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Abstract

We present the first domain adaptation
model for authorship attribution to leverage
unlabeled data. The model includes exten-
sions to structural correspondence learning
needed to make it appropriate for the task.
For example, we propose a median-based
classification instead of the standard binary
classification used in previous work. Our
results show that punctuation-based charac-
ter n-grams form excellent pivot features.
We also show how singular value decom-
position plays a critical role in achieving
domain adaptation, and that replacing (in-
stead of concatenating) non-pivot features
with correspondence features yields better
performance.

1 Introduction

Authorship Attribution (AA) can be used for his-
torical purposes, such as disentangling the differ-
ent authors contributing to a literary work. It can
also help in understanding language evolution and
change at the individual level, revealing a writer’s
changes in linguistic patterns over time (Hirst and
Feng, 2012). Authorship attribution can also help
to settle disputes over the original creators of a
given piece of text. Or it can help build a prose-
cution case against an online abuser, an important
application especially considering the rising trends
in cyber-bullying and other electronic forms of teen
violence1. The absorbing social media networks,
together with the ever increasing use of electronic
communications will require robust approaches to
authorship attribution that can help to determine
with certainty the author of a text, determine the
provenance of a written sample, and in sum, help
us determine the trustworthiness of electronic data.

1http://cyberbullying.org/

One of the scenarios that has received limited
attention is cross-domain authorship attribution,
when we need to identify the author of a text but
all the text with known authors is from a differ-
ent topic, genre, or modality. Here we propose to
solve the problem of cross-domain authorship attri-
bution by adapting the Structural Correspondence
Learning (SCL) algorithm proposed by Blitzer et
al. (2006). We make the following contributions:

• We introduce the first domain adaptation
model for authorship attribution that combines
labeled data in a source domain with unla-
beled data from a target domain to improve
performance on the target domain.
• We examine two sets of features that have

previously been successful in cross-domain
authorship attribution, explain how these can
be used to select the “pivot” features required
by SCL, and show that typed n-gram features
(which differentiate between the the in their
and the the in breathe) produce simpler mod-
els that are just as accurate.
• We propose a new approach for defining

SCL’s pivot feature classification task so that
it is able to handle count-based features, and
show that this median-based approach outper-
forms the standard SCL approach.
• We examine the importance of the dimension-

ality reduction step in SCL, and show that the
singular value decomposition increases robust-
ness even beyond the robustness achieved by
SCL’s learned feature transformations.
• We propose an alternative approach to com-

bining features within SCL, and show that ex-
cluding the non-pivot features from the final
classifier generally improves performance.

Our experimental results show that using stan-
dard SCL for this domain adaptation authorship
attribution task improves prediction accuracy by
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only 1% over a model without any domain adap-
tation. In contrast, our proposed improvements to
SCL reach an accuracy boost of more than 15%
over the no domain adaptation model and of 14%
over the standard SCL formulation. The extensions
to SCL that we propose in this work are likely
to yield performance improvements in other tasks
where SCL has been successfully applied, such as
part-of-speech tagging and sentiment analysis. We
plan to investigate this further in the future.

2 Related Work

Cross-Domain Authorship Attribution Al-
most all previous authorship attribution studies
have tackled traditional (single-domain) authorship
problems where the distribution of the test data is
the same as that of the training data (Madigan et al.,
2005; Stamatatos, 2006; Luyckx and Daelemans,
2008; Escalante et al., 2011). However, there are
a handful of authorship attribution studies that
explore cross-domain authorship attribution scenar-
ios (Mikros and Argiri, 2007; Goldstein-Stewart et
al., 2009; Schein et al., 2010; Stamatatos, 2013;
Sapkota et al., 2014). Here, following prior work,
cross-domain is a cover term for cross-topic,
cross-genre, cross-modality, etc., though most
work focuses on the cross-topic scenario.

