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Abstract

We focus on two leading state-of-the-art
approaches to grammatical error correc-
tion – machine learning classification and
machine translation. Based on the com-
parative study of the two learning frame-
works and through error analysis of the
output of the state-of-the-art systems, we
identify key strengths and weaknesses of
each of these approaches and demonstrate
their complementarity. In particular, the
machine translation method learns from
parallel data without requiring further lin-
guistic input and is better at correcting
complex mistakes. The classification ap-
proach possesses other desirable charac-
teristics, such as the ability to easily gener-
alize beyond what was seen in training, the
ability to train without human-annotated
data, and the flexibility to adjust knowl-
edge sources for individual error types.

Based on this analysis, we develop an
algorithmic approach that combines the
strengths of both methods. We present
several systems based on resources used
in previous work with a relative improve-
ment of over 20% (and 7.4 F score points)
over the previous state-of-the-art.

1 Introduction

For the majority of English speakers today, En-
glish is not the first language. These writers make
a variety of grammar and usage mistakes that are
not addressed by standard proofing tools. Re-
cently, there has been a spike in research on gram-
matical error correction (GEC), correcting writing
mistakes made by learners of English as a Sec-
ond Language, including four shared tasks: HOO
(Dale and Kilgarriff, 2011; Dale et al., 2012) and

System Method Performance
P R F0.5

CoNLL-2014 top 3 MT 41.62 21.40 35.01
CoNLL-2014 top 2 Classif. 41.78 24.88 36.79
CoNLL-2014 top 1 MT, rules 39.71 30.10 37.33
Susanto et al. (2014) MT, classif. 53.55 19.14 39.39
Miz. & Mats. (2016) MT 45.80 26.60 40.00
This work MT, classif. 60.17 25.64 47.40

Table 1: (Lack of) progress in GEC over the last
few years.

CoNLL (Ng et al., 2013; Ng et al., 2014). These
shared tasks facilitated progress on the problem
within the framework of two leading methods –
machine learning classification and statistical ma-
chine translation (MT).

The top CoNLL system combined a rule-based
module with MT (Felice et al., 2014). The second
system that scored almost as highly used machine
learning classification (Rozovskaya et al., 2014),
and the third system used MT (Junczys-Dowmunt
and Grundkiewicz, 2014). Furthermore, Susanto
et al. (2014) showed that a combination of the two
methods is beneficial, but the advantages of each
method have not been fully exploited.

Despite success of various methods and the
growing interest in the task, the key differences be-
tween the leading approaches have not been iden-
tified or made explicit, which could explain the
lack of progress on the task. Table 1 shows ex-
isting state-of-the-art since CoNLL-2014. The top
results are close, suggesting that several groups
have competitive systems. Two improvements (of
<3 points) were published since then (Susanto et
al., 2014; Mizumoto and Matsumoto, 2016).

The purpose of this work is to gain a better un-
derstanding of the values offered by each method
and to facilitate progress on the task, building on
the advantages of each approach. Through bet-
ter understanding of the methods, we exploit the
strengths of each technique and, building on exist-
ing architecture, develop superior systems within
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each framework. Further combination of these
systems yields even more significant improve-
ments over existing state-of-the-art. We make the
following contributions:
• We examine two state-of-the-art approaches

to GEC and identify strengths and weaknesses of
the respective learning frameworks.
•We perform an error analysis of the output of

two state-of-the-art systems, and demonstrate how
the methods differ with respect to the types of lan-
guage misuse handled by each.
• We exploit the strengths of each framework:

with classifiers, we explore the ability to learn
from native data, i.e. without supervision, and the
flexibility to adjust knowledge sources to specific
error types; with MT, we leverage the ability to
learn without further linguistic input and to bet-
ter identify complex mistakes that cannot be easily
defined in a classifier framework.
•As a result, we build several systems that com-

bine the strengths of both frameworks and demon-
strate substantial progress on the task. Specif-
ically, the best system outperforms the previous
best result by 7.4 F score points.

Section 2 describes related work. Section 3
presents error analysis. In Section 4, we develop
classifier and MT systems that make use of the
strengths of each framework. Section 5 shows how
to combine the two approaches. Section 6 con-
cludes.

2 Related Work

We first introduce the CoNLL-2014 shared task
and briefly describe the state-of-the-art GEC sys-
tems in the competition and beyond. Next, an
overview of the two leading methods is presented.

