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Abstract

This paper addresses the problem of
speech act recognition in written asyn-
chronous conversations (e.g., fora,
emails). We propose a class of conditional
structured models defined over arbitrary
graph structures to capture the conversa-
tional dependencies between sentences.
Our models use sentence representations
encoded by a long short term memory
(LSTM) recurrent neural model. Empir-
ical evaluation shows the effectiveness
of our approach over existing ones:
(i) LSTMs provide better task-specific
representations, and (ii) the global joint
model improves over local models.

1 Introduction

Asynchronous conversations, where participants
communicate with each other at different times
(e.g., fora, emails), have become very common for
discussing events, issues, queries and life experi-
ences. In doing so, participants interact with each
other in complex ways, performing certain com-
municative acts like asking questions, requesting
information or suggesting something. These are
called speech acts (Austin, 1962).

For example, consider the excerpt of a forum
conversation from our corpus in Figure 1. The
participant who posted the first comment C1, de-
scribes his situation by the first two sentences and
then asks a question in the third sentence. Other
participants respond to the query by suggesting
something or asking for clarification. In this pro-
cess, the participants get into a conversation by
taking turns, each of which consists of one or
more speech acts. The two-part structures across
posts like ‘question-answer’ and ‘request-grant’
are called adjacency pairs (Schegloff, 1968).

C1: My son wish to do his bachelor degree in Mechanical
Engineering in an affordable Canadian university.
Human: st, Local: st, Global: st
The info. available in the net and the people who wish
to offer services are too many and some are misleading.
Human: st, Local: st, Global: st
The preliminary preparations,eligibility,the require
funds etc., are some of the issues which I wish to know
from any panel members of this forum .. (truncated)
Human: ques, Local: st, Global: st

C3 (truncated)...take a list of canadian universities and then
create a table and insert all the relevant information by
reading each and every program info on the web.
Human: sug, Local: sug, Global: sug
Without doing a research my advice would be to apply
to UVIC .. for the following reasons .. (truncated)
Human: sug, Local: sug, Global: sug
UBC is good too... but it is expensive particularly for
international students due to tuition .. (truncated)
Human: sug, Local: sug, Global: sug
most of them accept on-line or email application.
Human: st, Local: st, Global: st
Good luck !!
Human: pol, Local: pol, Global: pol

C4 snakyy21: UVIC is a short form of? I have already
started researching for my brother and found “College
of North Atlantic” and .. (truncated)
Human: ques, Local: st, Global: ques
but not sure about the reputation..
Human: st, Local: res, Global: st

C5 thank you for sharing useful tips will follow your advise.
Human: pol, Local: pol, Global: pol

Figure 1: Example conversation with Human an-
notations and automatic predictions by a Local
classifier and a Global classifier. The labels st,
ques, sug, and pol refers to Statement, Question,
Suggestion, and Polite speech acts, respectively.

Identification of speech acts is an important step
towards deep conversation analysis in these media
(Bangalore et al., 2006), and has been shown to be
useful in many downstream applications including
summarization (McKeown et al., 2007) and ques-
tion answering (Hong and Davison, 2009).

Previous attempts to automatic (sentence-level)
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speech act recognition in asynchronous conversa-
tion (Qadir and Riloff, 2011; Jeong et al., 2009;
Tavafi et al., 2013; Oya and Carenini, 2014) suffer
from at least one of the two major flaws.

Firstly, they use bag-of-word (BOW) represen-
tation (e.g., unigram, bigram) to encode lexical in-
formation in a sentence. However, consider the
suggestion sentences in the example. Arguably, a
model needs to consider the structure (e.g., word
order) and the compositionality of phrases to iden-
tify the right speech act. Furthermore, BOW rep-
resentation could be quite sparse and may not gen-
eralize well when used in classification models.

Secondly, existing approaches mostly disregard
conversational dependencies between sentences.
For instance, consider the example again, where
we tag the sentences with the human annotations
(‘Human’) and with the predictions of a local
(‘Local’) classifier that considers word order for
sentence representation but classifies each sen-
tence separately. Prediction errors are underlined
and highlighted in red. Notice the first and second
sentences of comment 4, which are tagged mistak-
enly as statement and response, respectively, by
our best local classifier. We hypothesize that some
of the errors made by the local classifier could
be corrected by employing a global joint model
that performs a collective classification taking into
account the conversational dependencies between
sentences (e.g., adjacency relations).

