
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 2265–2275,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

On Approximately Searching for Similar Word Embeddings

Kohei Sugawara Hayato Kobayashi Masajiro Iwasaki
Yahoo Japan Corporation

1-3 Kioicho, Chiyoda-ku, Tokyo 102-8282, Japan
{ksugawar, hakobaya, miwasaki}@yahoo-corp.jp

Abstract

We discuss an approximate similarity
search for word embeddings, which is
an operation to approximately find em-
beddings close to a given vector. We
compared several metric-based search al-
gorithms with hash-, tree-, and graph-
based indexing from different aspects.
Our experimental results showed that a
graph-based indexing exhibits robust per-
formance and additionally provided use-
ful information, e.g., vector normalization
achieves an efficient search with cosine
similarity.

1 Introduction

An embedding or distributed representation of a
word is a real-valued vector that represents its
“meaning” on the basis of distributional seman-
tics, where the meaning of a word is determined
by its context or surrounding words. For a given
meaning space, searching for similar embeddings
is one of the most basic operations in natural lan-
guage processing and can be applied to various ap-
plications, e.g., extracting synonyms, inferring the
meanings of polysemous words, aligning words
in two sentences in different languages, solving
analogical reasoning questions, and searching for
documents related to a query.

In this paper, we address how to quickly and
accurately find similar embeddings in a continu-
ous space for such applications. This is impor-
tant from a practical standpoint, e.g., when we
want to develop a real-time query expansion sys-
tem on a search engine on the basis of an embed-
ding similarity. A key difference from the existing
work is that embeddings are not high-dimensional
sparse (traditional count) vectors, but (relatively)
low-dimensional dense vectors. We therefore need

to use approximate search methods instead of
inverted-index-based methods (Zobel and Moffat,
2006). Three types of indexing are generally used
in approximate similarity search: hash-, tree-, and
graph-based indexing. Hash-based indexing is the
most common in natural language processing due
to its simplicity, while tree/graph-based indexing
is preferred in image processing because of its per-
formance. We compare several algorithms with
these three indexing types and clarify which al-
gorithm is most effective for similarity search for
word embeddings from different aspects.

To the best of our knowledge, no other study
has compared approximate similarity search meth-
ods focusing on neural word embeddings. Al-
though one study has compared similarity search
methods for (count-based) vectors on the basis
of distributional semantics (Gorman and Curran,
2006), our study advances this topic and makes
the following contributions: (a) we focus on neu-
ral word embeddings learned by a recently devel-
oped skip-gram model (Mikolov, 2013), (b) show
that a graph-based search method clearly performs
better than the best one reported in the Gorman
and Curran study from different aspects, and (c)
report the useful facts that normalizing vectors can
achieve an effective search with cosine similarity,
the search performance is more strongly related to
a learning model of embeddings than its training
data, the distribution shape of embeddings is a key
factor relating to the search performance, and the
final performance of a target application can be far
different from the search performance. We believe
that our timely results can lead to the practical use
of embeddings, especially for real-time applica-
tions in the real world.

The rest of the paper is organized as follows.
In Section 2, we briefly survey hash-, tree-, and
graph-based indexing methods for achieving sim-
ilarity search in a metric space. In Section 3, we

2265

compare several similarity search algorithms from
different aspects and discuss the results. Finally,
Section 4 concludes the paper.

2 Similarity Search

We briefly survey similarity search algorithms for
real-valued vectors, where we focus on approxi-
mate algorithms that can deal with large scale data.
In fact, word embeddings are usually trained on a
very large corpus. For example, well known pre-
trained word embeddings (Mikolov, 2013) were
trained on the Google News dataset and consist of
about 1,000 billion words with 300-dimensional
real-valued vectors. Search tasks on large-scale
real-valued vectors have been more actively stud-
ied in the image processing field than in the natu-
ral language processing field, since such tasks nat-
urally correspond to searching for similar images
with their feature vectors.

Many similarity search algorithms have been
developed and are classified roughly into three in-
dexing types: hash-, tree-, and graph-based. In
natural language processing, hash-based indexing
seems to be preferred because of its simplicity
and ease of treating both sparse and dense vec-
tors, while in image processing, tree- and graph-
based indexing are preferred because of their per-
formance and flexibility in adjusting parameters.
We explain these three indexing types in more de-
tail below.

2.1 Hash-based Indexing

Hash-based indexing is a method to reduce the
dimensionality of high-dimensional spaces by us-
ing some hash functions so that we can efficiently
search in the reduced space. Locality-sensitive
hashing (LSH) (Gionis et al., 1999) is a widely
used hash-based indexing algorithm, which maps
similar vectors to the same hash values with high
probability by using multiple hash functions.