Mikros and Argiri (2007) illustrated that many
stylometric variables are actually discriminating
topic rather than author. Therefore, the authors
suggest their use in authorship attribution should
be done with care. However, the study did not
attempt to construct authorship attribution models
where the source and target domains differ.

Goldstein-Stewart et al. (2009) performed a
study on cross-topic authorship attribution by con-
catenating the texts of an author from different gen-
res on the same topics. Such concatenation allows
some cross-topic analysis, but as each test docu-
ment contains a mix of genres it is not representa-
tive of real world authorship attribution problems.

Stamatatos (2013) and Sapkota et al. (2014) ex-
plored a wide variety of features, including lexi-
cal, stopword, stylistic, and character n-gram, and
demonstrated that character n-grams are the most
effective features in cross-topic authorship attri-
bution. Stamatatos (2013) concluded that avoid-
ing rare features is effective in both intra-topic
and cross-topic authorship attribution by training
a SVM classifier on one fixed topic and testing
on each of the remaining topics. Sapkota et al.

(2014), rather than fixing a single training topic
in advance, considered all possible training/testing
topic combinations to investigate cross-topic au-
thorship attribution. This showed that training on
documents from multiple topics (thematic areas)
improves performance in cross-topic authorship
attribution (Sapkota et al., 2014), even when con-
trolling the amount of training data.

However, none of these studies exploited domain
adaptation methods that combine labeled data in a
source domain with unlabeled data from a target
domain to improve performance on the target do-
main. Instead, they focused on identifying relevant
features and simply evaluating them when trained
on source-domain data and tested on target-domain
data. To our knowledge, we are the first to leverage
unlabeled data from the target domain to improve
authorship attribution.

Domain Adaptation Domain adaptation is the
problem of modifying a model trained on data from
a source domain to a different, possibly related, tar-
get domain. Given the effort and the cost involved
in labeling data for a new target domain, there is a
lot of interest in the design of domain adaptation
techniques. In NLP related tasks, researchers have
explored domain adaptation for part-of-speech tag-
ging, parsing, semantic role labeling, word-sense
disambiguation, and sentiment analysis (Li, 2012).

Daumé (2007) proposed a feature space trans-
formation method for domain adaptation based on
a simple idea of feature augmentation. The ba-
sic idea is to create three versions of each feature
from the original problem: the general (domain-
independent) version, the source specific version,
and the target specific version. While generally suc-
cessful, there are some limitations of this method.
First, it requires labeled instances in the target do-
main. Second, since this method simply dupli-
cates each feature in the source domain as domain-
independent and domain-specific versions, it is un-
able to extract the potential correlations when the
features in the two domains are different, but have
some hidden correspondences.

In contrast, structural correspondence learning
(SCL) is a feature space transformation method
that requires no labeled instances from the tar-
get domain, and can capture the hidden correla-
tions among different domain-independent features.
SCL’s basic idea is to use unlabeled data from both
the source and target domains to obtain a common
feature representation that is meaningful across
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domains (Blitzer et al., 2006). Although the dis-
tributions of source and target domain differ, the
assumption is that there will still be some general
features that share similar characteristics in both
domains. SCL has been applied to tasks such as
sentiment analysis, dependency parsing, and part-
of-speech tagging, but has not yet been explored
for the problem of authorship attribution.

The common feature representation in SCL is
created by learning a projection to “pivot” features
from all other features. These pivot features are a
critical component of the successful use of SCL,
and their selection is something that has to be done
carefully and specifically to the task at the hand.
Tan and Cheng (2009) studied sentiment analy-
sis, using frequently occurring sentiment words as
pivot features. Similarly, Zhang et al. (2010) pro-
posed a simple and efficient method for selecting
pivot features in domain adaptive sentiment analy-
sis: choose the frequently occurring words or word-
bigrams among domains computed after applying
some selection criterion. In dependency parsing,
Shimizu and Nakagawa (2007) chose the presence
of a preposition, a determiner, or a helping verb
between two tokens as the pivot features. For part-
of-speech tagging, Blitzer et al. (2006) used words
that occur more than 50 times in both domains
as the pivot features, resulting in mostly function
words. In cross-lingual adaptation using SCL, se-
mantically related pairs of words from source and
target domains were used as pivot features (Pretten-
hofer and Stein, 2011). For authorship attribution,
we propose two ways of selecting pivot and non-
pivot features based on character n-grams.

