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Abstract

This paper presents a spinal parsing al-
gorithm that can jointly detect empty ele-
ments. This method achieves state-of-the-
art performance on English and Japanese
empty element recovery problems.

1 Introduction

Empty categories, which are used in Penn Tree-
bank style annotations to represent complex syn-
tactic phenomena like constituent movement and
discontinuous constituents, provide important in-
formation for understanding the semantic structure
of sentences. Previous studies attempt empty ele-
ment recovery by casting it as linear tagging (Di-
enes and Dubey, 2003), PCFG parsing (Schmid,
2006; Cai et al., 2011) or post-processing of syn-
tactic parsing (Johnson, 2002; Gabbard et al.,
2006). To the best of our knowledge, the results
reported by (Cai et al., 2011) are the best yet re-
ported, so we pursue a method that uses syntactic
parsing to jointly solve the empty element recov-
ery problem.

Our proposal uses the spinal Tree Adjoining
Grammar (TAG) formalism of (Carreras et al.,
2008). The spinal TAG has a set of elementary
trees, called spines, each consisting of a lexical
anchor with a series of unary projections. Fig-
ure 1 displays (a) a head-annotated constituent tree
and (b) spines extracted from the tree. This pa-
per presents a transition-based algorithm together
with several operations to combine spines for con-
structing full parse trees with empty elements.
Compared with the PCFG parsing approaches, one
advantage of our method is its flexible feature
representations, which allow the incorporation of
constituency-, dependency- and spine-based fea-
tures. Of particular interest, the motivation for
our spinal TAG-based approach comes from the
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Figure 1: (a) an example of a constituent tree with
head annotations denoted by -H; (b) spinal ele-
mentary trees extracted from the parse tree (a).

intuition that features extracted from spines can
be expected to be useful for empty element recov-
ery in the same way as constituency-based vertical
higher-order conjunctive features are used in re-
cent post-processing methods (Xiang et al., 2013;
Takeno et al., 2015). Experiments on English and
Japanese datasets empirically show that our sys-
tem outperforms existing alternatives.

2 Spinal Tree Adjoining Grammars

We define here the spinal TAG G = (N,PT,T,LS)
where N is a set of nonterminal symbols, PT is
a set of pre-terminal symbols (or part-of-speech
tags), T is a set of terminal symbols (or words),
and LS is a set of lexical spines. Each spine, s,
has the form n0 → n1 → ··· → nk−1 → nk (k ∈ N)
which satisfies the conditions:

• n0 ∈ T and n1 ∈ PT ,

• ∀i ∈ [2,k], ni ∈ N.

The height of spine s is ht(s) = k+1 and for some
position i ∈ [0,k], the label at i is s(i) = ni. Tak-
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Figure 2: An example of parser operations: (a)
sister adjunction left (b) regular adjunction right
(c) insert left (d) combine right.

ing the leftmost spine s = We → PRP → NP in
Figure 1 (b), ht(s) = 3 and s(1) = PRP.

The spinal TAG uses two operations, sister and
regular adjunctions, to combine spines. Both ad-
junctions also have left and right types. Fig-
ures 2 (a) and (b) show examples of sister adjunc-
tion left and regular adjunction right operations.
We use @# to illustrate node position on a spine,
explicitly. After a regular adjunction, the result-
ing tree has an additional node level which has a
copy of its original node at position @x, while a
sister adjunction simply inserts a spine into some
node of another spine. If adjunction left (or right)
inserts spine s1 into some node at @x on spine s2,
we call s2 the head spine of s1 and s1 the left (or
right) child spine of s2

1. This paper denotes sister
adjunction left and right as s1 ▷⃝ xs2, s2 ◁⃝ xs1, reg-
ular adjunction left and right as s1 ▶⃝ xs2, s2 ◀⃝ xs1,
respectively.

3 Arc-Standard Shift-Reduce Spinal
TAG Parsing

There are three algorithms for spinal TAG parsing,
(1) Eisner-Satta CKY (Carreras et al., 2008), (2)
arc-eager shift-reduce (Ballesteros and Carreras,
2015) and (3) arc-standard shift-reduce (Hayashi
et al., 2016) algorithms. This paper uses the arc-

1After adjunctions, the result forms a phrase consisting of
several spines. If a phrasal spine is also used in adjunction
operations as Figure 2 (b), we treat it as a lexical spine by
referring to its head spine.

standard shift-reduce algorithm since it provides a
more simple implementation.