There are many hash-based indexing algorithms
that extend LSH for different metric spaces. Datar
et al. (2004) applied the LSH scheme to Lp spaces,
or Lebesgue spaces, and experimentally showed
that it outperformed the existing methods for the
case of p = 2. Weiss et al. (2009) showed
that the problem of finding the best hash function
is closely related to the problem of graph parti-
tioning and proposed an efficient approximate al-
gorithm by reducing the problem to calculating
thresholded eigenvectors of the graph Laplacian.

In this paper, we focus on approximation of k-
nearest neighbors and are not concerned about the
hash-based indexing algorithms, since they are ba-
sically designed for finding (not k-nearest) neigh-
bors within a fixed radius of a given point, i.e., a
so-called radius search.

2.2 Tree-based Indexing
Tree-based indexing is used to recursively divide
the entire search space into hierarchical subspaces,
where the subspaces are not necessarily disjointed,
so that the search space forms a tree structure.
Given a search query, we can efficiently find the
subspaces including the query by descending from
the root note to the leaf nodes in the tree structure
and then obtain its search results by scanning only
neighbors belonging to the subspaces. Note that in
contrast to the hash-based indexing, we can easily
extend the size of search results or the number of
nearest neighbors by ascending to the parent sub-
spaces.

Arya et al. (1998) proposed the balanced box-
decomposition tree (BBD-tree) as a variant of the
kd-tree (Bentley, 1975) for approximately search-
ing for similar vectors on the basis of Minkowski
metrics, i.e., in Lp spaces when p ≥ 1. Fast li-
brary for approximate nearest neighbors (FLANN)
(Muja and Lowe, 2008) is an open-source li-
brary for approximate similarity search. FLANN
automatically determines the optimal one from
three indices: a randomized kd-tree where multi-
ple kd-trees are searched in parallel (Silpa-Anan
and Hartley, 2008), a k-means tree that is con-
structed by hierarchical k-means partitioning (Nis-
ter and Stewenius, 2006), and a mix of both kd-
tree and k-means tree. Spatial approximation sam-
ple hierarchy (SASH) (Houle and Sakuma, 2005)
achieves approximate search with multiple hierar-
chical structures created by random sampling. Ac-
cording to the results in the previous study (Gor-
man and Curran, 2006), SASH performed the best
for vectors on the basis of distributional semantics,
and its performance surpassed that of LSH.

2.3 Graph-based Indexing
Graph-based indexing is a method to approxi-
mately find nearest neighbors by using a neigh-
borhood graph, where each node is connected to
its nearest neighbors calculated on the basis of a
certain metric. A simple search procedure for a
given query is achieved as follows. An arbitrary
node in the graph is selected as a candidate for the

2266

true nearest neighbor. In the process of checking
the nearest neighbor of the candidate, if the query
is closer to the neighbor than the candidate, the
candidate is replaced by the neighbor. Otherwise,
the search procedure terminates by returning the
current candidate as the nearest neighbor of the
query. This procedure can be regarded as a best-
first search, and the result is an approximation of
that of an exact search.

Sebastian and Kimia (2002) first used a k-
nearest neighbor graph (KNNG) as a search in-
dex, and Hajebi et al. (2011) improved the search
performance by performing hill-climbing starting
from a randomly sampled node of a KNNG. Their
experimental results with image features, i.e.,
scale invariant feature transform (SIFT), showed
that a similarity search based on a KNNG outper-
forms randomized kd-trees and LSH. Although the
brute force construction cost of a KNNG drasti-
cally increases as the number of nodes increases
because the construction procedure needs to cal-
culate the nearest neighbors for each node, we
can efficiently approximate a KNNG (so-called
ANNG) by incrementally constructing an ANNG
with approximate k-nearest neighbors calculated
on a partially constructed ANNG. Neighborhood
graph and tree for indexing (NGT) (Iwasaki, 2015)
is a library released from Yahoo! JAPAN that
achieves a similarity search on an ANNG; it has
already been applied to several services.

3 Experiments

In this paper, we focused on the pure similarity
search task of word embeddings rather than com-
plex application tasks for avoiding extraneous fac-
tors, since many practical tasks can be formulated
as k-nearest neighbor search. For example, assum-
ing search engines, we can formalize query expan-
sion, term deletion, and misspelling correction as
finding frequent similar words, infrequent similar
words, and similar words with different spellings,
respectively.

We chose FLANN from the tree-based meth-
ods and NGT from the graph-based methods since
they are expected to be suitable for practical use.
FLANN and NGT are compared with SASH,
which was the best method reported in a previous
study (Gorman and Curran, 2006). In addition,
we consider LSH only for confirmation, since it
is widely used in natural language processing, al-
though several studies have reported that LSH per-

formed worse than SASH and FLANN. We used
the E2LSH package (Andoni, 2004), which in-
cludes an implementation of a practical LSH al-
gorithm.