Another important aspect of the SCL algorithm
is associating a binary classification problem with
each pivot feature. The original SCL algorithm
assumes that pivot features are binary-valued, so
creating a binary classification problem for each
pivot feature is trivial: is the value 0 or 1? Most pre-
vious work on part-of-speech tagging, sentiment
analysis, and dependency parsing also had only
binary-valued pivot features. However, for author-
ship attribution, all features are count-based, so
translation from a pivot feature value to a binary
classification problem is not trivial. We propose a
median-based solution to this problem.

3 Methodology

Structural Correspondence Learning (Blitzer et al.,
2006) uses only unlabeled data to find a common

feature representation for a source and a target do-
main. The idea is to first manually identify “pivot”
features that are likely to have similar behavior
across both domains. SCL then learns a transfor-
mation from the remaining non-pivot features into
the pivot feature space. The result is a new set of
features that are derived from all the non-pivot fea-
tures, but should be domain independent like the
pivot features. A classifier is then trained on the
combination of the original and the new features.

Table 1 gives the details of the SCL algorithm.
First, for each pivot feature, we train a linear clas-
sifier to predict the value of that pivot feature using
only the non-pivot features. The weight vectors
learned for these linear classifiers, ŵi, are then con-
catenated into a matrix, W , which represents a
projection from non-pivot features to pivot features.
Singular value decomposition is used to reduce
the dimensionality of the projection matrix, yield-
ing a reduced-dimensionality projection matrix θ.
Finally, a classifier is trained on the combination
of the original features and the features generated
by applying the reduced-dimensionality projection
matrix θ to the non-pivot features x[p:m].

3.1 Standard SCL parameter definitions
Standard SCL does not define how pivot features
are selected; this must be done manually for each
new task. However, SCL does provide standard
definitions for the loss function (L), the conver-
sion to binary values (Bi), the dimensionality of
the new correspondence space (d), and the feature
combination function (C).
L is defined as Huber’s robust loss:

L(a, b) =

{
max(0, 1− ab)2 if ab ≥ −1
−4ab otherwise

The conversion from pivot feature values to binary
classification is defined as:

Bi(y) =

{
1 if y > 0
0 otherwise

A few different dimensionalities for the reduced
feature space have been explored (Prettenhofer and
Stein, 2011), but most implementations have fol-
lowed the standard SCL description (Blitzer et al.,
2006) with d defined as:

d = 25

The feature combination function, C, is defined as
simple concatenation, i.e., use all of the old pivot
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Input:
• S = {x : x ∈ Rm}, the labeled instances from source domain
• U = {x : x ∈ Rm}, the unlabeled instances from both domains
• p and n such that x[0:p] are the p pivot features and x[p:m] are n = m− p non-pivot features
• f : S → A, the source domain labels, where A is the set of authors
• L : R× R→ R, a loss function
• Bi : R→ {0, 1} for 0 ≤ i < p, a conversion from a real-valued pivot feature i to binary classification
• d, the size of the reduced-dimensionality correspondence space to learn
• C : Rm × Rd → Rk, a function for combining the original and new features

Output:
• θ ∈ Rn×d, a projection from non-pivot features to the correspondence space
• h : Rm+d → A, the trained predictor

Algorithm:
1. For each pivot feature i : 0 ≤ i < p, learn prediction weights ŵi = min

w∈Rn

∑
x∈U

L(w>x[p:m], B(xi))

