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Abstract

Precise evaluation metrics are important
for assessing progress in high-level lan-
guage generation tasks such as machine
translation or image captioning. Histor-
ically, these metrics have been evaluated
using correlation with human judgment.
However, human-derived scores are often
alarmingly inconsistent and are also limited
in their ability to identify precise areas of
weakness. In this paper, we perform a case
study for metric evaluation by measuring
the effect that systematic sentence trans-
formations (e.g. active to passive voice)
have on the automatic metric scores. These
sentence “corruptions” serve as unit tests
for precisely measuring the strengths and
weaknesses of a given metric. We find that
not only are human annotations heavily in-
consistent in this study, but that the Met-
ric Unit TesT analysis is able to capture
precise shortcomings of particular metrics
(e.g. comparing passive and active sen-
tences) better than a simple correlation with
human judgment can.

1 Introduction
The success of high-level language generation tasks
such as machine translation (MT), paraphrasing and
image/video captioning depends on the existence of
reliable and precise automatic evaluation metrics.

Figure 1: A few select entries from the SICK dataset. All
of these entries follow the same “Negated Subject” transfor-
mation between sentence 1 and sentence 2, yet humans anno-
tated them with an inconsistently wide range of scores (from
1 to 5). Regardless of whether the gold labels for this partic-
ular transformation should score this high or low, they should
score be scored consistently.

Efforts have been made to create standard met-
rics (Papineni et al., 2001; Lin, 2004; Denkowski
and Lavie, 2014; Vedantam et al., 2014) to help
advance the state-of-the-art. However, most such
popular metrics, despite their wide use, have seri-
ous deficiencies. Many rely on ngram matching and
assume that annotators generate all reasonable refer-
ence sentences, which is infeasible for many tasks.
Furthermore, metrics designed for one task, e.g.,
MT, can be a poor fit for other tasks, e.g., video cap-
tioning.

To design better metrics, we need a principled
approach to evaluating their performance. Histori-
cally, MT metrics have been evaluated by how well
they correlate with human annotations (Callison-
Burch et al., 2010; Machacek and Bojar, 2014).
However, as we demonstrate in Sec. 5, human
judgment can result in inconsistent scoring. This
presents a serious problem for determining whether
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a metric is ”good” based on correlation with incon-
sistent human scores. When ”gold” target data is
unreliable, even good metrics can appear to be inac-
curate.

Furthermore, correlation of system output with
human-derived scores typically provides an overall
score but fails to isolate specific errors that met-
rics tend to miss. This makes it difficult to dis-
cover system-specific weaknesses to improve their
performance. For instance, an ngram-based metric
might effectively detect non-fluent, syntactic errors,
but could also be fooled by legitimate paraphrases
whose ngrams simply did not appear in the training
set. Although there has been some recent work on
paraphrasing that provided detailed error analysis of
system outputs (Socher et al., 2011; Madnani et al.,
2012), more often than not such investigations are
seen as above-and-beyond when assessing metrics.

The goal of this paper is to propose a process
for consistent and informative automated analysis
of evaluation metrics. This method is demonstrably
more consistent and interpretable than correlation
with human annotations. In addition, we extend the
SICK dataset to include un-scored fluency-focused
sentence comparisons and we propose a toy metric
for evaluation.

The rest of the paper is as follows: Section 2
introduces the corruption-based metric unit testing
process, Section 3 lists the existing metrics we use
in our experiments as well as the toy metric we
propose, Section 4 describes the SICK dataset we
used for our experiments, Section 5 motivates the
need for corruption-based evaluation instead of cor-
relation with human judgment, Section 6 describes
the experimental procedure for analyzing the met-
ric unit tests, Section 7 analyzes the results of our
experiments, and in Section 8 we offer concluding
remarks.

2 Metric Unit TesTs
We introduce metric unit tests based on sentence
corruptions as a new method for automatically eval-
uating metrics developed for language generation
tasks. Instead of obtaining human ranking for
system output and comparing it with the metric-
based ranking, the idea is to modify existing ref-

erences with specific transformations, and exam-
ine the scores assigned by various metrics to such
corruptions. In this paper, we analyze three broad
categories of transformations – meaning-altering,
meaning-preserving, and fluency-disrupting sen-
tence corruptions – and we evaluate how success-
fully several common metrics can detect them.