However, unlike synchronous conversations
(e.g., phone, meeting), modeling conversational
dependencies between sentences in asynchronous
conversation is challenging, especially in those
where explicit thread structure (reply-to relations)
is missing, which is also our case. The conver-
sational flow often lacks sequential dependencies
in its temporal order. For example, if we arrange
the sentences as they arrive in the conversation, it
becomes hard to capture any dependency between
the act types because the two components of the
adjacency pairs can be far apart in the sequence.
This leaves us with one open research question:
how to model the dependencies between sentences
in a single comment and between sentences across
different comments? In this paper, we attempt
to address this question by designing and exper-
imenting with conditional structured models over
arbitrary graph structure of the conversation.

More concretely, we make the following contri-
butions. Firstly, we propose to use Recurrent Neu-

ral Network (RNN) with Long Short Term Mem-
ory (LSTM) hidden layer to perform composition
of phrases and to represent sentences using dis-
tributed condensed vectors (i.e., embeddings). We
experiment with both unidirectional and bidirec-
tional RNNs. Secondly, we propose conditional
structured models in the form of pairwise Con-
ditional Random Field (Murphy, 2012) over ar-
bitrary conversational structures. We experiment
with different variations of this model to capture
different types of interactions between sentences
inside the comments and across the comments.
These models use the LSTM encoded vectors as
feature vectors for performing the classification
task jointly. As a secondary contribution, we also
present and release a forum dataset annotated with
a standard speech act tagset.

We train our models on different settings us-
ing synchronous and asynchronous corpora, and
evaluate on two forum datasets. Our main find-
ings are: (i) LSTM RNNs provide better repre-
sentation than BOW; (ii) Bidirectional LSTMs,
which encode a sentence using two vectors pro-
vide better representation than the unidirectional
ones; and (iii) Global joint models improve over
local models given that it considers the right
graph structure. The source code and the new
dataset are available at http://alt.qcri.
org/tools/speech-act/

2 Our Approach

Let sn
m denote the m-th sentence of comment n in

a conversation. Our framework works in two steps
as demonstrated in Figure 2. First, we use a recur-
rent neural network (RNN) to compose sentence
representations semantically from their words and
to represent them with distributed condensed vec-
tors zn

m, i.e., sentence embeddings (Figure 2a). In
the second step, a multivariate (graphical) model,
which operates on the sentence embeddings, cap-
tures conversational dependencies between sen-
tences in the conversation (Figure 2b). In the fol-
lowing, we describe the two steps in detail.

2.1 Sentence Representation

One of our main hypotheses is that a sentence rep-
resentation method should consider the word or-
der of the sentence. To this end, we use an LSTM
RNN (Hochreiter and Schmidhuber, 1997) to en-
code a sentence into a vector by processing its
words sequentially, at each time step combining
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(a) Bidirectional LSTM-based RNN model (b) Fully connected CRF model

Figure 2: Our two-step framework for speech act recognition in asynchronous conversation: (a) a bidi-
rectional LSTM encodes each sentence sn

m into a condensed vector zn
m and classifies them separately; (b)

a fully-connected CRF that takes the encoded vectors as input and performs joint learning and inference.

the current input with the previous hidden state.
Figure 4b demonstrates the process for three sen-
tences. Each word in the vocabulary V is repre-
sented by aD dimensional vector in a shared look-
up table L ∈ R|V |×D. L is considered a model
parameter to be learned. We can initialize L ran-
domly or by pretrained word embedding vectors
like word2vec (Mikolov et al., 2013a).