2. Construct a matrix W ∈ Rn×p using each ŵi as a column
3. Apply singular value decomposition W = UΣV > where U ∈ Rn×n, Σ ∈ Rn×p, V > ∈ Rp×p

4. Select the reduced-dimensionality projection, θ = U[0:d,:]
>

5. Train a classifier h from
{(

[C(x,x[p:m]θ), f(x)
)

: x ∈ S}
Table 1: The structural correspondence learning (SCL) algorithm

features, all the old non-pivot features, and all the
new correspondence features:

C(x, z) = [x; z]

We call this the pivot+nonpivot+new setting of C.
The following sections discuss alternative pa-

rameter choices for pivot features, Bi, d, and C.

3.2 Pivot Features for Authorship Attribution
The SCL algorithm depends heavily on the pivot
features being domain-independent features, and
as discussed in Section 2, which features make
sense as pivot features varies widely by task. No
previous studies have explored structural correspon-
dence learning for authorship attribution, so one of
the outstanding questions we tackle here is how to
identify pivot features. Research has shown that
the most discriminative features in attribution and
the most robust features across domains are char-
acter n-grams (Stamatatos, 2013; Sapkota et al.,
2014). We thus consider two types of character
n-grams used in authorship attribution that might
make good pivot features.

3.2.1 Untyped Character N -grams
Classical character n-grams are simply the se-
quences of characters in the text. For example,
given the text:

The structural correspondence

character 3-gram features would look like:

"The", "he ", "e s", " st",
"str", "tru", "ruc", "uct", ...

We propose to use as pivot features the p most fre-
quent character n-grams. For non-pivot features,
we use the remaining features from prior work (Sap-
kota et al., 2014). These include both the remain-
ing (lower frequency) character n-grams, as well as
stop-words and bag-of-words lexical features. We
call this the untyped formulation of pivot features.

3.2.2 Typed Character N -grams
Sapkota et al. (2015) showed that classical charac-
ter n-grams lose some information in merging to-
gether instances of n-grams like the which could be
a prefix (thesis), a suffix (breathe), or a standalone
word (the). Therefore, untyped character n-grams
were separated into ten distinct categories. Four of
the ten categories are related to affixes: prefix, suf-
fix, space-prefix, and space-suffix. Three are word-
related: whole-word, mid-word, and multi-word.
The final three are related to the use of punctuation:
beg-punct, mid-punct, and end-punct. For example,
the character n-grams from the last section would
instead be replaced with:

"whole-word:The", "space-suffix:he ",
"multi-word:e s", "space-prefix: st",
"prefix:str", "mid-word:tru",
"mid-word:ruc", "mid-word:uct", ...
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Sapkota et al. (2015) demonstrated that n-grams
starting with a punctuation character (the beg-punct
category) and with a punctuation character in the
middle (the mid-punct category) were the most ef-
fective character n-grams for cross-domain author-
ship attribution. We therefore propose to use as
pivot features the p/2 most frequent character n-
grams from each of the beg-punct and mid-punct
categories, yielding in total p pivot features. For
non-pivot features, we use all of the remaining
features of Sapkota et al. (2015). These include
both the remaining (lower frequency) beg-punct
and mid-punct character n-grams, as well as all
of the character n-grams from the remaining eight
categories. We call this the typed formulation of
pivot features.2

3.3 Pivot feature binarization parameters

Authorship attribution typically relies on count-
based features. However, the classic SCL algo-
rithm assumes that all pivot features are binary, so
that it can train binary classifiers to predict pivot
feature values from non-pivot features. We propose
a binarization function to produce a binary classifi-
cation problem from a count-based pivot feature by
testing whether the feature value is above or below
the feature’s median value in the training data:

Bi(y) =

{
1 if y > median({xi : x ∈ S ∪ U})
0 otherwise

The intuition is that for count-based features, “did
this pivot feature appear at least once in the text” is
not a very informative distinction, especially since
the average document has hundreds of words, and
pivot features are common. A more informative
distinction is “was this pivot feature used more or
less often than usual?” and that corresponds to the
below-median vs. above-median classification.