3.1 Problem Definition
The purpose of an approximate similarity search
is to quickly and accurately find vectors close to a
given vector. We formulate this task as a problem
to find k-nearest neighbors as follows. Let (X, d)
be a metric space. We denote by Nk(x, d) the set
of k-nearest neighbors of a vector x ∈ X with
respect to a metric d. Formally, the following con-
dition holds: ∀y ∈ Nk(x, d), ∀z ∈ X \ Nk(x, d),
d(x, y) ≤ d(x, z). Our goal with this problem is
to approximate Nk(x, d) for a given vector x.

We calculate the precision of an approximate
search method A using the so-called precision at
k or P@k, which is a widely used evaluation mea-
sure in information retrieval. The precision at
k of A is defined as |Nk(x, d) ∩ Ñk(x,A)|/k,
where Ñk(x,A) is the set of approximate k-
nearest neighbors of a vector x calculated by A.
Since we use the same size k for an exact set
Nk(x, d) and its approximate set Ñk(x,A), there
is no trade-off between precision and recall.

3.2 Basic Settings
This section describes the basic settings in our ex-
periments, where we changed a specific setting
(e.g., number of dimensions) in order to evaluate
the performance in each experiment. All the ex-
periments were conducted on machines with two
Xeon L5630 2.13-GHz processors and 24 GB of
main memory running Linux operating systems.

We prepared 200-dimensional word embed-
dings learned from English Wikipedia in Febru-
ary 2015, which contains about 3 billion sentences
spanning about 2 million words and 35 billion
tokens, after preprocessing with the widely used
script (Mahoney, 2011), which was also used for
the word2vec demo (Mikolov, 2013). We used the
skip-gram learning model with hierarchical soft-
max training in the word2vec tool, where the win-
dow size is 5, and the down-sampling parameter is
0.001.

We constructed and evaluated the index by di-
viding the learned embeddings into 2 million em-
beddings for training and 1,000 embeddings for
testing by random sampling, after normalizing
them so that the norm of each embedding was one.
We built the search index of each search method

2267

for the training set on the basis of the Euclidean
distance. The Euclidean distance of normalized
vectors is closely related to the cosine similarity,
as described later. We prepared the top-10 (exact)
nearest neighbors in the training set corresponding
to each embedding in the testing set and plotted the
average precision at 10 over the test set versus its
computation time (log-scale), by changing the pa-
rameter for precision of each method as described
below. Note that it is difficult to compare different
algorithms in terms of either precision or computa-
tion time, since there is a trade-off between preci-
sion and computation time in approximate search.

We set the parameters of the three search meth-
ods SASH, FLANN, and NGT as follows. We
determined stable parameters for indexing using
grid search and changed an appropriate parameter
that affected the accuracy when evaluating each
method. For confirmation, we added LSH in the
first experiment but did not use it in the other ex-
periments since it clearly performs worse than the
other methods.

SASH We set the maximum number (p) of par-
ents per node to 6 for indexing and changed
the scale factor for searching1.

FLANN We set the target precision to 0.8, the
build weight to 0, and the sample fraction to
0.01 for indexing, and we changed the num-
ber of features to be checked in the search2.
The k-means index was always selected as
the optimal index in our experiments.

NGT We set the edge number (E) to 10 for in-
dexing and changed the search range (e) for
searching.

LSH We set the success probability (1 − δ) to
0.9 and changed the radius (R) for indexing.
Note that there are no parameters for search-
ing since LSH was developed to reduce di-
mensionality, and we need to construct mul-
tiple indices for adjusting its accuracy.

1The scale factor is implemented as “scaleFactor” in the
source code (Houle, 2005), although there is no description
in the original paper (Houle and Sakuma, 2005).

2Since FLANN is a library integrating several algorithms,
the parameters can be described only by variables in the
source code (Muja and Lowe, 2008). The target precision,
build weight, and sample fraction for auto-tuned indexing
are implemented as “target precision”, “build weight”, and
“sample fraction” in the structure “AutotunedIndexParams”,
respectively. The number of features is implemented as
“checks” in the structure “SearchParams”.

3.3 Results

In this section we report the results of the perfor-
mance comparison of SASH, FLANN, and NGT
from the following different aspects: the distance
function for indexing, the number of dimensions
of embeddings, the number of neighbors to be
evaluated, the size of a training set for indexing,
the learning model/data used for embeddings, and
the target task to be solved.

3.3.1 Distance Function for Indexing
We evaluated the performance by changing the
distance function for indexing. In natural language
processing, cosine similarity cos(x, y) = x·y

∥x∥ ∥y∥
of two vectors x and y is widely used from a prac-
tical perspective, and cosine distance dcos(x, y) =
1 − cos(x, y) as its complement seems to be ap-
propriate for the distance function for indexing.
Unfortunately, however, the cosine distance is not
strictly metric but semimetric since the triangle in-
equality is not satisfied. Thus, we cannot directly
use the cosine distance because the triangle in-
equality is a key element for efficient indexing in
a metric space. In this paper, we use two alterna-
tives: normalized and angular distances.