Given an input sentence s = (w1, · · · , wT ), we
first transform it into a feature sequence by map-
ping each tokenwt ∈ s to an index in L. The look-
up layer then creates an input vector xt ∈ RD

for each token wt. The input vectors are then
passed to the LSTM recurrent layer, which com-
putes a compositional representation

−→
h t at every

time step t by performing nonlinear transforma-
tions of the current input xt and the output of the
previous time step

−→
h t−1. Specifically, the recur-

rent layer in a LSTM RNN is constituted with hid-
den units called memory blocks. A memory block
is composed of four elements: (i) a memory cell c
(a neuron) with a self-connection, (ii) an input gate
i to control the flow of input signal into the neu-
ron, (iii) an output gate o to control the effect of the
neuron activation on other neurons, and (iv) a for-
get gate f to allow the neuron to adaptively reset
its current state through the self-connection. The
following sequence of equations describe how the
memory blocks are updated at every time step t:

it = sigh(Uiht−1 + Vixt + bi) (1)
ft = sigh(Ufht−1 + Vfxt + bf ) (2)
ct = it � tanh(Ucht−1 + Vcxt) + ft � ct−1 (3)
ot = sigh(Uoht−1 + Voxt + bo) (4)
ht = ot � tanh(ct) (5)

where Uk and Vk are the weight matrices between
two consecutive hidden layers, and between the in-

put and the hidden layers, respectively, which are
associated with gate k (input, output, forget and
cell); and and bk is the corresponding bias vector.
The symbols sigh and tanh denote hard sigmoid
and hard tan, respectively, and the symbol � de-
notes a element-wise product of two vectors.

LSTM by means of its specifically designed
gates (as opposed to simple RNNs) is capable of
capturing long range dependencies. We can in-
terpret ht as an intermediate representation sum-
marizing the past. The output of the last time step−→
hT = z thus represents the sentence, which can be
fed to the output layer of the neural network (Fig.
4b) or to other models (e.g, a fully-connected CRF
in Fig. 2b) for classification. The output layer
of our LSTM-RNN uses a softmax for multi-
class classification. Formally, the probability of
k-th class for classification into K classes is

p(y = k|s, θ) =
exp (wT

k z)∑K
k=1 exp (wT

k z)
(6)

where w are the output layer weights.

Bidirectionality The RNN described above en-
codes information that it gets only from the past.
However, information from the future could also
be crucial for recognizing speech acts. This is
specially true for longer sentences, where a uni-
directional LSTM can be limited in encoding the
necessary information into a single vector. Bidi-
rectional RNNs (Schuster and Paliwal, 1997) cap-
ture dependencies from both directions, thus pro-
vide two different views of the same sentence.
This amounts to having a backward counterpart
for each of the equations from 1 to 5. For classi-
fication, we use the concatenated vector [

−→
hT ,
←−
hT ],
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where
−→
hT and

←−
hT are the encoded vectors summa-

rizing the past and the future, respectively.

2.2 Conditional Structured Model
Given the vector representation of the sentences in
an asynchronous conversation, we explore two dif-
ferent approaches to learn classification functions.
The first and the traditional approach is to learn
a local classifier ignoring the structure in the out-
put and to use it for predicting the label of each
sentence separately. This is the approach we took
above when we fed the output layer of the LSTM
RNN with the sentence-level embeddings. How-
ever, this approach does not model the conversa-
tional dependency (e.g., adjacency relations be-
tween question-answer and request-accept pairs).

The second approach, which we adopt in this
paper, is to model the dependencies between the
output variables (labels) while learning the clas-
sification functions jointly by optimizing a global
performance criterion. We represent each conver-
sation by a graph G=(V,E). Each node i∈V is
associated with an input vector zi = zn

m, repre-
senting the features of the sentence sn

m, and an out-
put variable yi∈{1, 2, · · · ,K}, representing the
class label. Similarly, each edge (i, j)∈E is as-
sociated with an input feature vector φ(zi, zj), de-
rived from the node-level features, and an output
variable yi,j∈{1, 2, · · · , L}, representing the state
transitions for the pair of nodes. We define the fol-
lowing conditional joint distribution:

p(y|v,w, z) =
1

Z(v,w, z)

∏
i∈V

ψn(yi|z,v)

∏
(i,j)∈E

ψe(yi,j |z,w) (7)

where ψn and ψe are node and the edge factors,
and Z(.) is the global normalization constant that
ensures a valid probability distribution. We use a
log-linear representation for the factors:

