategorization frames (SCF)
and the verb’s nominal arguments as features for
clustering, as they have proved successful in pre-
vious verb classification experiments (Shutova et
al., 2010). We extracted our features from the Gi-
gaword corpus (Graff et al., 2003) using the SCF

classification system of Preiss et al. (2007) to iden-
tify verb SCFs and the RASP parser (Briscoe et al.,
2006) to extract the verb’s nominal arguments.

Spectral clustering partitions the data relying
on a similarity matrix that records similarities be-
tween all pairs of data points. We use Jensen-
Shannon divergence (dJS) to measure similarity
between feature vectors for two verbs, vi and vj ,
and construct a similarity matrix Sij :

Sij = exp(−dJS(vi, vj)) (1)

The matrix S encodes a similarity graph G over
our verbs. The clustering problem can then be de-
fined as identifying the optimal partition, or cut, of
the graph into clusters. We use the multiway nor-
malized cut (MNCut) algorithm of Meila and Shi
(2001) for this purpose. The algorithm transforms
S into a stochastic matrix P containing transition
probabilities between the vertices in the graph as
P = D−1S, where the degree matrix D is a dia-
gonal matrix with Dii =

∑N
j=1 Sij . It then com-

putes the K leading eigenvectors of P , where K is
the desired number of clusters. The graph is par-
titioned by finding approximately equal elements
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in the eigenvectors using a simpler clustering al-
gorithm, such as k-means. Meila and Shi (2001)
have shown that the partition I derived in this way
minimizes the MNCut criterion:

MNCut(I) =
K∑

k=1

[1− P (Ik → Ik|Ik)], (2)

which is the sum of transition probabilities across
different clusters. Since k-means starts from a ran-
dom cluster assignment, we ran the algorithm mul-
tiple times and used the partition that minimizes
the cluster distortion, that is, distances to cluster
centroid.

We tried expanding the coverage of VerbNet
verbs and the number of clusters using grid search
on the training data, with coverage grid ={2,500;
3,000; 4,000} and #clusters grid = {200; 250; 300;
350; 400}, but obtained no improvement in perfor-
mance over our original setting.

4 Experiment setup

4.1 Data
We use the VU Amsterdam Metaphor Corpus
(Steen et al., 2010).1 The corpus contains anno-
tations of all tokens in running text as metaphor or
non metaphor, according to a protocol similar to
MIP (Pragglejaz, 2007). The data come from the
BNC, across 4 genres: news (N), academic writing
(A), fiction (F), and conversation (C). We address
each genre separately. We consider all verbs apart
from have, be, and do.

We use the same training and testing partitions
as Beigman Klebanov et al. (2015). Table 2 sum-
marizes the data. 2

Data Training Testing
#T #I %M #T #I

News 49 3,513 42% 14 1,230
Fict. 11 4,651 25% 3 1,386
Acad. 12 4,905 31% 6 1,260
Conv. 18 4,181 15% 4 2,002

Table 2: Summary of the data. #T = # of texts; #I
= # of instances; %M = percentage of metaphors.

4.2 Machine Learning Methods
Our setting is that of supervised machine learn-
ing for binary classification. We experimented
with a number of classifiers using VU-News train-
ing data, including those used in relevant prior
work: Logistic Regression (Beigman Klebanov et

1available at http://metaphorlab.org/metcor/search/
2Data and features will be made available at

https://github.com/EducationalTestingService/metaphor.

al., 2015), Random Forest (Tsvetkov et al., 2014),
Linear Support Vector Classifier. We found that
Logistic Regression was better for unigram fea-
tures, Random Forest was better for features using
WordNet and VerbNet classifications, whereas the
corpus-based features yielded similar performance
across classifiers. We therefore ran all evaluations
with both Logistic Regression and Random For-
est classifiers. We use the skll and scikit-learn
toolkits (Blanchard et al., 2013; Pedregosa et al.,
2011). During training, each class is weighted in
inverse proportion to its frequency. The optimiza-
tion function is F1 (metaphor).

5 Results

We first consider the performance of each type of
semantic classification separately as well as var-
ious combinations using cross-validation on the
training set. Table 3 shows the results with the
classifier that yields the best performance for the
given feature set.

Name N F A C Av.
U .64 .51 .55 .39 .52
UL .65 .51 .61 .39 .54
VN-Raw .64 .49 .60 .38 .53
VN-Pred .62 .47 .58 .39 .52
VN-Role .61 .46 .55 .40 .50
VN-RoRe .59 .47 .54 .36 .49
WN .64 .50 .60 .38 .53
Corpus .59 .49 .53 .36 .49
VN-RawToCorpus .63 .49 .59 .38 .53
UL+WN .67 .52 .63 .40 .56
UL+Corpus .66 .53 .62 .39 .55

Table 3: Performance (F1) of each of the feature
sets, xval on training data. U = unigram baseline.