2.1 CoNLL-2014 shared task and approaches

CoNLL-2014 training data (henceforth CoNLL-
train) is a corpus of learner essays (1.2M words)
written by students at the National University of
Singapore (Dahlmeier et al., 2013), corrected and
error-tagged. The CoNLL-2013 test set was in-
cluded in CoNLL-2014 and is used as develop-
ment. Both the development and the test sets are
also from the student population studying at the
same University but annotated separately. We re-
port results on the CoNLL-2014 test.

The annotation includes specifying the relevant
correction as well as the information about each
error type. The tagset consists of 28 categories.
Table 2 illustrates the 11 most frequent errors in

the development data; errors are marked with an
asterisk, and ∅ denotes a missing word. The ma-
jority of these errors are related to grammar but
also include mechanical, collocation, and other er-
rors.

An F-based scorer, named M2, was used to
score the systems (Dahlmeier and Ng, 2012). The
metric in CoNLL-2014 was F0.5, i.e. weighing
precision twice as much as recall. Two types of
annotations were used: original and revised. We
follow the recommendations of the organizers and
use the original data (Ng et al., 2014).

The approaches varied widely: classifiers, MT,
rules, hybrid systems. Table 3 summarizes the top
five systems. The top team used a hybrid system
that combined rules and MT. The second system
developed classifiers for common grammatical er-
rors. The third system used MT.

As for external resources, the top 1 and top 3
teams used additional learner data to train their
MT systems, the Cambridge University Press
Learners’ Corpus and the Lang-8 corpus (Mizu-
moto et al., 2011), respectively. Many teams also
used native English datasets. The most common
ones are the Web1T corpus (Brants and Franz,
2006), the CommonCrawl dataset, which is sim-
ilar to Web1T, and the English Wikipedia. Several
teams used off-the-shelf spellcheckers.

In addition, Susanto et al. (2014) made an at-
tempt at combining MT and classifiers. They
used CoNLL-train and Lang-8 as non-native data
and English Wikipedia as native data. We be-
lieve that the reason this study did not yield sig-
nificant improvements (Table 1) is that individual
strengths of each framework have not been fully
exploited. Further, each system was applied sepa-
rately and decisions were combined using a gen-
eral MT combination technique (Heafield et al.,
2009). Finally, Mizumoto and Matsumoto (2016)
attempt to improve an MT system also trained
on Lang-8 with discriminative re-ranking using
part-of-speech (POS) and dependency features but
only obtain a small improvement. These results
suggest that standard combination and re-ranking
techniques are not sufficient.

2.2 Overview of the State-of-the-Art

The statistical machine translation approach is
based on the noisy-channel model. The best trans-
lation for a foreign sentence f is:

e∗ = arg max
e

p(e)p(f |e)
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Error type Rel. freq. (%) Examples

Article (ArtOrDet) 19.93 *∅/The government should help encourage *the/∅ breakthroughs as well
as *a/∅ complete medication system .

Wrong collocation (Wci) 12.51 Some people started to *think/wonder if electronic products can replace
human beings for better performances .

Noun number (Nn) 11.44 There are many reports around the internet and on newspaper stating that
some users ’ *iPhone/iPhones exploded .

Preposition (Prep) 8.98 I do not agree *on/with this argument...

Word form (Wform) 6.56 ...the application of surveillance technology serves as a warning to the
*murders/murderers and they might not commit more murder .

Orthography/punctuation (Mec) 5.75 Even British Prime Minister , Gordon Brown *∅/, has urged that all cars
in *britain/Britain to be green by 2020 .

Verb tense (Vt) 4.56 Through the thousands of years , most Chinese scholars *are/{have
been} greatly affected by Confucianism .

Linking words/phrases (Trans) 4.10 *However/Although , video surveillance may be a great help .

Local redundancy (Rloc-) 3.70 Some solutions *{as examples}/∅ would be to design plants/fertilizers
that give higher yield ...

Subject-verb agreement (SVA) 3.58 However , tracking people *are/is different from tracking goods .
Verb form (Vform) 3.52 Travelers survive in desert thanks to GPS *guide/guiding them .

Table 2: Example errors. In the parentheses, the error codes used in the shared task are shown. Errors
exemplifying the relevant phenomena are marked; the sentences may contain other mistakes.

Rank System F0.5 Approach External training data External
name Native data Learner data error modules

1 CAMB 37.33 Rules and MT Microsoft Web LM Cambridge Corpus, Eng.
Vocab Profile

Cambridge “Write
and Improve”

2 CUUI 36.79 Classif.; patterns Web1T
3 AMU 35.01 MT Wikipedia, CommonCrawl Lang-8
4 POST 30.88 LM and rules Web1T PyEnchant Spell

5 NTHU 29.92 Rules, MT, clas-
sif.

Web1T, Gigaword, BNC,
Google Books

Spellcheckers: As-
pell, GingerIt

Table 3: The top 5 systems in CoNLL-2014. The last column lists external proofing tools used. LM
stands for language models.