3.4 Dimensionality reduction parameters

The reduced dimensionality (d) of the low-rank
representation varies depending on the task at hand,
though lower dimensionality may be preferred as
it will result in faster run times. We empirically
compare different choices for d: 25, 50, and 100.

We also consider the question, how critical is
dimensionality reduction? For example, if there

2Because the untyped and typed feature sets are designed
to directly replicate Sapkota et al. (2014) and Sapkota et al.
(2015), respectively, both include character n-grams, but only
untyped includes stop-words and lexical features.

Topics 4
Authors 13
Documents/author/topic 10
Average sentences/document 53
Average words/document 1034

Table 2: Statistics of the Guardian dataset.

are only p = 100 pivot features, is there any need
to run singular-value decomposition? The goal
here is to determine if SCL is increasing the robust-
ness across domains primarily through transform-
ing non-pivot features into pivot-like features, or if
the reduced dimensionality from the singular-value
decomposition contributes something beyond that.

3.5 Feature combination parameters

It’s not really clear why the standard formulation
of SCL uses the non-pivot features when training
the final classifier. All of the non-pivot features
are projected into the pivot feature space in the
form of the new correspondence features, and the
pivot feature space is, by design, the most domain
independent part of the feature space. Thus, it
seems reasonable to completely replace the non-
pivot features with the new pivot-like features. We
therefore consider a pivot+new setting of C:

pivot+new: C(x, z) = [x[0:p]; z]

We also consider other settings of C, primarily for
understanding how the different pieces of the SCL
feature space contribute to the overall model.

pivot: C(x, z) = x[0:p]

nonpivot: C(x, z) = x[p:m]

new: C(x, z) = z

pivot+nonpivot: C(x, z) = x

Note that the pivot+nonpivot setting corresponds
to a model that does not apply SCL at all.

4 Dataset

To explore cross-domain settings of authorship at-
tribution, we need datasets containing documents
from a number of authors from different domains
(different topics, different genres). We use a corpus
that consists of texts published in The Guardian
daily newspaper that is actively used by the au-
thorship attribution community in cross-domain
studies (Stamatatos, 2013; Sapkota et al., 2014;
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Sapkota et al., 2015). The Guardian corpus con-
tains opinion articles written by 13 authors in four
different topics: World, U.K., Society, and Poli-
tics. Following prior work, to make the collection
balanced across authors, we choose at most ten
documents per author for each of the four topics.
Table 2 presents some statistics about the datasets.

5 Experimental Settings

We trained support vector machine (SVM) classi-
fiers using the Weka implementation (Witten and
Frank, 2005) with default parameters. For the un-
typed features, we used character 3-grams appear-
ing at least 5 times in the training data, a list of 643
predefined stop-words, and the 3,500 most frequent
non-stopword words as the lexical features. For the
typed features, we used the top 3,500 most frequent
3-grams occurring at least five times in the training
data for each of the 10 character n-gram categories.
In both cases, we selected p = 100 pivot features
as described in Section 3.2.

We measured performance in terms of accuracy
across all possible topic pairings. That is, we paired
each of the 4 topics in the Guardian corpus with
each of the 3 remaining topics: train on Politics,
test on Society; train on Politics, test on UK; train
on Politics, test on World; etc. For each such model,
we allowed SCL to learn feature correspondences
from the labeled data of the 1 training topic and
the unlabeled data of the 1 test topic. This resulted
in 12 pairings of training/testing topics. We report
both accuracy on the individual pairings and an
overall average of the 12 accuracies.

We compare performance against two state-of-
the-art baselines: Sapkota et al. (2014) and Sap-
kota et al. (2015), as described in Section 3.2, and
whose features are denoted as untyped and typed,
respectively. We replicate these models by using
the pivot+nonpivot setting of C, i.e., not including
any of the new SCL-based features.