The former is the Euclidean distance af-
ter normalizing vectors, i.e., dnorm(x, y) =
deuc(x

∥x∥ , y
∥y∥), where deuc(x, y) = ∥x − y∥. The

set of k-nearest neighbors by dnorm is theoreti-
cally the same as that by dcos, i.e., Nk(x, dnorm) =
Nk(x, dcos), since dnorm(x, y)2 = ∥x∥2

∥x∥2 + ∥y∥2

∥y∥2 −
2 x

∥x∥ · y
∥y∥ = 2dcos(x, y). The latter is the

angle between two vectors, i.e., darc(x, y) =
arccos(cos(x, y)). The set of k-nearest neigh-
bors by darc is also the same as that by dcos,
i.e., Nk(x, darc) = Nk(x, dcos), since arccos is a
monotone decreasing function. Note that darc is
not strictly metric, but it satisfies the triangle in-
equality, i.e., pseudometric.

Figure 1 plots the performances of SASH,
FLANN, and NGT using the normalized, angular,
and ordinal Euclidean distances. Higher precision
at the same computational time (upper left line) in-
dicates a better result. The graphs show that NGT
performed the best for the normalized distance (a),
while SASH performed the best for the angular
distance (b). This large difference is caused by the
long computational time of darc. Because we only
want the maximum performance in graphs (a) and
(b) for each method, we used only the normalized
distance in the later experiments since the perfor-

2268

100 101 102 103

Time [msec]

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

SASH (norm)

FLANN (norm)

NGT (norm)

LSH

(a) Normalized

100 101 102 103

Time [msec]

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

SASH (angle)

FLANN (angle)

NGT (angle)

(b) Angular

100 101 102 103

Time [msec]

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

SASH (euc)

FLANN (euc)

NGT (euc)

(c) Euclidean

Figure 1: Precision versus computation time of SASH, FLANN, and NGT using the normalized, angular,
and Euclidean distances.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(a) Normalized

8 6 4 2 0 2 4 6
6

4

2

0

2

4

6

(b) Un-normalized

Figure 2: 2D visualization of normalized and
un-normalized embeddings by multi-dimensional
scaling.

mance of SASH in graph (a) is almost the same
as that in (b). For confirmation, we added the re-
sult of LSH in graph (a) only. The graph clearly
indicates that the performance of LSH is very low
even for neural word embeddings, which supports
the results in the previous study (Gorman and Cur-
ran, 2006), and therefore we did not use LSH in
the later experiments.

Graph (c) shows that the performance using the
Euclidean distance has a similar tendency to that
using the normalized distance, but its computa-
tion time is much worse than that using the nor-
malized distance. The reason for this is that it
is essentially difficult to search for distant vec-
tors in a metric-based index, and normalization
can reduce the number of distant embeddings by
aligning them on a hypersphere. In fact, we
can confirm that the number of distant embed-
dings was reduced after normalization according
to Figure 2, which visualizes 1,000 embeddings
before/after normalization on a two-dimensional
space by multi-dimensional scaling (MDS) (Borg
and Groenen, 2005), where the radius of each cir-
cle represents the search time of the correspond-
ing embedding calculated by NGT. MDS is a di-
mensionality reduction method to place each point
in a low-dimensional space such that the distances
between any two points are preserved as much as
possible. Note that the scale of graph (b) is about

Distance Method Time (min)

Normalized

SASH 74.6
FLANN 56.5
NGT 33.9
LSH 44.6

Angular
SASH 252.4
FLANN 654.9
NGT 155.4

Euclidean
SASH 58.1
FLANN 20.2
NGT 83.0

Table 1: Indexing time of SASH, FLANN, NGT,
and LSH using the normalized, angular, Euclidean
distance functions.

five times larger than that of graph (a). This also
suggests that the normalized distance should be
preferred even when it has almost the same pre-
cision as the Euclidean distance.

Table 1 lists the indexing times of SASH,
FLANN, and NGT on the basis of the normal-
ized, angular, and Euclidean distances, where LSH
is also added only in the result of the normal-
ized distance. The table indicates that NGT per-
formed the best for the normalized and angular
distances, while FLANN performed the best for
the Euclidean distance. However, all methods
seem to be suitable for practical use in terms of
indexing because we can create an index of En-
glish Wikipedia embeddings in several hours (only
once). The large indexing time with the angular
distance also supports our suggestion that the nor-
malized distance should be used.

3.3.2 Number of Dimensions of Embeddings
We also evaluated the performances by changing
the number of dimensions of embeddings. Since
the optimal number of dimensions should depend
on the tasks, we wanted to see how the search

2269

100 101 102 103

Time [msec]

0.5

0.6

0.7

0.8

0.9

1.0

P
re
ci
si
o
n

SASH (100 dim)

FLANN (100 dim)

NGT (100 dim)

(a) 100 dimensions

100 101 102 103

Time [msec]

0.5

0.6

0.7

0.8

0.9

1.0

P
re
ci
si
o
n

SASH (200 dim)

FLANN (200 dim)

NGT (200 dim)

(b) 200 dimensions

100 101 102 103

Time [msec]

0.5

0.6

0.7

0.8

0.9

1.0

P
re
ci
si
o
n

SASH (300 dim)

FLANN (300 dim)

NGT (300 dim)

(c) 300 dimensions

Figure 3: Precision versus computation time of SASH, FLANN, and NGT using 100-, 200-, and 300-
dimensional embeddings.