As an example, the original sentence “A man is
playing a guitar.” can be corrupted as follows:

Meaning-Altering: A man is not playing guitar.
Meaning-Preserving: A guitar is being played
by a man.
Fluency-Disrupting: A man a guitar is playing.

Examples for each corruption type we consider
are shown in Tables 1 and 2.

2.1 Meaning-altering corruptions

Meaning-altering corruptions modify the seman-
tics of a sentence, resulting in a new sentence
that has a different meaning. Corruptions (1–
2) check whether a metric can detect small lex-
ical changes that cause the sentence’s semantics
to entirely change. Corruption (3) is designed to
fool distributed and distributional representations of
words, whose vectors often confuse synonyms and
antonyms.

2.2 Meaning-preserving corruptions

Meaning-preserving corruptions change the lexical
presentation of a sentence while still preserving
meaning and fluency. For such transformations, the
“corruption” is actually logically equivalent to the
original sentence, and we would expect that consis-
tent annotators would assign roughly the same score
to each. These transformations include changes
such as rephrasing a sentence from active voice to
passive voice (4) or paraphrasing within a sentence
(5).

2.3 Fluency disruptions

Beyond understanding semantics, metrics must also
recognize when a sentence lacks fluency and gram-
mar. Corruptions (7–9) were created for this reason,
and do so by generating ungrammatical sentences.
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Meaning Altering
1 negated subject (337) “A man is playing a harp” “There is no man playing a harp”
2 negated action (202) “A jet is flying” “A jet is not flying”
3 antonym replacement (246) “a dog with short hair” “a dog with long hair”

Meaning Preserving
4 active-to-passive (238) “A man is cutting a potato” “A potato is being cut by a man”
5 synonymous phrases (240) “A dog is eating a doll” “A dog is biting a doll”
6 determiner substitution (65) “A cat is eating food” “The cat is eating food”

Table 1: Corruptions from the SICK dataset. The left column lists the number of instances for each corruption type.

Fluency disruptions
7 double PP (500) “A boy walks at night” “A boy walks at night at night”
8 remove head from PP (500) “A man danced in costume” “A man danced costume”
9 re-order chunked phrases (500) “A woman is slicing garlics” “Is slicing garlics a woman”

Table 2: Generated corruptions. The first column gives the total number of generated corruptions in parentheses.

3 Metrics Overview
3.1 Existing Metrics
Many existing metrics work by identifying lexical
similarities, such as n-gram matches, between the
candidate and reference sentences. Commonly-used
metrics include BLEU, CIDEr, and TER:

• BLEU, an early MT metric, is a precision-
based metric that rewards candidates whose
words can be found in the reference but pe-
nalizes short sentences and ones which overuse
popular n-grams (Papineni et al., 2001).
• CIDEr, an image captioning metric, uses

a consensus-based voting of tf-idf weighted
ngrams to emphasize the most unique seg-
ments of a sentence in comparison (Vedantam
et al., 2014).
• TER (Translation Edit Rate) counts the

changes needed so the surface forms of the out-
put and reference match (Snover et al., 2006).

Other metrics have attempted to capture similar-
ity beyond surface-level pattern matching:

• METEOR, rather than strictly measuring
ngram matches, accounts for soft similari-
ties between sentences by computing synonym
and paraphrase scores between sentence align-
ments (Denkowski and Lavie, 2014).

• BADGER takes into account the contexts over
the entire set of reference sentences by using
a simple compression distance calculation af-
ter performing a series of normalization steps
(Parker, 2008).
• TERp (TER-plus) minimizes the edit dis-

tance by stem matches, synonym matches,
and phrase substitutions before calculating the
TER score, similar to BADGER’s normaliza-
tion step (Snover et al., 2009).

We evaluate the strengths and weaknesses of
these existing metrics in Section 7.

3.2 Toy Metric: W2V-AVG
To demonstrate how this paper’s techniques can also
be applied to measure a new evaluation metric, we
create a toy metric, W2V-AVG, using the cosine of
the centroid of a sentence’s word2vec embeddings
(Mikolov et al., 2013). The goal for this true bag-
of-words metric is to serve as a sanity check for how
corruption unit tests can identify metrics that cap-
ture soft word-level similarities, but cannot handle
directed relationships between entities.