A transition system for spinal TAG parsing is
the tuple S = (C,T, I,Ct), where C is a set of con-
figurations, T is a set of transitions, which are par-
tial functions t : C ⇀ C, I is a total initialization
function mapping each input string to a unique
configuration, and Ct ⊆C is a set of terminal con-
figurations. A configuration is the tuple (α,β ,A)
where α is a stack of stack elements, β is a buffer
of elements from an input, and A is a set of parser
operations. A stack element s is a pair (s, j) where
s is a spine and j is a node index of s. We refer to
s and j of s as s.s and s. j, respectively.

Let x = ⟨w1/t1, . . . ,wn/tn⟩ (∀i ∈ [1,n], wi ∈ T
and ti ∈ PT ) be a pos-tagged input sentence. The
arc-standard transition system by Hayashi et al.
(2016) can be defined as follows: its initialization
function is I(x) = ([], [w1/t1, . . . ,wn/tn], /0), its set
of terminal configurations is Ct = ([], [],A), and it
has the following transitions:

1. for each s ∈ LS with s(0) = wi and s(1) = ti,
a shift transition of the form (α,wi/ti|β ,A) ⊢
(α|s1,β ,A) where s1 = (s,2)2;

2-3. for each j with s1. j ≤ j < ht(s1.s), a sister
adjunction left transition of the form

(σ |s2|s1,β ,A) ⊢ (σ |s′1,β ,A∪{s2.s ▷⃝ js1.s})

and a regular adjunction left transition of the
form

(σ |s2|s1,β ,A) ⊢ (σ |s′1,β ,A∪{s2.s ▶⃝ js1.s})

where s′1 = (s1.s, j);

4-5. for each j with s2. j ≤ j < ht(s2.s), a sister
adjunction right transition of the form

(σ |s2|s1,β ,A) ⊢ (σ |s′1,β ,A∪{s2.s ◁⃝ js1.s})

and a regular adjunction right transition of the
form

(σ |s2|s1,β ,A) ⊢ (σ |s′1,β ,A∪{s2.s ◀⃝ js1.s})

where s′1 = (s2.s, j);

6. a finish transition of the form ([s], [],A) ⊢
([], [],A).

2To construct a full parse tree from A, our actual imple-
mentation attaches index i to spine s after shift transition.
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Figure 3: A phrasal empty spine shown on the
shaded region.

To reduce search errors, Hayashi et al. (2016) em-
ployed beam search with Dynamic Programming
of (Huang and Sagae, 2010). For experiments, we
also use this technique and discriminative model-
ing of (Hayashi et al., 2016).

4 Empty Element Recovery

4.1 Spinal TAG with Empty Elements

In this paper, we redefine the spinal TAG as G =
(N,PT,T,LS,*e*,ET,ES), where *e* is a special
word, ET is a set of empty categories, and ES is
a set of empty spines. An empty spine s = n0 →
n1 → ··· → nk−1 → nk (k ∈ N) has the same form
as lexical spines, but n0 = *e* and n1 ∈ ET . The
height and label definitions are also the same as
those of lexical spines. For example, the rightmost
spine s = *e* → *T* → ADVP in Figure 1 (b) is
an empty spine with ht(s) = 3 and s(1) = *T*.

This paper extends empty spines to allow the
use of phrasal constituents that consist of only
empty elements, as a single spine. A phrasal
empty spine is a tuple (t,h), where t is a sequence
of (phrasal) empty spines specifying some sister
adjunctions between these spines and h is a head
spine in t. The phrasal empty spine in Figure 3
consists of two empty spines *e* → 0 and *e*
→ *T* → S → SBAR, where a sister adjunction
left is performed at the SBAR node of the latter
spine, which is a head spine in the phrase. To ap-
ply parser operations to a phrasal empty spine, we
use its head spine rather than itself. This paper de-
fines the height and label of a phrasal empty spine
as those of its head spine.