The model consists of two components: a lan-
guage model assigning a probability p(e) for any
target sentence e, and a translation model that as-
signs a conditional probability p(f |e). The lan-
guage model is learned using a monolingual cor-
pus in the target language. The parameters of
the translation model are estimated from a par-
allel corpus, i.e. the set of foreign sentences
and their corresponding translations into the tar-
get language. In error correction, the task is cast
as translating from erroneous learner writing into
corrected well-formed English. The MT approach
relies on the availability of a parallel corpus for
learning the translation model. In case of error
correction, a set of learner sentences and their cor-
rections functions as a parallel corpus.

State-of-the-art MT systems are phrase-based,
i.e. parallel data is used to derive a phrase-based
lexicon (Koehn et al., 2003). The resulting lexicon
consists of a list of pairs (seqf , seqe) where seqf
is a sequence of one or more foreign words, seqe
is a predicted translation. Each pair comes with
an associated score. At decoding time, all phrases
from sentence f are collected with their corre-
sponding translations observed in training. These

are scored together with the language modeling
scores and may include other features. The phrase-
based approach by Koehn et al. (2003) uses a log-
linear model (Och and Ney, 2002), and the best
correction maximizes the following:

e∗ = arg max
e

P (e|f) (1)

= arg max
e

exp(
M∑

m=1

λmhm(e, f))

where hm is a feature function, such as lan-
guage model score and translation scores, and λm

corresponds to a feature weight.
The classifier approach is based on the context-
sensitive spelling correction methodology (Gold-
ing and Roth, 1996; Golding and Roth, 1999;
Banko and Brill, 2001; Carlson et al., 2001; Carl-
son and Fette, 2007) and goes back to earlier ap-
proaches to article and preposition error correction
(Izumi et al., 2003; Han et al., 2006; Gamon et
al., 2008; Felice and Pulman, 2008; Tetreault et
al., 2010; Gamon, 2010; Dahlmeier and Ng, 2011;
Dahlmeier and Ng, 2012). The classifier approach
to error correction has been prominent for a long
time before MT, since building a classifier does not
require having annotated learner data.
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Property MT Classifier
(1a) Error coverage: ability to address a wide
variety of error phenomena

+All errors occurring in the train-
ing data are automatically covered

-Only errors covered by the classi-
fiers; new errors need to be added
explicitly

(1b) Error complexity: ability to handle com-
plex and interacting mistakes that go beyond
word boundaries

+Automatically through parallel
data, via phrase-based lexicons

-Need to develop via specific ap-
proaches

(2) Generalizability: going beyond the error
confusions observed in training

-Only confusions observed in
training can be corrected

+Easily generalizable via confu-
sion sets and features

(3) Supervision/Annotation: role of learner
data in training the system -Required +Not required

(4) System flexibility: adapting knowledge
sources per error phenomena

-Not easy to integrate error-
specific knowledge resources

+Flexible; phenomenon-specific
knowledge sources

Table 4: Summary of the key properties of the MT and the classifier-based approaches. We use +
and − to indicate a positive or a negative value with respect to each factor.

Classifiers are trained individually for a specific
error type. Because an error type needs to be de-
fined, typically only well-defined mistakes can be
addressed in a straightforward way. Given an error
type, a confusion set is specified and includes a list
of confusable words. For some errors, confusion
sets are constructed using a closed list (e.g. prepo-
sitions). For other error types, NLP tools are re-
quired. To identify locations where an article was
likely omitted incorrectly, for example, a phrase
chunker is used. Each occurrence of a confusable
word in text is represented as a vector of features
derived from a context window around the target.
The problem is cast as a multi-class classification
task.

In the classifier paradigm, there are various al-
gorithms – generative (Gamon, 2010; Park and
Levy, 2011), discriminative (Han et al., 2006;
Gamon et al., 2008; Felice and Pulman, 2008;
Tetreault et al., 2010), and joint approaches
(Dahlmeier and Ng, 2012; Rozovskaya and Roth,
2013). Earlier works trained on native data (due
to lack of annotation). Later approaches incorpo-
rated learner data in training in various ways (Han
et al., 2010; Gamon, 2010; Rozovskaya and Roth,
2010a; Dahlmeier and Ng, 2011).