6 Results

The following sections explore the results of our
innovations in different areas: pivot features, fea-
ture binarizations, dimensionality reduction, and
feature combination. For each section, we hold the
other parameters constant and vary only the one
parameter of interest. Thus, where not otherwise
specified, we set parameters to the best values we
observed in our experiments: we set the feature
set to typed, the binarization Bi(y) to the median,

Dataset untyped typed
Politics-Society 61.29 67.74
Politics-UK 66.67 63.33
Politics-World 58.97 64.10
Society-Politics 62.96 62.96
Society-UK 72.50 72.50
Society-World 56.62 48.08
UK-Politics 68.75 60.71
UK-Society 66.13 67.74
UK-World 57.27 58.97
World-Politics 62.50 59.82
World-Society 61.29 62.90
World-UK 46.67 54.44
Average 61.80 61.94

Table 3: Accuracy of untyped and typed feature
sets. The difference between the averages is not
statistically significant (p=0.927).

the reduced dimensionality d to 50, and the fea-
ture combination C(x, z) to pivot+new (i.e., we
use the old pivot features alongside the new cor-
respondence features). All reports of statistical
significance are based on paired, two-tailed t-tests
over the 12 different topic pairings.

6.1 Untyped vs. Typed features
Table 3 compares the untyped feature set to the
typed feature set. Both feature sets perform rea-
sonably well, and substantially better than a model
without SCL, where the performance of untyped is
56.43 and typed is 53.62 (see the pivot+nonpivot
columns of Table 6 and Table 7, discussed in Sec-
tion 6.4). Recall that the typed formulation in-
cludes only character n-gram features, while the
untyped formulation includes stopwords and lexi-
cal features as well. Thus, given their very similar
performance in Table 3, typed being slightly better,
we select the simpler typed feature formulation for
the remaining experiments.

6.2 Greater-than-zero vs. Median
Binarization

Table 4 compares choices for Bi(y), the function
for converting a pivot feature value into a binary
classification problem. In every single train/test
scenario, and for both untyped and typed feature
sets, our proposed median-based binarization func-
tion yielded performance greater than or equal to
that of the traditional SCL greater-than-zero bina-
rization function. This confirms our hypothesis that
count-based features were inadequately modeled
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Dataset
untyped typed
>0 >med >0 >med

Politics-Society 58.06 61.29 61.29 67.74
Politics-UK 66.67 66.67 63.33 63.33
Politics-World 55.56 58.97 63.81 64.10
Society-Politics 61.81 62.96 62.67 62.96
Society-UK 72.50 72.50 71.00 72.50
Society-World 51.92 56.62 46.00 48.08
UK-Politics 59.82 68.75 60.00 60.71
UK-Society 59.68 66.13 64.52 67.74
UK-World 47.86 57.27 57.27 58.97
World-Politics 56.25 62.50 56.50 59.82
World-Society 50.00 61.29 61.52 62.90
World-UK 42.22 46.67 50.00 54.44
Average 56.11 61.80 59.83 61.94

Table 4: Accuracy of greater-than-zero and me-
dian formulations of the Bi(y) binarization func-
tion. Median is significantly better than greater-
than-zero in both untyped (p=0.0007) and typed
(p=0.003).

Dataset d=25 d=50 d=100 no SVD
Politics-Society 66.13 67.74 72.58 50.00
Politics-UK 62.22 63.33 66.67 48.89
Politics-World 63.25 64.10 64.10 47.01
Society-Politics 64.81 62.96 55.56 57.41
Society-UK 67.50 72.5 67.5 70.00
Society-World 48.08 48.08 44.23 46.15
UK-Politics 60.71 60.71 58.93 51.79
UK-Society 64.52 67.74 56.45 59.68
UK-World 60.68 58.97 58.12 49.57
World-Politics 62.50 59.82 51.79 55.36
World-Society 59.68 62.90 67.74 62.90
World-UK 54.44 54.44 55.56 51.11
Average 61.21 61.94 59.94 54.16

Table 5: Accuracy of different choices for dimen-
sionality reduction with typed features. The pat-
tern is similar for untyped. d = 50 is significantly
better than no SVD (p=0.0009), but not signifi-
cantly different from d = 25 (p=0.291) or d = 100
(p=0.211).

in standard SCL and that the median-based bina-
rization function improves the modeling of such
features.