To recover empty elements, this paper intro-
duces two additional operations, insert and com-
bine, both of which have left and right types. Fig-
ures 2 (c) and (d) show insert left and combine
right operations. These operations are similar to
sister adjunctions in that the former simply inserts
some phrasal empty spine into some node of an-
other spine and the latter also inserts a spine into

some node of a phrasal empty spine.

4.2 New Transitions
To handle empty spines in parsing process, we add
the following five transitions to the arc-standard
transition system of (Hayashi et al., 2016):

7-8. for each s ∈ ES and each j with s1. j ≤ j <
ht(s1.s), an insert left transition of the form

(σ |s1,β ,A) ⊢ (σ |s′1,β ,A∪{s ▷⃝ js1.s})

and an insert right transition of the form

(σ |s1,β ,A) ⊢ (σ |s′1,β ,A∪{s1.s ◁⃝ js})

where s′1 = (s1.s, j);

9-10. for each s∈ES and each j with 2≤ j < ht(s),
a combine left transition of the form

(σ |s1,β ,A) ⊢ (σ |s′1,β ,A∪{s1.s ▷⃝ js})

and a combine right transition of the form

(σ |s1,β ,A) ⊢ (σ |s′1,β ,A∪{s ◁⃝ js1.s})

where s′1 = (s, j);

11. an idle transition of the form (σ |s1,β ,A) ⊢
(σ |s1,β ,A);

Like unary and idle rules in shift-reduce CFG
parsing (Zhu et al., 2013), our current system pro-
hibits > b consecutive actions consisting of only
insert, combine and idle operations. Given an
input sentence with length n, after performing n
shift, n− 1 adjunction, b · (2n− 1) {insert, com-
bine or idle} actions, the system triggers the finish
action and terminates. For training, we make ora-
cle derivations using the stack-shortest strategy.

5 Related Work

To realize empty element recovery, other lexical-
ized TAG formalisms (Chen and Shanker, 2004;
Shen et al., 2008) attach some or all empty el-
ements directly to surface word lexicons. Our
framework, however, uses spinal TAG parser op-
erations as they provide more efficient parsing and
more compact sets of lexicons. It is remarkable
that this paper is the first study to present a shift-
reduce spinal TAG parsing algorithm to recover
empty elements.

Recent work has shown that empty element re-
covery can be effectively solved in conjunction
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Tagger Lattice Proposed
M O M O M O Gold

*ICH* 2 5 2 2 31 43 78
*RNR* 0 3 0 4 4 5 6
*EXP* 10 12 0 0 19 26 30

Table 2: Result Analysis: M denotes the number
of matches of system outputs (O) with the gold.
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Figure 4: Scatter plot of parsing time against sen-
tence length, comparing with Hayashi16, Berkeley
and Cai11 parsers.

with parsing (Schmid, 2006; Cai et al., 2011).
Schmid (2006) annotated a constituent tree with
slash features to recover a direct path from a filler
node to its trace. Cai et al. (2011) successfully in-
tegrated empty element recovery into lattice pars-
ing for latent PCFGs. Compared with PCFG pars-
ing, the spinal TAG parser provides a more flexible
feature representation.

6 Experiments

6.1 Experiments on the English Penn
Treebank

We used the Wall Street Journal (WSJ) part of the
English Penn Treebank: Sections 02–21 were used
for training, Section 22 for development, and Sec-
tion 23 for testing. We annotated trees with heads
by treep (Chiang and Bikel, 2002)3 with the appli-
cation of Collins’s head rules. The 78524 lexical
and 115 phrasal empty spine types were obtained
from the training data4. The set of phrasal empty
spines covered all phrasal empty spines extracted
from the development data.

We used the Stanford part-of-speech tagger to
tag development and test data. To train the pro-
posed parsing model, we used the violation–fixing

3http://www3.nd.edu/˜dchiang/software/
treep/treep.html

4Excluding words from lexical spines, there were 1080
lexical spine types.