ψn(yi|z,v) = exp(vTφ(yi, z)) (8)

ψe(yi,j |z,w) = exp(wTφ(yi,j , z)) (9)

where φ(.) is a feature vector derived from the in-
puts and the labels. This model is essentially a
pairwise conditional random field or PCRF (Mur-
phy, 2012). The global normalization allows CRFs
to surmount the so-called label bias problem (Laf-
ferty et al., 2001), allowing them to take long-
range interactions into account. The log likelihood
for one data point (z,y) (i.e., a conversation) is:

f(θ) =
∑
i∈V

vTφ(yi, z) +
∑

(i,j)∈E

wTφ(yi,j , z)

− logZ(v,w, z) (10)

This objective is convex, so we can use gradient-
based methods to find the global optimum. The
gradients have the following form:

f ′(v) =
∑
i∈V

φ(yi, z)− E[φ(yi, z)] (11)

f ′(w) =
∑

(i,j)∈E

φ(yi,j , z)− E[φ(yi,j , z)] (12)

where E[φ(.)] denote the expected feature vector.

Training and Inference Traditionally, CRFs
have been trained using offline methods like
limited-memory BFGS (Murphy, 2012). Online
training of CRFs using stochastic gradient de-
scent (SGD) was proposed by Vishwanathan et al.
(2006). Since RNNs are trained with online meth-
ods, to compare our two methods, we use SGD
to train our CRFs. Algorithm 1 in the Appendix
gives a pseudocode of the training procedure.

We use Belief Propagation or BP (Pearl, 1988)
for inference in our graphical models. BP is guar-
anteed to converge to an exact solution if the graph
is a tree. However, exact inference is intractable
for graphs with loops. Despite this, it has been ad-
vocated by Pearl (1988) to use BP in loopy graphs
as an approximation; see also (Murphy, 2012),
page 768. The algorithm is then called “loopy”
BP, or LBP. Although LBP gives approximate so-
lutions for general graphs, it often works well
in practice (Murphy et al., 1999), outperforming
other methods such as mean field (Weiss, 2001).

Variations of Graph Structures One of the
main advantages of our pairwise CRF is that
we can define this model over arbitrary graph
structures, which allows us to capture conver-
sational dependencies at various levels. We
distinguish between two types of dependencies:
(i) intra-comment, which defines how the labels
of the sentences in a comment are connected; and
(ii) across-comment, which defines how the labels
of the sentences across comments are connected.

Table 1 summarizes the connection types that
we have explored in our models. Each configu-
ration of intra- and across- connections yields a
different pairwise CRF model. Figure 3 shows
four such CRFs with three comments — C1 be-
ing the first comment, and Ci and Cj being two
other comments in the conversation.
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Tag Connection type Applicable to

NO No connection between nodes intra & across
LC Linear chain connection intra & across
FC Fully connected intra & across
FC1 Fully connected with first comment only across
LC1 Linear chain with first comment only across

Table 1: Connection types in CRF models.

(a) NO-NO (MaxEnt) (b) LC-LC

(c) LC-LC1 (d) LC-FC1

Figure 3: CRFs over different graph structures.

Figure 3a shows the structure for NO-NO con-
figuration, where there is no link between nodes of
both intra- and across- comments. In this setting,
the CRF model is equivalent to MaxEnt. Figure
3b shows the structure for LC-LC, where there
are linear chain relations between nodes of both
intra- and across- comments. The linear chain
across comments refers to the structure, where
the last sentence of each comment is connected
to the first sentence of the comment that comes
next in the temporal order (i.e., posting time). Fig-
ures 3c shows the CRF for LC-LC1, where sen-
tences inside a comment have linear chain connec-
tions, and the last sentence of the first comment is
connected to the first sentence of the other com-
ments. Similarly, Figure 3d shows the graph struc-
ture for LC-FC1 configuration, where sentences
inside comments have linear chain connections,
and sentences of the first comment are fully con-
nected with the sentences of the other comments.