100 101 102 103

Time [msec]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si
o
n

SASH (top 10)

FLANN (top 10)

NGT (top 10)

(a) P@10

100 101 102 103

Time [msec]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si
o
n

SASH (top 100)

FLANN (top 100)

NGT (top 100)

(b) P@100

100 101 102 103

Time [msec]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si
o
n

SASH (top 200)

FLANN (top 200)

NGT (top 200)

(c) P@200

Figure 4: Precision versus computation time of SASH, FLANN, and NGT using precision at 10, 100,
and 200.

methods performed when the number of dimen-
sions varied, while the number of dimensions of
image features is usually fixed. For example, SIFT
features (Lowe, 1999) are represented as 128-
dimensional vectors.

Figure 3 plots the performances of SASH,
FLANN, and NGT using 100-, 200-, and 300-
dimensional embeddings. The graphs indicate that
NGT always performed the best. SASH is ex-
pected to perform well when the number of di-
mensions is large, since FLANN and NGT per-
form worse as the number of dimensions be-
comes larger. However, NGT would be a bet-
ter choice since most existing pre-trained embed-
dings (Turian et al., 2010; Mikolov, 2013; Pen-
nington et al., 2014a) have a few hundred dimen-
sions.

3.3.3 Number of Neighbors to Be Evaluated
We also conducted performance evaluations by
changing the number k of neighbors, i.e., the size
of the set of k-nearest neighbors, to calculate the
precision at k. We need to change the number k
on demand from target applications. For exam-
ple, we may use small numbers for extracting syn-
onyms and large numbers for selecting candidates
for news recommendations, where they will be re-
duced via another sophisticated selection process.

The performances of SASH, FLANN, and NGT

using 10-, 100-, and 200-nearest neighbors are
shown in Figure 4. The graphs indicate that NGT
performed the best in this measure also. With
200-nearest neighbors, the performance of SASH
dropped sharply, which means that SASH is not
robust for the indexing parameter. One possi-
ble reason is that searching for relatively distant
neighbors is difficult for a tree-based index, where
the divided subspaces are not appropriate.

3.3.4 Size of Training Set for Indexing
We conducted further performance evaluations by
changing the size of a training set, i.e., the num-
ber of embeddings used for indexing. We wanted
to know how the search methods performed with
different sized search indices since a large search
index will bring about extra operational costs in a
practical sense, and a small search index is pre-
ferred for a small application system.

Figure 5 plots the performances of SASH,
FLANN, and NGT using 100K, 1M, and 2M train-
ing sets, which were randomly sampled so that
each training set can be virtually regarded as em-
beddings with a vocabulary of its training set size.
The graphs indicate that NGT always performed
the best for all search index sizes. Moreover, we
can see that all results for each method have a
similar tendency. This fact implies that a distri-
bution of embeddings is related to the search per-

2270

100 101 102 103

Time [msec]

0.5

0.6

0.7

0.8

0.9

1.0

P
re
ci
si
o
n

SASH (size 100K)

FLANN (size 100K)

NGT (size 100K)

(a) 100K

100 101 102 103

Time [msec]

0.5

0.6

0.7

0.8

0.9

1.0

P
re
ci
si
o
n

SASH (size 1M)

FLANN (size 1M)

NGT (size 1M)

(b) 1M

100 101 102 103

Time [msec]

0.5

0.6

0.7

0.8

0.9

1.0

P
re
ci
si
o
n

SASH (size 2M)

FLANN (size 2M)

NGT (size 2M)

(c) 2M

Figure 5: Precision versus computation time of SASH, FLANN, and NGT using 100K, 1M, and 2M
training sets.

100 101 102 103

Time [msec]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re
ci
si
o
n

SASH (GN)

FLANN (GN)

NGT (GN)

(a) GN

100 101 102 103

Time [msec]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

o
n

 f
o

r
se

a
rc

h

SASH (CW)

FLANN (CW)

NGT (CW)

(b) CW

100 101 102 103

Time [msec]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si
o
n

SASH (GV)

FLANN (GV)

NGT (GV)

(c) GV

Figure 6: Precision versus computation time of SASH, FLANN, and NGT using GN, CW, and GV
embeddings.

0 50 100 150 200 250 300

Dimension

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

K
u
rt
o
si
s

(a) GN

0 50 100 150 200 250 300

Dimension

−2

0

2

4

6

8

10

K
u
rt
o
si
s

(b) GV

Figure 7: Kurtosis of each dimension of GN and
GV embeddings.

formance, and the next section will actually con-
firm the same property on another dataset used for
learning embeddings.