4 Datasets
4.1 SICK
All of our experiments are run on the Sentences In-
volving Compositional Knowledge (SICK) dataset,
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which contains entries consisting of a pair of sen-
tences and a human-estimated semantic relatedness
score to indicate the similarity of the sentence pair
(Marelli et al., 2014). The reason we use this data is
twofold:

1. it is a well-known and standard dataset within
semantic textual similarity community.

2. it contains many common sentence transfor-
mation patterns, such as those described in Ta-
ble 1.

The SICK dataset was built from the 8K Image-
Flickr dataset1 and the SemEval 2012 STS MSR-
Video Description corpus2. Each of these origi-
nal datasets contain human-generated descriptions
of images/videos – a given video often has 20-50
reference sentences describing it. These reference
sets prove very useful because they are more-or-less
paraphrases of one another; they all describe the
same thing. The creators of SICK selected sentence
pairs and instructed human annotators to ensure that
all sentences obeyed proper grammar. The creators
of SICK ensured that two of the corruption types
– meaning-altering and meaning-preserving – were
generated in the annotated sentence pairs. We then
filtered through SICK using simple rule-based tem-
plates3 to identify each of the six corruption types
listed in Table 1. Finally, we matched the sentences
in the pair back to their original reference sets in the
Flickr8 and MSR-Video Description corpora to ob-
tain reference sentences for our evaluation metrics
experiments.

4.2 SICK+
Since all of the entries in the SICK dataset were
created for compositional semantics, every sentence
was manually checked by annotators to ensure flu-
ency. For our study, we also wanted to measure

1http://nlp.cs.illinois.edu/
HockenmaierGroup/data.html

2http://www.cs.york.ac.uk/
semeval-2012/task6/index.php?id=data

3For instance, the “Antonym Replacement” template
checked to see if the two sentences were one word
apart, and if so whether they had a SICK-annotated
NOT ENTAILMENT relationsip.

the effects of bad grammar between sentences, so
we automatically generated our own corruptions
to the SICK dataset to create SICK+, a set of
fluency-disrupting corruptions. The rules to gener-
ate these corruptions were simple operations involv-
ing chunking and POS-tagging. Fortunately, these
corruptions were, by design, meant to be ungram-
matical, so there was no need for (difficult) auto-
matic correctness checking for fluency.

5 Inconsistencies in Human Judgment
A major issue with comparing metrics against hu-
man judgment is that human judgments are often
inconsistent. One reason for this is that high-level
semantic tasks are difficult to pose to annotators.
Consider SICK’s semantic relatedness annotation as
a case study for human judgment. Annotators were
shown two sentences, were asked “To what extent
are the two sentences expressing related meaning?”,
and were instructed to select an integer from 1 (com-
pletely unrelated) to 5 (very related). We can see the
difficulty annotators faced when estimating seman-
tic relatedness, especially because the task descrip-
tion was intentionally vague to avoid biasing anno-
tator judgments with strict definitions. In the end,
“the instructions described the task only through [a
handful of] examples of relatedness” (Marelli et al.,
2014).

As a result of this hands-off annotation guideline,
the SICK dataset contains glaring inconsistencies in
semantic relatedness scores, even for sentence pairs
where the only difference between two sentences is
due to the same known transformation. Figure 1
demonstrates the wide range of human-given scores
for the pairs from SICK that were created with the
Negated Subject transformation. Since the guide-
lines did not establish how to handle the effect of
this transformation, some annotators rated it high
for describing the same actions, while others rated
it low for having completely opposite subjects.

To better appreciate the scope of these annota-
tion discrepancies, Figure 2 displays the distribution
of “gold” human scores for every instance of the
“Negated Subject” transformation. We actually find
that the relatedness score approximately follows a
normal distribution centered at 3.6 with a standard
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Figure 2: Human annotations for the Negated Subject
corruption.

Figure 3: Metric predictions for the Negated Subject cor-
ruption.

deviation of about .45. The issue with this distri-
bution is that regardless of whether the annotators
rank this specific transformation as low or high, they
should be ranking it consistently. Instead, we see
that their annotations span all the way from 2.5 to
4.5 with no reasonable justification as to why.