3 Corpora

There exist large corpora of utterances annotated
with speech acts in synchronous spoken domains,
e.g., Switchboard-DAMSL or SWBD (Jurafsky et
al., 1997) and Meeting Recorder Dialog Act or
MRDA (Dhillon et al., 2004). However, such large
corpus does not exist in asynchronous domains.
Some prior work (Cohen et al., 2004; Ravi and
Kim, 2007; Feng et al., 2006; Bhatia et al., 2014)
tackles the task at the comment level, and uses

TA BC3
Total number of conv. 200 39
Avg. nb of comments per conv. 4.02 6.54
Avg. nb of sentences per conv. 18.56 34.15
Avg. nb of words per sentence 14.90 12.61

Table 2: Statistics about TA and BC3 corpora.

Tag Description TA BC3 MRDA
SU Suggestion 7.71% 5.48% 5.97%
R Response 2.4% 3.75% 15.63%
Q Question 14.71% 8.41% 8.62%
P Polite 9.57% 8.63% 3.77%
ST Statement 65.62% 73.72% 66.00%

Table 3: Distribution of speech acts in our corpora.

task-specific tagsets. In contrast, in this work we
are interested in identifying speech acts at the sen-
tence level, and also using a standard tagset like
the ones defined in SWBD and MRDA.

More recent studies attempt to solve the task at
the sentence level. Jeong et al. (2009) first created
a dataset of TripAdvisor (TA) forum conversations
annotated with the standard 12 act types defined in
MRDA. They also remapped the BC3 email cor-
pus (Ulrich et al., 2008) according to this tagset.
Table 10 in the Appendix presents the tags and
their relative frequency in the two datasets. Subse-
quent studies (Joty et al., 2011; Tavafi et al., 2013;
Oya and Carenini, 2014) use these datasets. We
also use these datasets in our work. Table 2 shows
some basic statistics about these datasets. On aver-
age, BC3 conversations are longer than TA in both
number of comments and number of sentences.

Since these datasets are relatively small in size,
we group the 12 acts into 5 coarser classes to
learn a reasonable classifier.1 More specifically,
all the question types are grouped into one gen-
eral class Question, all response types into Re-
sponse, and appreciation and polite mechanisms
into Polite class. Also since deep neural models
like LSTM RNNs require a lot of training data,
we also utilize the MRDA meeting corpus. Ta-
ble 3 shows the label distribution of the resultant
datasets. Statement is the most dominant class,
followed by Question, Polite and Suggestion.

QC3 Conversational Corpus Since both TA
and BC3 are quite small to make a general com-
ment about model performance in asynchronous

1Some prior work (Tavafi et al., 2013; Oya and Carenini,
2014) also took the same approach.

1750



Speech Act Distribution κ

Suggestion 17.38% 0.86
Response 5.24% 0.43
Question 12.59% 0.87
Polite 6.13% 0.75
Statement 58.66% 0.78

Table 4: Corpus statistics for QC3.

conversation, we have created a new dataset called
Qatar Computing Conversational Corpus or QC3.

We selected 50 conversations from a popular
community question answering site named Qatar
Living2 for our annotation. We used 3 conversa-
tions for our pilot study and used the remaining 47
for the actual study. The resultant corpus on aver-
age contains 13.32 comments and 33.28 sentences
per conversation, and 19.78 words per sentence.

Two native speakers of English annotated each
conversation using a web-based annotation frame-
work. They were asked to annotate each sentence
with the most appropriate speech act tag from the
list of 5 speech act types. Since this task is not
always obvious, we gave them detailed annota-
tion guidelines with real examples. We use Co-
hens Kappa κ to measure the agreement between
the annotators. Table 4 presents the distribution of
the speech acts and their respective κ values.After
Statement, Suggestion is the most frequent class,
followed by Question and Polite. The κ varies
from 0.43 (for Response) to 0.87 (for Question).

Finally, in order to create a consolidated dataset,
we collected the disagreements and employed a
third annotator to resolve those cases.

4 Experiments and Analysis

In this section we present our experimental set-
tings, results and analysis. We evaluate our mod-
els on the two forum corpora QC3 and TA. For
performance comparison, we use both accuracy
and macro-averaged F1 score. Accuracy gives the
overall performance of a classifier but could be bi-
ased to most populated ones. Macro-averaged F1

weights equally every class and is not influenced
by class imbalance. Statistical significance tests
are done using an approximate randomization test
based on the accuracy.3 We used SIGF V.2 (Padó,
2006) with 10,000 iterations.