3.3.5 Model and Data Used for Embeddings
We also conducted performance evaluations by
changing the learning models and training data for
embeddings. We used the following three pre-
trained embeddings to investigate the performance
when changing the data distributions used for in-
dexing.

GN 300-dimensional embeddings (Mikolov,
2013) learned by the skip-gram model with
negative sampling (Mikolov et al., 2013a)
using part of the Google News dataset, which
contains about 3 million words and phrases
and 100 billion tokens.

CW 200-dimensional embeddings (Turian et al.,

2010) learned by deep neural networks (Col-
lobert and Weston, 2008) using the RCV1
corpus, which contains about 269 thousand
words and 63 million tokens.

GV 300-dimensional embeddings (Pennington et
al., 2014a) learned by the global vectors
for word representation (GloVe) model (Pen-
nington et al., 2014b) using Common Crawl
corpora, which contain about 2 million words
and 42 billion tokens.

The performances of SASH, FLANN, and NGT
using GN, CW, and GV embeddings are plotted in
Figure 6. The graphs indicate that NGT consis-
tently performed the best over different learning
models. A comparison of the results using GN em-
beddings and the previous results using Wikipedia
embeddings reveals that they had almost the same
tendency. This fast can be acceptable assuming an
empirical rule that a corpus follows a power law
or Zipf’s law. On the other hand, graphs (a), (b),
and (c) have quite different tendencies. Specifi-
cally, all search methods compete with each other
for CW embeddings, while they could not perform
well for GV embeddings. This implies that the
performance of a search method can be affected
by learning models rather than training sets used
for embeddings.

2271

100 101 102 103

Time [msec]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re
ci
si
o
n
 f
o
r
a
n
a
lo
g
y

SASH (sem)

FLANN (sem)

NGT (sem)

(a) Semantic analogy

100 101 102 103

Time [msec]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re
ci
si
o
n
 f
o
r
a
n
a
lo
g
y

SASH (syn)

FLANN (syn)

NGT (syn)

(b) Syntactic analogy

100 101 102 103

Time [msec]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re
ci
si
o
n
 f
o
r
se
a
rc
h

SASH (search)

FLANN (search)

NGT (search)

(c) Similarity search

Figure 8: Precision versus computation time of SASH, FLANN, and NGT using the semantic analogy,
syntactic analogy, and similarity search tasks.

0.5 0.6 0.7 0.8 0.9 1.0

Precision for search

0.4

0.5

0.6

0.7

0.8

P
re
ci
si
o
n
 f
o
r
a
n
a
lo
g
y

SASH

FLANN

NGT

(a) Semantic analogy

0.5 0.6 0.7 0.8 0.9 1.0

Precision for search

0.4

0.5

0.6

0.7

0.8

P
re
ci
si
o
n
 f
o
r
a
n
a
lo
g
y

SASH

FLANN

NGT

(b) Syntactic analogy

Figure 9: Precision of the semantic and syntactic
analogy tasks versus that of the similarity search
task.

We further investigated why GV embeddings
deteriorate the search performance. Table 2 lists
the variance and kurtosis of Wikipedia, GN, CW,
and GV embeddings for clarifying the variation or
dispersion of these distributions. Kurtosis K(X)
is a measure of the “tailedness” of the probability
distribution of a random variable X , defined by
K(X) = µ4/µ2

2−3, where µn represents the n-th
central moment, i.e., E[(X − E[X])n]. The con-
stant “3” in the above definition sets the kurtosis
of a normal distribution to 0. The table clearly in-
dicates that GV has a heavy tailed distribution in
accordance with the kurtosis values, although all
variances have almost the same value. In fact, GV
has several high kurtosis peaks, while GN has only
small values, according to Figure 7, which visual-
izes the kurtosis of each dimension. Note that the
y-axis scale of graph (b) is about 20 times larger
than that of graph (a). Because distant points in
a metric space tend to deteriorate the performance
in a search process, we need to pay attention to the
distribution shape of embeddings as well as their
quality, so as to efficiently search for similar em-
beddings.

3.3.6 Target Task to Be Solved
We finally evaluated the performance by changing
the target task to be solved by using embeddings.
We wanted to know how the search methods per-

EW GN CW GV
Variance 0.0033 0.0033 0.0050 0.0033
Kurtosis 0.034 -0.026 -0.075 0.57

Table 2: Variance and kurtosis of English
Wikipedia (EW), GN, CW, and GV embeddings.

formed with different task settings since even if the
precision of the search task is not good, it might be
sufficient for another task to be solved on the ba-
sis of similarity search. In this section, we address
well known analogy tasks (Mikolov et al., 2013a),
where semantic and syntactic analogy questions
are considered, e.g., “Which word corresponds to
Japan when Paris corresponds to France?”, the
answer being “Tokyo”. These questions can be
solved by searching for the nearest neighbors of
analogical vectors generated via arithmetic op-
erations., i.e., vec(“Paris”) − vec(“France”) +
vec(“Japan”), where vec(w) represents an embed-
ding of word w.