3 Error Analysis of MT and Classifiers

This section presents error analysis of the MT
and classifier approaches. We begin by identify-
ing several key properties that distinguish between
MT systems and classifier systems and that we use
to characterize the learning frameworks and the
outputs of the systems:
(1a) Error coverage denotes the ability of a sys-
tem to identify and correct a variety of error types.
(1b) Error complexity indicates the capacity of a
system to address complex mistakes such as those
where multiple errors interact.

(2) Generalizibility refers to the ability of a sys-
tem to identify mistakes in new unseen contexts
and propose corrections beyond those observed in
training data.
(3) The role of supervision or having annotated
learner data for training.
(4) System flexibility is a property of the system
that allows it to adapt resources specially to correct
various phenomena. The two paradigms are sum-
marized in Table 4. We use + and − to indicate
whether a learning framework has desirable (+) or
undesirable characteristic with regard to each fac-
tor.

The first three properties characterize system
output, while (3) and (4) arise from the system
frameworks. Below we analyze the output of sev-
eral state-of-the-art CoNLL-2014 systems in more
detail.1 Section 4 explores (3) and (4) that relate
to the learning frameworks.

3.1 Error Coverage and Complexity
Error coverage To understand how systems differ
with respect to error coverage, we consider recall
of each system per error type. Error-type recall
can be easily computed using error tags and is re-
ported in the CoNLL overview paper.

The recall numbers show substantial variations
among the systems. If we consider error cat-
egories that have non-negligible recall numbers
(higher than 10%), classifier-based approaches
have a much lower proportion of error types for
which 10% recall was achieved. Among the 28 er-
ror types, the top classifier systems – Columbia
University-University of Illinois (CUUI, top-2)
and National Tsing Hua University (NTHU, top-
5) – have a recall higher than 10% for 8 and 9
error types, respectively. In contrast, the two MT-
based systems – Cambridge University (CAMB,

1Outputs are available on the CoNLL-2014 website.
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(1) It is a concern that will be with us *{during our whole life}/{for our entire life} .
(2) The decision to inform relatives of *{such genetic disorder}/{such genetic disorders} will be dependent . . .
(3) .. we need to respect it and we have no right *{in saying}/{to say} that he must tell his relatives about it .
(4) ...and his family might be a *{genetically risked}/{genetic risk} family .
(5) ...he was *diagnosis/{diagnosed with} a kind of genetic disease which is very serious .
(6) The situation may become *worst/worse if the child has diseases like cancer or heart disease . . .

Table 5: Complex and interacting mistakes that MT successfully addresses. Output of the MT-based
AMU system.

top-1) and the Adam Mickiewicz University sys-
tem (AMU, top-3) – have 15 and 17 error types,
respectively, for which the recall is at least 10%.

These recall discrepancies indicate that the MT
approach has a better overall coverage, which is
intuitive given that all types of confusions are au-
tomatically added through phrase-based transla-
tion tables in MT, while classifiers must explicitly
model each error type. Note, however, that these
numbers do not necessarily indicate good type-
based performance, since high recall may corre-
spond to low precision.
Error complexity In the MT approach, error con-
fusions are learned automatically via the phrase
translation tables extracted from the parallel train-
ing data. Thus, an MT system can easily handle in-
teracting and complex errors where replacements
involve a sequence of words. Table 5 illustrates
complex and interacting mistakes that the MT ap-
proach is able to handle. Example (1) contains a
phrase-level correction that includes both a prepo-
sition replacement and an adjective change. (2) is
an instance of an interacting mistake where there
is a dependency between the article and the noun
number, and a mistake can be corrected by chang-
ing one of the properties but not both. (3), (4) and
(5) require multiple simultaneous corrections on
various words in a phrase. (6) is an example of an
incorrect adjectival form, an error that is typically
not modeled with standard classifiers.

3.2 Generalizability

Because MT systems extract error/correction pairs
from phrase-translation tables, they can only iden-
tify erroneous surface forms observed in training
and propose corrections that occurred with the cor-
responding surface forms. Crucially, in a standard
MT scenario, any resulting translation consists of
“matches” mined from the translation tables, so
a standard MT model lacks lexical abstractions
that might help generalize, thus out-of-vocabulary
words is a well-known problem in MT (Daume
and Jagarlamudi, 2011). While more advanced
MT models can abstract by adding higher-level