Of all types of semantic classification, only the
grammatical one (lemma unigrams, UL) shows
an overall improvement over the unigram base-
line with no detriment for any of the genres.VN-
Raw and WordNet show improved performance
for Academic but lower performance on Fiction
than the unigram baseline. Other versions of
VerbNet-based semantic classifications are gener-
ally worse than VN-Raw, with some exceptions
for the Conversation genre. Distributional clus-
ters (Corpus) generally perform worse than the
resource-based classifications, even when the re-
source is restricted to the exact same set of verbs as
that covered in the Corpus clusters (compare Cor-
pus to VN-RawToCorpus).

The distributional features are, however, about
as effective as WordNet features when combined
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with the lemma unigrams (UL); the combinations
improve the performance over UL alone for every
genre. We also note that the better performance
for these combinations is generally attained by the
Logistic Regression classifier. We experimented
with additional combinations of feature sets, but
observed no further improvements.

To assess the consistency of metaphoricity
behavior of semantic classes across genres, we
calculated correlations between the weights as-
signed by the UL+WN model to the 15 WordNet
features. All pairwise correlations between News,
Academic, and Fiction were strong (r > 0.7),
while Conversation had low to negative correlation
with other genres. The low correlations with Con-
versation was largely due to a highly discrepant
behavior of verbs of weather3 – these are con-
sistently used metaphorically in all genres apart
from Conversation. This discrepancy, however, is
not so much due to genre-specific differences in
behavior of the same verbs as to the difference
in the identity of the weather verbs that occur in
the data from the different genres. While burn,
pour, reflect, fall are common in the other genres,
the most common weather verb in Conversation is
rain, and none of its occurrences is metaphoric; its
single occurrence in the other genres is likewise
not metaphoric. More than a difference across
genres, this case underscores the complementarity
of lemma-based and semantic class-based infor-
mation – it is possible for weather verbs to tend
towards metaphoricity as a class, yet some verbs
might not share the tendency – verb-specific infor-
mation can help correct the class-based pattern.

5.1 Blind Test Benchmark
To compare the results against state-of-art, we
show the performance of Beigman Klebanov et
al. (2015) system (SOA’15) on the test data (see
Table 2 for the sizes of the test sets per genre).
Their system uses Logistic Regression classifier
and a set of features that includes orthographic
unigrams, part of speech tags, concreteness, and
difference in concreteness between the verb and its
direct object. Against this benchmark, we evaluate
the performance of the best combination identified
during the cross-validation runs, namely, UL+WN
feature set using Logistic Regression classifier.
We also show the performance of the resource-

3Removing verbs of weather propelled the correlations
with Conversation to a moderate range, r = 0.25-0.45 across
genres.

lean model, UL+Corpus. The top three rows of
Table 4 show the results. The UL+WN model out-
performs the state of art for every genre; the im-
provement is statistically significant ( p<0.05).4

The improvement of UL+Corpus over SOA’15 is
not significant.

Following the observation of the similarity be-
tween weights of semantic class features across
genres, we also trained the three systems on all the
available training data across all genres (all data in
the Train column in Table 2), and tested on test
data for the specific genre. This resulted in perfor-
mance improvements for all systems in all genres,
including Conversation (see the bottom 3 rows in
Table 4). The significance of the improvement of
UL+WN over SOA’15 was preserved; UL+Corpus
now significantly outperformed SOA’15.

Feature Set N F A C Av.
Train SOA’15 .64 .47 .71 .43 .56
in UL+WN .68 .49 .72 .44 .58
genre UL+Corpus .65 .49 .71 .43 .57
Train SOA’15 .66 .48 .74 .44 .58
on all UL+WN .69 .50 .77 .45 .60
genres UL+Corpus .67 .51 .76 .45 .60

Table 4: Benchmark performance, F1 score.

6 Conclusion

The goal of this paper was to investigate
the effectiveness of semantic generaliza-
tions/classifications for metaphoricity classi-
fication of verbs. We found that generalization
from orthographic unigrams to lemmas is effec-
tive. Further, lemma unigrams and semantic class
features based on WordNet combine effectively,
producing a significant improvement over the
state of the art. We observed that semantic class
features were weighted largely consistently across
genres; adding training data from other genres is
helpful. Finally, we found that a resource-lean
model where lemma unigram features were
combined with clusters generated automatically
using a large corpus yielded a competitive perfor-
mance. This latter result is encouraging, as the
knowledge-lean system is relatively easy to adapt
to a new domain or language.

4We used McNemar’s test of significance of difference
between correlated proportions (McNemar, 1947), 2-tailed.
We combined data from all genres into on a 2X2 matrix:
both SOA’15 and UL+WN correct in (1,1), both wrong
(0,0), SOA’15 correct UL+WN wrong (0,1), UL+WN correct
SOA’15 wrong (1,0)).
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