Typed-empty (t,i,i) All Brackets
P R F1 P R F1

Rule 57.4 50.5 53.7 – – –
Takeno15 60.4 50.6 55.1 – – –

Tagger 63.1 34.7 44.8 72.9 68.6 70.7
Lattice 64.1 52.2 57.5 73.7 70.6 72.1

Proposed 65.3 57.6 61.2 74.3 72.8 73.6
Table 3: Results on the Japanese Keyaki Treebank.

perceptron algorithm (Huang et al., 2012). For
training and testing, we set beam size to 16 and
max count b, introduced in Section 4.2, to 2. For
comparison with other systems in our environ-
ment, we also implemented two systems:

• Lattice is a method by Cai et al. (2011). We
also used blatt5, which is an extension of
the Berkeley parser, to parse word lattices in
which the special word *e* is encoded as de-
scribed in (Cai et al., 2011).

• Tagger decides whether some empty cate-
gory is inserted at the front of a word or not,
with regularized logistic regression. To sim-
plify point-wise linear tagging, we combined
empty categories, those that appeared in the
same position of a sentence, into a single cat-
egory: thus the original 10 empty types in-
creased to 63.

Table 1 shows final results on Section 23. To
evaluate the accuracy of empty element recov-
ery, we calculated precision, recall and F1 scores
for (1) Labeled Empty Bracket (X/t,i,i), (2) La-
beled Empty Element (t,i,i), and (3) All Brack-
ets, where X ∈ NT , t ∈ ET and i is a posi-
tion of the empty element, using eevalb6. The
results clearly show that our proposed method
significantly outperforms the other systems. Ta-
ble 2 shows the main reason for the improvement
achieved by our method. The *ICH*, *RNR* and
*EXP* empty types are used to show the relation
between non-adjacent constituents, caused by syn-
tactic phenomena like Extraposition and Conjunc-
tion. Our method captures such complex relations
better with the help of the syntactic feature rich-
ness.

Table 1 reports the scores for non-empty brack-
ets to examine whether the joint method improves
the standard PARSEVAL scores. While the Lattice

5http://www.cs.bgu.ac.il/˜yoavg/
software/blatt/

6http://www3.nd.edu/˜dchiang/software/
eevalb.py
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Johnson (X/t,i,i) Typed-empty (t,i,i) All Brackets Non-empty Brackets
P R F1 P R F1 P R F1 P R F1

Schmid06 – – – 87.9 83.0 85.4 – – – – – –
Cai11 90.1 79.5 84.5 92.3 80.9 86.2 90.1 88.5 89.3 – – –

Tagger 89.7 69.3 78.1 90.7 70.1 79.0 87.8 85.5 86.7 87.8 86.8 87.3
Lattice (Cai11) 89.8 79.2 84.2 91.4 80.6 85.7 90.2 88.7 89.5 90.2 89.5 89.8

Proposed 90.3 81.7 85.8 91.8 83.2 87.3 90.8 89.7 90.3 90.8 90.3 90.6

Berkeley – – – – – – – – – 89.9 90.3 90.1
Hayashi16 – – – – – – – – – 90.9 90.4 90.7

Table 1: Results on the English Penn Treebank (Section 23): to calculate the scores for Tagger, we
obtained a parse tree by supplying the 1-best Tagger output with the Berkeley parser trained on Sections
02-21 including empty elements (using the option “-useGoldPOS”).

method was less accurate than the vanilla Berke-
ley parser, the performance of our method could
be maintained with little loss in parsing accuracy.
Figure 4 shows the parse time in seconds for each
test sentence and that our empty element recovery
parser works in reasonable time.

6.2 Experiments on the Japanese Keyaki
Treebank

Finally, to show that our method works well on
other languages, we conduct experiments on the
Japanese Keyaki Treebank (Butler et al., 2012).
For this data, we modified blatt to keep function
labels And, in order to consider segmentation er-
rors, we also modified eevalb to calculate not word
but character span in a sentence. We follow the ex-
periments in (Takeno et al., 2015) and show the re-
sults in Table 3. Our method significantly outper-
forms the state-of-the-art post-processing method
in Japanese.

7 Conclusion and Future Work

Using spinal parsing for the joint recovery of
empty elements achieves state-of-the-art perfor-
mance in standard English and Japanese datasets.
We plan to extend our work to recover trace-filler
and frame semantic structures using the PropBank
data.
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