Figure 8 plots the performances of SASH,
FLANN, and NGT using the semantic and syntac-
tic analogy tasks as well as that using the similarity
search task (in Figure 1), which is added for com-
parison. The graphs indicate that NGT clearly per-
formed the best even in the analogy tasks. Com-
paring the curves of NGT, we can see that those in
graphs (a) and (b) are quite different from that in
(c), and the analogy precisions can maintain their
quality, even when the search precision is about
0.9.

For further analysis, we aligned the precisions
of the search task with those of the analogy tasks
in Figure 9, where each point represents the results
calculated with the same parameters. The dotted
line without markers in each graph is a line from
the origin (0, 0) to the point where the analogy
precision is maximum when the search precision

2272

100 101 102 103

Time [msec]

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si
o
n
 f
o
r
a
n
a
lo

g
y

SASH (analogy GN)

FLANN (analogy GN)

NGT (analogy GN)

(a) Analogy by GN

100 101 102 103

Time [msec]

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n
 f
o
r
a
n
a
lo
g
y

SASH (analogy CW)

FLANN (analogy CW)

NGT (analogy CW)

(b) Analogy by CW

100 101 102 103

Time [msec]

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n
 f
o
r
a
n
a
lo
g
y

SASH (analogy GV)

FLANN (analogy GV)

NGT (analogy GV)

(c) Analogy by GV

Figure 10: Precision versus computation time of SASH, FLANN, and NGT for the analogy task (includ-
ing both semantic and syntactic questions) using GN, CW, and GV embeddings.

is 1.0, and thus it naively estimates a deteriora-
tion rate of the analogy precision on the basis of
the search precision. The graphs indicate that the
search precision can be far different from the es-
timated precision of another task. In fact, when
the search precision by NGT is 0.8 in Figure 9 (a),
the analogy precision 0.75 is unexpectedly high,
since the naive estimation is 0.64 calculated by the
maximum analogy precision 0.8 times the search
precision 0.8. This suggests that it is a good idea
to check the final performance of a target applica-
tion, although the search performance is valuable
from a standpoint of general versatility.

Finally, we conducted performance evaluations
for the analogy task instead of the search task by
changing the learning models and training data for
embeddings as in Section 3.3.5, in order to sup-
port the robustness of NGT even for an opera-
tion more sophisticated than just finding similar
words. Figure 10 plots the performances of SASH,
FLANN, and NGT for the analogy task including
both semantic and syntactic questions using GN,
CW, and GV embeddings. The graphs indicate
that NGT performed the best over different learn-
ing models even for the analogy task. Although
the precisions of CW embeddings in graph (b) are
very low, the result seems to be acceptable accord-
ing to the previous work (Mikolov et al., 2013b),
which reported that the precisions of a syntactic
analogy task using CW embeddings in similar set-
tings were at most 5 % (0.05). The results of GN
and GV embeddings in graphs (a) and (c) show
a similar tendency to those of Wikipedia embed-
dings in Figure 8. However, the overall perfor-
mance for the analogy task using GV embeddings
is unexpectedly high, contrary to the results for
the search task in Figure 6 (c). One of the rea-
sons is that arithmetic operations for solving anal-
ogy questions can reduce kurtosis peaks, although

we omitted the kurtosis results due to space limi-
tation. This fact also supports our finding that dis-
tant points in a metric space tend to deteriorate the
performance in a search process.

4 Conclusion

We investigated approximate similarity search for
word embeddings. We compared three meth-
ods: a graph-based method (NGT), a tree-based
method (FLANN), the SASH method, which was
reported to have the best performance in a previ-
ous study (Gorman and Curran, 2006). The results
of experiments we conducted from various aspects
indicated that NGT generally performed the best
and that the distribution shape of embeddings is a
key factor relating to the search performance. Our
future research includes improving the search per-
formance for embeddings with heavy-tailed dis-
tributions and creating embeddings that can keep
both task quality and search performance high.

We will release the source code used for our
comparative experiments from the NGT page
(Iwasaki, 2015). Since we need to implement
additional glue codes for running FLANN and
SASH, our code would be useful for researchers
who want to compare their results with ours.

Acknowledgments

We would like to thank the anonymous reviewers
for giving us helpful comments.

References
Alexandr Andoni. 2004. LSH Algorithm and Imple-

mentation (E2LSH). http://web.mit.edu/
andoni/www/LSH/.

Sunil Arya, David M. Mount, Nathan S. Netanyahu,
Ruth Silverman, and Angela Y. Wu. 1998. An Op-
timal Algorithm for Approximate Nearest Neighbor

2273

Searching Fixed Dimensions. Journal of the ACM
(JACM), 45(6):891–923.