2http://www.qatarliving.com/
3Significance tests operate on individual instances rather

than individual classes; thus not applicable for macro F1.

Corpora Type Train Dev. Test

QC3 asynchronous 1252 157 156
TA asynchronous 2968 372 371
BC3 asynchronous 1065 34 133
MRDA synchronous 50865 8366 10492
Total asyn. + sync. 56150 8929 11152

Table 5: Number of sentences in train, develop-
ment and test sets for different datasets.

Because of the noise and informal nature of
conversational texts, we performed a series of pre-
processing steps. We normalize all characters to
their lower-cased forms, truncate elongations to
two characters, spell out every digit and URL.
We further tokenized the texts using the CMU
TweetNLP tool (Gimpel et al., 2011).

In the following, we first demonstrate the effec-
tiveness of LSTM RNNs for learning representa-
tions of sentences automatically to identify their
speech acts. Then in subsection 4.2, we show the
usefulness of pairwise CRFs for capturing conver-
sational dependencies in speech act recognition.

4.1 Effectiveness of LSTM RNNs

To show the effectiveness of LSTMs for learn-
ing sentence representations, we split each of our
asynchronous corpora randomly into 70% sen-
tences for training, 10% for development, and
20% for testing. For MRDA, we use the same
train-test-dev split as Jeong et al. (2009). Table
5 summarizes the resultant datasets.

We compare the performance of LSTMs with
that of MaxEnt (ME) and Multi-layer Perceptron
(MLP) with one hidden layer.4 Both ME and MLP
were fed with the bag-of-word (BOW) represen-
tations of the sentence, i.e., vectors containing bi-
nary values indicating the presence or absence of
a word in the training set vocabulary.

We train the models by optimizing the cross en-
tropy using the gradient-based online learning al-
gorithm ADAM (Kingma and Ba, 2014).5 The
learning rate and other parameters were set to the
values as suggested by the authors. To avoid over-
fitting, we use dropout (Srivastava et al., 2014) of
hidden units and early stopping based on the loss
on the development set.6 Maximum number of
epochs was set to 25 for RNNs and 100 for ME
and MLP. We experimented with {0.0, 0.2, 0.4}

4More hidden layers worsened the performance.
5Other algorithms (SGD, Adagrad) gave similar results.
6l1 and l2 regularization on weights did not work well.
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dropout rates, {16, 32, 64} minibatch sizes, and
{100, 150, 200} hidden layer units in MLP and in
LSTMs. The vocabulary (V ) in LSTMs was lim-
ited to the most frequent P% (P ∈ {85, 90, 95})
words in the training corpus. We initialize the
word vectors in the loop-up table L in one of two
ways: (i) by sampling randomly from the small
uniform distribution U(−0.05, 0.05), and (ii) by
using pretrained 300 dimensional Google word
embeddings from Mikolov et al. (2013b). The di-
mension for random initialization was set to 128.

We experimented with four LSTM variations:
(i) U-LSTMr, referring to unidirectional with ran-
dom initialization; (ii) U-LSTMp, referring to uni-
directional with pretrained initialization; (iii) B-
LSTMr, referring to bidirectional with random
initialization; and (iv) B-LSTMp, referring to bidi-
rectional with pretrained initialization.

Table 6 shows the results for different models
for the data splits in Table 5. The first two rows
show the best results reported so far on the MRDA
corpus from (Jeong et al., 2009) for classifying
into 12 act types. The first row shows the results
of the model that uses n-grams and the second
row shows the results using all the features in-
cluding speaker, part-of-speech, and dependency
structure. Our LSTM RNNs and their n-gram
model therefore use the same word sequence in-
formation. To compare our results with the state
of the art, we ran our models on MRDA for both
5-class and 12-class classification tasks. The re-
sults are shown at the right most part of Table 6.

Notice that all of our LSTMs achieve state of
the art results and B-LSTMp achieves even signifi-
cantly better with 99% confidence level. This is re-
markable since our LSTMs learn the sentence rep-
resentation automatically from the word sequence
and do not use any hand-engineered features.