Further, a natural question to ask is whether all
sentence pairs within this common Negated Sub-
ject transformation do, in fact, share a structure of
how similar their relatedness scores “should” be.
To answer this question, we computed the similar-
ity between the sentences in an automated manner
using three substantially different evaluation met-
rics: METEOR, BADGER, and TERp. These three

metrics were chosen because they present three very
different approaches for quantifying semantic sim-
ilarity, namely: sentence alignments, compression
redundancies, and edit rates. We felt that these dif-
ferent approaches for processing the sentence pairs
would allow for different views of their underlying
relatedness.

To better understand how similar an automatic
metric would rate these sentence pairs, Figure 3
shows the distribution over scores predicted by the
METEOR metric. The first observation is that the
metric produces scores that are far more peaky than
the gold scores in Figure 2, which indicates that they
have a significantly more consistent structure about
them.

In order to see how each metric’s scores com-
pare, Table 3 lists all pairwise correlations between
the gold and the three metrics. As a sanity check,
we can see that the 1.0s along the diagonal indicate
perfect correlation between a prediction and itself.
More interestingly, we can see that the three met-
rics have alarmingly low correlations with the gold
scores: 0.09, 0.03, and 0.07. However, we also see
that the three metrics all have significantly higher
correlations amongst one another: 0.80, 0.80, and
0.91. This is a very strong indication that the three
metrics all have approximate agreement about how
the various sentences should be scored, but this con-
sensus is not at all reflected by the human judg-
ments.

6 MUTT Experiments
In our Metric Unit TesTing experiments, we wanted
to measure the fraction of times that a given metric
is able to appropriately handle a particular corrup-
tion type. Each (original,corruption) pair is consid-
ered a trial, which the metric either gets correct or

gold METEOR BADGER TERp
gold 1.00 0.09 0.03 0.07
METEOR 0.09 1.00 0.91 0.80
BADGER 0.03 0.91 1.00 0.80
TERp 0.07 0.80 0.80 1.00

Table 3: Pairwise correlation between the predictions of
three evaluation metrics and the gold standard.
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Figure 4: Results for the Determiner Substitution cor-
ruption (using Difference formula scores).

incorrect. We report the percent of successful trials
for each metric in Tables 4, 5, and 6. Experiments
were run using 5, 10, and 20 reference sentences
to understand which metrics are able perform well
without much data and also which metrics are able
to effectively use more data to improve. An accu-
racy of 75% would indicate that the metric is able to
assign appropriate scores 3 out of 4 times.4

For Meaning-altering and Fleuncy-disrupting
corruptions, the corrupted sentence will be truly dif-
ferent from the original and reference sentences. A
trial would be successful when the score of the orig-
inal sorig is rated higher than the score of the cor-
ruption scorr:

sorig > scorr

Alternatively, Meaning-preserving transforma-
tions create a ”corruption” sentence which is just as
correct as the original. To reflect this, we consider a
trial to be successful when the score of the corrup-
tion scorr is within 15% of the score of the original
sorig: ∣∣∣∣∣sorig − scorr

sorig + ε

∣∣∣∣∣ ≤ 0.15

where ε is a small constant (10−9) to prevent divi-
sion by zero. We refer to this alternative trial formu-
lation as the Difference formula.

4Our code is made available at https://github.
com/text-machine-lab/MUTT

Figure 5: Results for the Active-to-Passive corruption
(using Difference formula scores).

7 Discussion

7.1 Meaning-altering corruptions

As shown by the middle figure in Table 4, it is
CIDEr which performs the best for Antonym Re-
placement. Even with only a few reference sen-
tences, it is already able to score significantly higher
than the other metrics. We believe that a large
contributing factor for this is CIDEr’s use of tf-idf
weights to emphasize the important aspects of each
sentence, thus highlighting the modified when com-
pared against the reference sentences.

The success of these metrics reiterates the earlier
point about metrics being able to perform more con-
sistently and reliably than human judgment.

7.2 Meaning-preserving corruptions

The graph in Figure 4 of the determiner substitu-
tion corruption shows an interesting trend: as the
number of references increase, all of the metrics in-
crease in accuracy. This corruption replaces “a” in
the candidate with a “the’, or vice versa. As the ref-
erences increase, there we tend to see more exam-
ples which use these determiners interchanagably
while keeping the rest of the sentence’s meaning the
same. Since a large number of references results in
far more for the pair to agree on, the two scores are
very close.