Error AMU (MT) CUUI (Classif.)
type P R F0.5 P R F0.5
Orthog./punc. (Mec) 61.6 16.3 39.6 53.3 8.7 26.4
Article (ArtOrDet) 38.0 10.9 25.4 31.8 47.9 34.0
Preposition (Prep) 54.9 10.4 29.5 31.7 8.8 20.9
Noun number (Nn) 49.6 43.2 48.2 42.5 46.2 43.2
Verb tense (Vt) 30.2 9.3 20.8 61.1 5.4 19.9
Subj.-verb agr. (SVA) 48.3 14.9 33.3 57.7 57.7 57.7
Verb form (Vform) 40.5 16.8 31.8 69.2 15.1 40.3
Word form (Wform) 59.0 36.6 52.6 60.0 13.5 35.6

Table 6: Performance of MT and classifier sys-
tems from CoNLL-2014 on common errors.

features such as POS, previous attempt yielded
only marginal improvements (Mizumoto and Mat-
sumoto, 2016), since one typically needs different
types of abstractions depending on the error type,
as we show below.

With classifiers, it is easy to generalize using
higher-level information that goes beyond surface
form and to adjust the abstraction to the error type.
Many grammatical errors may benefit from gener-
alizations based on POS or parse information; we
can thus expect that classifiers will do better on
errors that require linguistic abstractions.

To validate this hypothesis, we evaluate type-
based performance of two systems: a top-3 MT-
based AMU system and a top-2 classifier-based
CUUI; we do not include the top-1 system, since
it is a hybrid system that also uses rules.

Unlike recall, estimating type-based precision
requires knowing the type of the correction sup-
plied by the system, which is not specified in the
output. We thus manually analyze the output of
the AMU and CUUI systems for seven common
error categories and assign to each correction an
appropriate type to estimate precision and F0.5
(Table 6). The CUUI system addresses all of these
errors, with the exception of mechanical (Mec), of
which it handles a small subset. The AMU sys-
tem does better on mechanical, preposition, word
form, and noun number. CUUI does better on ar-
ticles, verb agreement, and verb form.

We now consider examples of errors that are
corrected by the classifier-based CUUI system in
these three categories but are missed by the MT-
based AMU system (Table 7). Examples (1) and
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Long-distance dependencies: verb agreement

(1) As a result , in the case that when one of the members *happen/happens to feel uncomfortable or abnormal , he or she
should be aware that . . .

(2) A study of New York University in 2010 shown that patients with family members around generally *recovers/recover
2-4 days faster than those taken care by professional nurses .
Confusions not found in training: verb agreement and verb form

(3) Hence , the social media sites *serves/serve as a platform for the connection .
(4) After *came/coming back from the hospital , the man told his parents that the problem was that he carried . . .
(5) social media is the only resource they can approach to know everything *happened/happening in their country . . .

Superfluous words: articles
(6) For *an/∅ example , if exercising is helpful, we can always look for more chances for the family to go exercise .
(7) . . . as soon a person is made aware of his or her genetic profile , he or she has *a/∅ knowledge about others .

Omissions: articles
(8) In this case , if one of the family members or close relatives is found to carry *∅/a genetic risk . . .

Table 7: Generalizing beyond surface form: Examples of mistakes that classifiers successfully address.
Output of the classifier-based CUUI system.

(2) illustrate verb errors with long-distance sub-
jects (“one” and “patients”). This is handled in
the classification approach via syntactic features.
An MT system misses these errors because it is
limited to edits within short spans. Examples (3),
(4), and (5) illustrate verb mistakes for which the
correct replacements were not observed in train-
ing but that are nonetheless corrected by general-
izing beyond surface form. Finally, (6) and (7)
illustrate omission and insertion errors, a major-
ity of article mistakes. The MT system is espe-
cially bad at correcting such mistakes. Notably,
the classifier-based CUUI system correctly identi-
fied twice as many omitted articles and more than
20 times more superfluous articles than the MT-
based AMU system. This happens because an MT
system is restricted to suggesting deletions and in-
sertions in those contexts that were observed in
training, whereas a classifier uses shallow parse in-
formation, which allows it to insert or delete an ar-
ticle in front of every eligible noun phrase. These
examples demonstrate that the ability of a system
to generalize beyond the surface forms is indeed
beneficial for long-distance dependencies, for ab-
stracting away from surface forms when formu-
lating confusion sets, and for mistakes involving
omitting or inserting a word.

4 Developing New State-of-the-Art MT
and Classifier Systems

In this section, we explore the advantages of each
learning approach, as identified in the previous
section, within each learning framework. To this
end, drawing on the strengths of each framework,
we develop new state-of-the-art MT and classifier
systems.2 In the next section, we will use these

2Implementation details can be found at cogcomp.cs.
illinois.edu/page/publication view/793

System Learner Native
CoNLL-

train
Lang-8 Eng.