6.3 Dimensionality Reduction Choices

Table 5 compares different choices for the dimen-
sionality reduction parameter d, as well as the
possibility of not performing any dimensionality

reduction at all (“No-SVD”). While each value
of d yields the best performance on some of the
train/test scenarios, d = 50 achieves the highest
average accuracy (61.94). Removing the SVD en-
tirely generally performs worse, and though on a
small number of train/test scenarios it outperforms
d = 25 and d = 100, it is always worse than
d = 50.

This shows that SCL’s feature correspondences
alone are not sufficient to achieve domain adap-
tation. Without the SVD, performance is barely
above a model without SCL: 54.16 vs. 53.62 (see
Section 6.4). Much of the benefit appears to be
coming from the SVD’s basis-shift, since d = 100
outperforms no-SVD by more than 5 points3, while
d = 50 only outperforms d = 100 by 2 points.
These results are consistent with SCL’s origins in al-
ternating structural optimization (Ando and Zhang,
2005), where SVD is derived as a necessary step
for identifying a shared low-dimensional subspace.

6.4 Replacing vs. Concatenating Features

Table 6 and Table 7 compare the performance of dif-
ferent choices for the feature combination function
C(x, z) on untyped and typed features, respec-
tively. Our proposed pivot+new combination func-
tion, which replaces the non-pivot features with
the new correspondence features, performs better
on average than the two state-of-the-art baselines
with no domain adaptation (pivot+nonpivot) and
than the two state-of-the-art baselines augmented
with classic SCL (pivot+nonpivot+new): 61.80 vs.
56.43 and 56.93 for untyped, and 61.94 vs. 53.62
and 54.23 for typed). These 5-8 point performance
gains confirm the utility of our proposed pivot+new
combination function, which replaces the old non-
pivot features with the new correspondence fea-
tures. These gains are consistent with (Blitzer et
al., 2006), who included both pivot and non-pivot
features, but found that they had to give pivot fea-
tures a weight “five times that of the [non-pivot]
features” to see improved performance.

While our approach is better on average, in some
individual scenarios, it performs worse than clas-
sic SCL or no domain adaptation. For example,
on Politics-Society, Politics-UK, and World-UK,
using typed features, pivot+new performs worse
than no domain adaptation (pivot+nonpivot). Our
results suggest a rule for predicting when this degra-
dation will happen: pivot+new will outperform

3Recall that p = 100, so d = 100 means the full matrix.
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Dataset pivot nonpivot new pivot+nonpivot pivot+nonpivot+new pivot+new
Politics-Society 54.84 75.81 62.9 75.81 77.42 61.29
Politics-UK 63.33 68.89 58.89 70.00 71.11 66.67
Politics-World 58.12 63.25 53.85 64.96 65.41 58.97
Society-Politics 61.11 46.30 48.15 46.30 46.30 62.96
Society-UK 67.5 45.00 60.00 47.50 47.50 72.50
Society-World 50.00 42.31 53.85 46.15 46.15 56.62
UK-Politics 62.50 42.86 59.82 42.86 44.64 68.75
UK-Society 59.68 43.55 55.83 45.16 45.16 66.13
UK-World 45.30 38.46 48.72 39.32 39.32 57.27
World-Politics 55.36 69.64 56.25 68.75 69.64 62.5
World-Society 46.77 67.74 53.23 69.35 69.35 61.29
World-UK 43.33 61.11 50.00 61.11 61.11 46.67
Average 55.65 55.41 55.12 56.43 56.93 61.80

Table 6: Accuracy of different untyped feature combinations. The best performance for each dataset is
in bold. The performance of pivot+new is not significantly different from pivot+nonpivot (p=0.258) or
pivot+nonpivot+new (p=0.305).