Conversely, the decrease in accuracy in the
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1. Negated Subject
num refs 5 10 20
CIDEr 99.4 99.4 99.4
BLEU 99.1 99.7 99.7
METEOR 97.0 98.5 98.2
BADGER 97.9 97.6 98.2
TERp 99.7 99.7 99.4

2. Negated Action
num refs 5 10 20
CIDEr 98.5 98.5 98.5
BLEU 97.5 97.5 98.0
METEOR 96.0 96.0 97.0
BADGER 93.6 95.5 96.5
TERp 95.5 97.0 95.0

3. Antonym Replacement
num refs 5 10 20
CIDEr 86.2 92.7 93.5
BLEU 76.4 85.4 88.6
METEOR 80.9 86.6 91.5
BADGER 76.0 85.8 88.6
TERp 75.2 79.7 80.1

Table 4: Meaning-altering corruptions. These % accuracies represent the number of times that a given
metric was able to correctly score the original sentence higher than the corrupted sentence. Numbers refer-
enced in the prose analysis are highlighted in bold.

4. Active-to-Passive
num refs 5 10 20
CIDEr 5.5 0.8 2.5
BLEU 7.6 4.6 3.8
METEOR 23.9 16.0 13.0
BADGER 13.4 11.3 12.2
TERp 20.6 16.4 9.7

5. Synonymous Phrases
num refs 5 10 20
CIDEr 32.1 26.2 30.0
BLEU 45.0 36.7 34.2
METEOR 62.1 62.1 62.1
BADGER 80.8 80.4 86.7
TERp 53.3 46.7 41.2

6. DT Substitution
num refs 5 10 20
CIDEr 40.0 38.5 56.9
BLEU 21.5 27.7 53.8
METEOR 55.4 55.4 70.8
BADGER 80.0 84.6 95.4
TERp 6.2 10.8 27.7

Table 5: Meaning-preserving corruptions. These % accuracies represent the number of times that a given
metric was able to correctly score the semantically-equaivalent ”corrupted” sentence within 15% of the
original sentence. Numbers referenced in the prose analysis are highlighted in bold.

7. Duplicate PP
num refs 5 10 20
CIDEr 100 99.0 100
BLEU 100 100 100
METEOR 95.1 98.5 99.5
BADGER 63.5 70.0 74.9
TERp 96.6 99.0 99.0

8. Remove Head From PP
num refs 5 10 20
CIDEr 69.5 76.8 80.8
BLEU 63.5 81.3 87.7
METEOR 60.6 72.9 84.2
BADGER 63.1 67.0 71.4
TERp 52.7 66.5 70.4

9. Re-order Chunks
num refs 5 10 20
CIDEr 91.4 95.6 96.6
BLEU 83.0 91.4 94.2
METEOR 81.2 89.6 92.4
BADGER 95.4 96.6 97.8
TERp 91.0 93.4 93.4

Table 6: Fluency-disrupting corruptions. These % accuracies represent the number of times that a given
metric was able to correctly score the original sentence higher than the corrupted sentence. Numbers refer-
enced in the prose analysis are highlighted in bold.

Active-to-Passive table reflects how adding more
(mostly active) references makes the system more
(incorrectly) confident in choosing the active origi-
nal. As the graph in Figure 5 shows, METEOR per-
formed the best, likely due to its sentence alignment
approach to computing scores.

7.3 Fluency disruptions

All of the metrics perform well at identifying the
duplicate prepositional phrase corruption, except
for BADGER which has noticeably lower accuracy

scores than the rest. These lower scores may be at-
tributed to the compression algorithm that it uses to
compute similarity. Because BADGER’s algorithm
works by compressing the candidate and references
jointly, we can see why a repeated phrase would be
of little effort to encode – it is a compression algo-
rithm, after all. The result of easy-to-compress re-
dundancies is that the original sentence and its cor-
ruption have very similar scores, and BADGER gets
fooled.

Unlike the other two fluency-disruptions, none of
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the accuracy scores of the “Remove Head from PP”
corruption reach 90%, so this corruption could be
seen as one that metrics could use improvement on.
BLEU performed the best on this task. This is likely
due to its ngram-based approach, which is able to
identify that deleting a word breaks the fluency of a
sentence.