Wiki.
Web1T

1.2M 48M 2B 1T
MT X X X -

Classif. X - - X

Table 8: Data used in the experiments. Corpora
sizes are in the number of words.

MT and classifier components and show how to
exploit the strengths of each framework in combi-
nation. Table 8 summarizes the data used. Results
are reported with respect to all errors in the test
data. This is different from performance for indi-
vidual errors in Table 6.

4.1 Machine Translation Systems

A key advantage of the MT framework is that, un-
like with classifiers, error confusions are learned
from parallel data automatically, without further
(linguistic) input. We build two MT systems that
differ only in the use of parallel data: the CoNLL-
2014 training data and Lang-8. Our MT systems
are trained using Moses (Koehn et al., 2007) and
follow the standard approach (Junczys-Dowmunt
and Grundkiewicz, 2014; Susanto et al., 2014).
Both systems use two 5-gram language models
– English Wikipedia and the corrected side of
CoNLL-train – trained with KenLM (Heafield et
al., 2013). Table 9 reports the performance of
the systems. As shown, performance increases by
more than 11 points when a larger parallel corpus
is used. The best MT system outperforms the top
CoNLL system by 2 points.

4.2 Classifiers

We now present several classifier systems, explor-
ing the two important properties of the classifica-
tion framework – the ability to train without super-
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Parallel data Performance
P R F0.5

CoNLL-train 43.34 11.81 28.25
Lang-8 66.15 15.11 39.48
CoNLL-2014 top 1 39.71 30.10 37.33

Table 9: MT systems trained in this work.

vision and system flexibility (see Table 4).

4.2.1 Supervision
Supervision in the form of annotated learner data
plays an important role in developing an error cor-
rection system but is expensive. Native data, in
contrast, is cheap and available in large quantities.
Therefore, the fact that, unlike with MT, it is pos-
sible to build a classifier system without any anno-
tated data, is a clear advantage of classifiers.

Training without supervision is possible in the
classification framework, as follows. For a given
mistake type, e.g. preposition, a classifier is
trained on native data that is assumed to be cor-
rect; the classifier uses context words around each
preposition as features. The resulting model is
then applied to learner prepositions and will pre-
dict the most likely preposition in a given con-
text. If the preposition predicted by the classi-
fier is different from what the author used in text,
this preposition is flagged as a mistake. We refer
the reader to Rozovskaya and Roth (2010b) and
Rozovskaya and Roth (2011) for a description of
training classifiers with and without supervision
for error correction tasks. Below, we address two
questions related to the use of supervision:
• Training with supervision: When training us-
ing learner data, how does a classifier-based sys-
tem compare against an MT system?
• Training without supervision: How well can
we do by building a classifier system with native
data only, compared to MT and classifier-based
systems that use supervision?

Our classifier system is based on the imple-
mentation framework of the second CoNLL-2014
system (Rozovskaya et al., 2014) and consists of
classifiers for 7 most common grammatical errors
in CoNLL-train: article; preposition; noun num-
ber; verb agreement; verb form; verb tense; word
form. All modules take as input the corpus doc-
uments pre-processed with a POS tagger3 (Even-
Zohar and Roth, 2001), a shallow parser4 (Pun-

3http://cogcomp.cs.illinois.edu/page/
software view/POS

4http://cogcomp.cs.illinois.edu/page/
software view/Chunker

System Performance
P R F0.5

Classifiers (learner) 32.15 17.96 27.76
Classifiers (native) 38.41 23.05 33.89
MT 43.34 11.81 28.25
CoNLL-2014 top 1 39.71 30.10 37.33
CoNLL-2014 top 2 41.78 24.88 36.79
CoNLL-2014 top 3 41.62 21.40 35.01

Table 10: Classifier systems trained with and
without supervision. Learner data refers to
CoNLL-train. Native data refers to Web1T. The
MT system uses CoNLL-train for parallel data.

yakanok and Roth, 2001), a syntactic parser (Klein
and Manning, 2003) and a dependency converter
(Marneffe et al., 2006).

Classifiers are trained either on learner data
(CoNLL-train) or native data (Web1T). Classifiers
built on CoNLL-train are trained discriminatively
with the Averaged Perceptron algorithm (Rizzolo
and Roth, 2010) and use rich POS and syntactic
features tailored to specific error types that are
standard for these tasks (Lee and Seneff, 2008;
Han et al., 2006; Tetreault et al., 2010; Ro-
zovskaya et al., 2011); Naı̈ve Bayes classifiers are
trained on Web1T with word n-gram features. A
detailed description of the classifiers and the fea-
tures used can be found in Rozovskaya and Roth
(2014). We also add several novel ideas that are
described below.