Jon Louis Bentley. 1975. Multidimensional Binary
Search Trees Used for Associative Searching. Com-
munication of the ACM, 18(9):509–517.

Ingwer Borg and Patrick J. F. Groenen. 2005. Modern
Multidimensional Scaling. Springer Series in Statis-
tics. Springer-Verlag New York.

Ronan Collobert and Jason Weston. 2008. A Uni-
fied Architecture for Natural Language Processing:
Deep Neural Networks with Multitask Learning. In
Proceedings of the 25th International Conference
on Machine Learning (ICML 2008), pages 160–167.
ACM.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Va-
hab S. Mirrokni. 2004. Locality-sensitive Hashing
Scheme Based on P-stable Distributions. In Pro-
ceedings of the 20th Annual Symposium on Com-
putational Geometry (SCG 2004), pages 253–262.
ACM.

Aristides Gionis, Piotr Indyk, and Rajeev Motwani.
1999. Similarity Search in High Dimensions via
Hashing. In Proceedings of the 25th International
Conference on Very Large Data Bases (VLDB 2009),
pages 518–529. Morgan Kaufmann Publishers Inc.

James Gorman and James R. Curran. 2006. Scal-
ing Distributional Similarity to Large Corpora. In
Proceedings of the 21st International Conference
on Computational Linguistics and the 44th Annual
Meeting of the Association for Computational Lin-
guistics (COLING-ACL 2006), pages 361–368. As-
sociation for Computational Linguistics.

Kiana Hajebi, Yasin Abbasi-Yadkori, Hossein Shah-
bazi, and Hong Zhang. 2011. Fast Approximate
Nearest-neighbor Search with K-nearest Neighbor
Graph. In Proceedings of the 22nd International
Joint Conference on Artificial Intelligence (IJCAI
2011), pages 1312–1317. AAAI Press.

Michael E. Houle and Jun Sakuma. 2005. Fast
Approximate Similarity Search in Extremely High-
Dimensional Data Sets. In Proceedings of the
21st International Conference on Data Engineering
(ICDE 2005), pages 619–630. IEEE Computer So-
ciety.

Michael E. Houle. 2005. The SASH Page.
http://research.nii.ac.jp/%7Emeh/
sash/sashpage.html.

Masajiro Iwasaki. 2015. NGT : Neigh-
borhood Graph and Tree for Indexing.
http://research-lab.yahoo.co.jp/
software/ngt/.

David G. Lowe. 1999. Object Recognition from Local
Scale-Invariant Features. In Proceedings of the In-
ternational Conference on Computer Vision (ICCV
1999), pages 1150–1157. IEEE Computer Society.

Matt Mahoney. 2011. About the Test Data. http:
//mattmahoney.net/dc/textdata.html.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013a. Distributed Represen-
tations of Words and Phrases and their Composition-
ality. In Advances in Neural Information Processing
Systems 26 (NIPS 2013), pages 3111–3119. Curran
Associates, Inc.

Tomas Mikolov, Wen tau Yih, and Geoffrey Zweig.
2013b. Linguistic Regularities in Continuous Space
Word Representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT 2013), pages
746–751. Association for Computational Linguis-
tics.

Tomas Mikolov. 2013. word2vec: Tool for
computing continuous distributed representations
of words. https://code.google.com/p/
word2vec/.

Marius Muja and David G. Lowe. 2008. FLANN
— Fast Library for Approximate Nearest Neigh-
bors. http://www.cs.ubc.ca/research/
flann/.

David Nister and Henrik Stewenius. 2006. Scalable
Recognition with a Vocabulary Tree. In Proceed-
ings of the 2006 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR
2006), pages 2161–2168. IEEE Computer Society.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014a. GloVe: Global Vec-
tors for Word Representation. http://nlp.
stanford.edu/projects/glove/.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014b. GloVe: Global Vec-
tors for Word Representation. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2014), pages 1532–
1543.

Thomas B. Sebastian and Benjamin B. Kimia. 2002.
Metric-Based Shape Retrieval in Large Databases.
In Proceedings of the 16th International Conference
on Pattern Recognition (ICPR 2002), pages 291–
296.

Chanop Silpa-Anan and Richard Hartley. 2008. Opti-
mised KD-trees for fast image descriptor matching.
In Proceedings of the 2008 IEEE Computer Society
Conference on Computer Vision and Pattern Recog-
nition (CVPR 2008), pages 1–8. IEEE Computer So-
ciety.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
CCG: RTE Annotation Data for ACL 2010 publica-
tion. http://cogcomp.cs.illinois.edu/
Data/ACL2010_NER_Experiments.php.

2274

Yair Weiss, Antonio Torralba, and Robert Fergus.
2009. Spectral Hashing. In Advances in Neural
Information Processing Systems 21 (NIPS 2008),
pages 1753–1760. Curran Associates, Inc.

Justin Zobel and Alistair Moffat. 2006. Inverted Files
for Text Search Engines. ACM Computing Surveys,
38(2).

2275