All of the metrics perform well on the “Re-order
Chunks” corruption. METEOR, however, does
slightly worse than the other metrics. We believe
this to be due to its method of generating an align-
ment between the words in the candidate and refer-
ence sentences. This alignment is computed while
minimizing the number of chunks of contiguous
and identically ordered tokens in each sentence pair
(Chen et al., 2015). Both the original sentence and
the corruption contain the same chunks, so it makes
sense that METEOR would have more trouble dis-
tinguishing between the two than the n-gram based
approaches.

7.4 W2V-AVG

The results for the W2V-AVG metric’s success on
each corruption are shown in Table 7. “Shuffled
Chunks” is one of the most interesting corruptions
for this metric, because it achieves an accuracy of
0% across the board. The reason for this is that
W2V-AVG is a pure bag-of-words model, meaning
that word order is entirely ignored, and as a result
the model cannot distinguish between the original
sentence and its corruption, and so it can never rank
the original greater than the corruption.

Surprisingly, we find that W2V-AVG is far less
fooled by active-to-passive than most other metrics.
Again, we believe that this can be attributed to its
bag-of-words approach, which ignores the word or-
der imposed by active and passive voices. Because
each version of the sentence will contain nearly all
of the same tokens (with the exception of a few “is”
and “being” tokens), the two sentence representa-
tions are very similar. In a sense, W2V-AVG does
well on passive sentences for the wrong reasons -
rather than understanding that the semantics are un-
changed, it simply observes that most of the words
are the same. However, we still see the trend that
performance goes down as the number of reference

average word2vec metric
num references 5 10 20
1. Negated Action 72.8 74.5 60.7
2. Antonym Replacement 91.5 93.0 92.3
3. Negated Subject 98.2 99.1 97.8
4. Active-to-Passive* 84.9 83.6 80.3
5. Synonymous Phrase* 98.3 99.1 98.3
6. DT Substitution* 100.0 100.0 100.0
7. Duplicate PP 87.6 87.6 87.6
8. Remove Head From PP 78.4 82.5 82.5
9. Shuffle Chunks 00.0 00.0 00.0
1. Negated Action* 100.0 100.0 100.0
3. Negated Subject* 82.8 87.3 87.1

Table 7: Performance of the AVG-W2V metric. These
% accuracies represent the number of successful trials.
Numbers referenced in the prose analysis are highlighted
in bold. * indicates the scores computed with the Differ-
ence formula.

sentences increases.
Interestingly, we can see that although W2V-AVG

achieved 98% accuracy on “Negated Subject”, it
scored only 75% on “Negated Action”. This ini-
tially seems quite counter intuitive - either the model
should be good at the insertion of a negation word,
or it should be bad. The explanation for this reveals
a bias in the data itself: in every instance where
the “Negated Subject” corruption was applied, the
sentence was transformed from “A/The [subject] is”
to “There is no [subject]”. This is differs from the
change in “Negated Action”, which is simply the
insertion of “not” into the sentence before an ac-
tion. Because one of these corruptions resulted in
3x more word replacements, the model is able to
identify it fairly well.

To confirm this, we added two final entries to
Table 7 where we applied the Difference formula
to the “Negated Subject” and “Negated Action”
corruptions to see the fraction of sentence pairs
whose scores are within 15% of one another. We
found that, indeed, the “Negated Action” corruption
scored 100% (meaning that the corruption embed-
dings were very similar to the original embeddings),
while the “Negated Subject” corruption pairs were
only similar about 85% of the time. By analyz-
ing these interpretable errors, we can see that stop
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words play a larger role than we’d want in our toy
metric. To develop a stronger metric, we might
change W2V-AVG so that it considers only the con-
tent words when computing the centroid embed-
dings.

8 Conclusion
The main contribution of this work is a novel ap-
proach for analyzing evaluation metrics for lan-
guage generation tasks using Metric Unit TesTs.
Not only is this evaluation procedure able to high-
light particular metric weaknesses, it also demon-
strates results which are far more consistent than
correlation with human judgment; a good metric
will be able to score well regardless of how noisy the
human-derived scores are. Finally, we demonstrate
the process of how this analysis can guide the devel-
opment and strengthening of newly created metrics
that are developed.
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