Table 10 shows the performance of two classi-
fier systems, trained with supervision (on CoNLL-
train) and without supervision on native data
(Web1T), and compares these to an MT approach
trained on CoNLL-train. The first classifier system
performs comparably to the MT system (27.76 vs.
28.25), however, the native-trained classifier sys-
tem outperforms both, and does not use any an-
notated data. The native-trained classifier system
would place fourth in CoNLL-2014.

4.2.2 Flexibility

We now explore another advantage of the
classifier-based approach, that of allowing for a
flexible architecture where we can tailor knowl-
edge sources for individual phenomena. In Sec-
tion 4.2.1, we already took advantage of the fact
that in the classifier framework it is easy to in-
corporate features suited to individual error types.
We now show that by adding supervision in a way
tailored toward specific errors we can further im-
prove the classifier-based approach.
Adding Supervision in a Tailored Way There is
a trade-off between training on native and learner
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Training Performance
data P R F0.5

(1) Learner 32.15 17.96 27.76
(2) Native 38.41 23.05 33.89
(3) Tailored 57.07 14.74 36.26

Table 11: Classifiers: supervision in a tailored
way. Trained on (1) learner data (CoNLL-train);
(2) native data (Web1T); (3) data sources tailored
per error type.

data. The advantage of training on native data is
clearly the size, which is important for estimating
context parameters. Learner data provides addi-
tional information, such as learner error patterns
and the manner of non-native writing.

Instead of choosing to train on one data type,
the classifier framework allows one to combine
the two data sources in various ways: voting (Ro-
zovskaya et al., 2014), alternating structure op-
timization (Dahlmeier and Ng, 2011), training a
meta-classifier (Gamon, 2010), and extracting er-
ror patterns (Rozovskaya and Roth, 2011). We
compare two approaches of adding supervision:
(1) Learner error patterns: Error patterns are ex-
tracted from learner data and “injected” into mod-
els trained on native data (Rozovskaya and Roth,
2011). Learner data is used to estimate mistake pa-
rameters; contextual cues are based on native data.
(2) Learner error patterns+native predictions:
Classifiers are trained on native data. Classifier
predictions are used as features in models trained
on learner data. Learner data thus contributes both
the specific manner of learner writing and the mis-
take parameters. The native data contributes con-
textual information.

We found that (2) is superior to (1) for arti-
cle, agreement, and preposition errors; (1) works
better on verb form and word form errors; and
noun number errors perform best when a classifier
is trained on native data. (Learner error patterns
were found not to be beneficial for correcting noun
number errors (Rozovskaya and Roth, 2014)). Tai-
lored supervision yields an improvement of almost
3 points over the system trained on native data and
almost 9 points over the system trained on learner
data (Table 11).
Adding Mechanical Errors Finally, we add
components for mechanical errors: punctuation,
spelling, and capitalization. These are distin-
guished from the grammatical mistakes, as they
are not specific to GEC and can be handled with
existing resources or simple methods.

For capitalization and missing commas, we

System/training data Performance
P R F0.5

Native 38.41 23.05 33.89
Native+mechanical 42.72 27.69 38.54
Tailored 57.07 14.74 36.26
Best (tailored+mechanical) 60.79 19.93 43.11
CoNLL-2014 top system 39.71 30.10 37.33
Susanto et al. (2014) 53.55 19.14 39.39
Miz. & Mats. (2016) 45.80 26.60 40.00

Table 12: Classifier systems in this work. Com-
parison to existing state-of-the-art.

System Performance
P R F0.5

MT is trained on CoNLL-train
MT 43.34 11.81 28.25
Spelling+MT 49.86 16.36 35.37
Article+MT 45.11 13.99 31.22
Verb agr.+MT 46.36 14.63 32.33
Art.+Verb agr.+Spell+MT 52.07 20.89 40.10

MT is trained on Lang-8
MT 66.15 15.11 39.48
Spelling+MT 65.87 16.94 41.75
Article+MT 63.81 17.70 41.95
Verb. agr.+MT 66.09 18.01 43.08
Art.+Verb agr.+Spell+MT 64.13 22.15 46.51

Table 13: Pipelines: select classifiers and MT.

compile a list of patterns using CoNLL training
data. We also use an off-the-shelf speller (Flor,
2012; Flor and Futagi, 2012). Results are shown in
Table 12. Performance improves by almost 5 and
7 points for the native-trained system and for the
best configuration of classifiers with supervision.
Both systems also outperform the top CoNLL sys-
tem, by 1 and 6 points, respectively. The result of
43.11 by the best classifier configuration substan-
tially outperforms the existing state-of-the-art: a
combination of two MT systems and two classi-
fier systems, and MT with re-ranking (Susanto et
al., 2014; Mizumoto and Matsumoto, 2016).