Dataset pivot nonpivot new pivot+nonpivot pivot+nonpivot+new pivot+new
Politics-Society 48.39 70.97 59.68 72.58 72.58 67.74
Politics-UK 52.22 68.89 66.67 71.11 72.22 63.33
Politics-World 46.15 61.54 61.54 63.25 64.10 64.10
Society-Politics 55.56 48.15 61.11 48.15 50.00 62.96
Society-UK 65.00 45.00 65.00 45.00 45.00 72.50
Society-World 38.46 46.15 53.85 44.23 46.15 48.08
UK-Politics 48.21 44.64 55.36 45.54 45.54 60.71
UK-Society 51.61 41.94 66.13 41.94 41.94 67.74
UK-World 44.44 33.33 45.30 35.90 35.90 58.97
World-Politics 50.89 51.79 61.39 57.14 57.14 59.82
World-Society 54.84 59.68 43.55 59.68 61.29 62.9
World-UK 44.44 56.67 50.00 58.89 58.89 54.44
Average 50.02 52.40 57.47 53.62 54.23 61.94

Table 7: Accuracy of different typed feature combinations. The best performance for each dataset is
in bold. The performance of pivot+new is significantly better than pivot+nonpivot (p=0.041) but not
significantly different from pivot+nonpivot+new (p=0.059).

both pivot+nonpivot and pivot+nonpivot+new iff
the new features alone outperform the nonpivot
features alone. This rule holds in all 12 of 12
train/test scenarios for untyped features and 11
of 12 scenarios for typed features (failing on only
World-Society). Intuitively, if the new correspon-
dence features that result from SCL aren’t better
than the features they were meant to replace, then
it is unlikely that they will result in performance
gains. This might happen if the pivot features are
not strong enough predictors, either because they
have been selected poorly or because there are too
few of them.

7 Discussion

To the best of our knowledge, we are the first to
introduce a domain adaption model for authorship
attribution that combines labeled data in a source
domain with unlabeled data from a target domain
to improve performance on the target domain. We
proposed several extensions to the popular struc-
tural correspondence learning (SCL) algorithm for
domain adaptation to make it more amenable to
tasks like authorship attribution. The SCL algo-
rithm requires the manual identification of domain
independent pivot features for each task, so we
proposed two feature formulations using charac-
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ter n-grams as the pivot features, and showed that
both yielded state-of-the-art performance. We also
showed that for the binary classification task that is
used by SCL to learn the feature correspondences,
replacing the traditional greater-than-zero classifi-
cation task with a median-based classification task
allowed the model to better handle our count-based
features. We explored the dimensionality reduc-
tion step of SCL and showed that singular value
decomposition (SVD) over the feature correspon-
dence matrix is critical to achieving high perfor-
mance. Finally, we introduced a new approach to
combining the original features with the learned
correspondence features, and showed that replacing
(rather than concatenating) the non-pivot features
with the correspondence features generally yields
better performance.

In the future, we would like to extend this work
in several ways. First, though our median-based
approach was successful in converting pivot feature
values to binary classification problems, learning a
regression model might be an even better approach
for count-based features. Second, since the SVD
basis-shift seems to be the source of much of the
gains, we would like to explore replacing the SVD
with other algorithms, such as independent com-
ponent analysis. Finally, we would like to explore
further our finding that the performance of the over-
all model seems to be predicted by the difference
in performance between the non-pivot features and
the new correspondence features, especially to see
if this can be predicted at training time rather than
as a post-hoc analysis.
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