5 Combining MT and Classifier Systems

Since MT and classifiers differ with respect to
the types of errors they can better handle, we
combine these systems in a pipeline architecture
where the MT is applied to the output of classi-
fiers. Classifiers are applied first, since MT is bet-
ter at handling complex phenomena. First, we add
the speller and those classifier components that
perform substantially better than MT (articles and
verb agreement), due to the ability of classifiers to
generalize beyond lexical information. The added
classifiers are part of the best system in Table 12.

Results are shown in Table 13. Adding classi-
fiers improves the performance, thereby demon-
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System Performance
P R F0.5

MT (CoNLL-train) 43.34 11.81 28.25
MT (Lang-8) 66.15 15.11 39.48
Best classifier (Table 12) 60.79 19.93 43.11
Best class.+MT (CoNLL-train) 51.92 25.08 42.77
Best class.+MT (Lang-8) 60.17 25.64 47.40

Table 14: Pipelines: the best classifier system
and MT systems.

System Performance
P R F0.5

Best classifier (Table 12) 60.79 19.93 43.11
Art.+Verb agr.+Spell+MT 64.13 22.15 46.51
Best classifier+MT 60.17 25.64 47.40
CoNLL-2014 top system 39.71 30.10 37.33
Susanto et al. (2014) 53.55 19.14 39.39
Miz. & Mats. (2016) 45.80 26.60 40.00

Table 15: Best systems in this work. Comparison
to existing state-of-the-art.

strating that the classifiers address a complemen-
tary set of mistakes. Adding all three modules im-
proves the results from 28.25 to 40.10 and from
39.48 to 46.51 for the MT systems trained on
CoNLL-train and Lang-8, respectively. Notably,
the CoNLL-train MT system especially benefits,
which shows that when the parallel data is small,
it is particularly worthwhile to add classifiers.

It should be stressed that even with a smaller
parallel corpus, when the three modules are added,
the resulting system is very competitive with pre-
vious state-of-the-art that uses a lot more super-
vision: Susanto et al. (2014) and Mizumoto and
Matsumoto (2016) use Lang-8. These results
show that when one has an MT system, it is possi-
ble to improve by investing effort into building se-
lect classifiers for phenomena that are most chal-
lenging for MT.

Finally, Table 14 demonstrates that combining
MT with the best classifier system improves the
result further when the MT system is trained on
Lang-8, but not when the MT system is trained on
CoNLL-train. We also note that the CoNLL-train
MT system also has a much lower precision than
the other systems. We conclude that when only a
limited amount of data is available, the classifier
approach on its own performs better.

As a summary, Table 15 lists the best sys-
tems developed in this work – a classifier sys-
tem, a pipeline of select classifiers and MT, and
a pipeline consisting of the best classifier and the
MT systems – and compares to existing state-of-
the-art. Our classifier system is a 3-point improve-
ment over the existing state-of-the-art, while the

best pipeline is a 7.4-point improvement (20% rel-
ative improvement).

6 Discussion and Conclusions

A recent surge in GEC research has produced
two leading state-of-the-art approaches – machine
learning classification and machine translation.
Based on the analysis of the methods and an er-
ror analysis on the outputs of state-of-the-art sys-
tems that adopt these approaches, we explained
the differences and the key advantages of each.
With respect to error phenomena, we showed that
while MT is better at handling complex mistakes,
classifiers are better at correcting mistakes that re-
quire abstracting beyond lexical context. We fur-
ther showed that the key strengths of the classifi-
cation framework are its flexibility and the ability
to train without supervision.

We built several systems that draw on the
strengths of each approach individually and in
a pipeline. The best classifier system and the
pipelines outperform reported best results on the
task, often by a large margin.

The purpose of this work is to gain a better
understanding of the advantages offered by each
learning method in order to make further progress
on the GEC task. We showed that the values pro-
vided by each method can be exploited within each
approach and in combination, depending on the re-
sources available, such as annotated learner data
(MT), and additional linguistic resources (clas-
sifiers). As a result, we built robust systems
and showed substantial improvement over existing
state-of-the-art.

For future work, we intend to study the problem
in the context of other languages. However, it is
important to realize that the problem is far from
being solved even in English, and the current work
makes very significant progress on it.
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