Now consider the asynchronous domains QC3
and TA, where we show the results of our models
based on 5-fold cross validation, in addition to the
random (20%) testset. The 5-fold setting allows
us to get more general performance of the models
on a particular corpus. The comparison between
our LSTMs shows that: (i) pretrained Google vec-
tors provide better initialization to LSTMs than the
random ones; (ii) bidirectional LSTMs outperform
their unidirectional counterparts. When we com-
pare these results with those of our baselines, the
results are disappointing; the ME and MLP us-
ing BOW outperform LSTMs by a good margin.

SU R Q P ST
SU 34 0 1 0 27
R 0 4 0 2 12
Q 0 0 64 0 13
P 0 0 1 35 6
ST 8 1 3 4 311

(a) B-LSTMp

SU R Q P ST
SU 21 1 1 0 39
R 0 6 0 1 11
Q 0 0 63 0 14
P 0 0 1 32 9
ST 8 2 0 2 316

(b) MLP

Figure 4: Confusion matrices for (a) B-LSTMp

and (b) MLP on the testsets of QC3 and TA.

However, this is not surprising since deep neural
networks like LSTMs have a lot of parameters, for
which they require a lot of data to learn from.

To validate our claim, we create another train-
ing setting CAT by merging the training and de-
velopment sets of the four corpora in Table 5 (see
the Train and Dev. columns in the last row); the
testset for each dataset however remains the same.
Table 7 shows the results of the baselines and the
B-LSTMp on the QC3 and TA testsets. In both
datasets, B-LSTMp outperforms ME and MLP
significantly. When we compare these results with
those in Table 6, we notice that B-LSTMp, by
virtue of its distributed and condensed represen-
tation, generalizes well across different domains.
In contrast, ME and MLP, because of their BOW
representation, suffer from data diversity of differ-
ent domains. These results also confirm that B-
LSTMp gives better sentence representation than
BOW, when it is given enough data.

To analyze further the cases where B-LSTMp

makes a difference, Figure 4 shows the corre-
sponding confusion matrices for B-LSTMp and
MLP on the concatenated testsets of QC3 and TA.
It is noticeable that B-LSTMp is less affected by
class imbalance and it can detect more suggestions
than MLP. This indicates that LSTM RNNs can
model the grammar of the sentence when compos-
ing the words into phrases sequentially.

4.2 Effectiveness of CRFs

To demonstrate the effectiveness of CRFs for cap-
turing inter-sentence dependencies in an asyn-
chronous conversation, we create another dataset
setting called CON, in which the random splits
are done at the conversation (as opposed to sen-
tence) level for the asynchronous corpora. This is
required because our CRF models perform joint
learning and inference based on a full conversa-
tion. As presented in Table 8, this setting contains
197 and 24 conversations for training and devel-
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QC3 TA MRDA
Testset 5 folds Testset 5 folds 5 classes 12 classes

Jeong et al. (ng) - - - - - 57.53 (83.30)
Jeong et al. (All) - - - - - 59.04 (83.49)

ME 55.12 (75.64) 50.23 (71.37) 61.4 (85.44) 59.23 (84.85) 65.25 (83.95) 57.79 (82.84)
MLP 61.30 (74.36) 54.57 (71.63) 68.17 (85.98) 62.41 (85.02) 68.12 (84.24) 58.19 (83.24)

U-LSTMr 51.57 (73.55) 48.64 (65.94) 56.54 (83.24) 56.39 (83.83) 71.29 (85.38) 58.72 (83.34)
U-LSTMp 49.41 (70.97) 50.26 (65.62) 63.12(83.78) 59.10 (83.13) 72.32 (85.19) 59.05 (84.06)

B-LSTMr 50.75 (72.26) 48.41 (66.19) 58.88 (82.97) 56.23 (83.34) 71.69 (85.62) 58.33 (83.49)
B-LSTMp 53.22 (71.61) 51.59 (68.50) 60.73 (82.97) 59.68 (84.07) 72.02 (85.33) 60.12 (84.46*)

Table 6: Macro-averaged F1 and raw accuracy (in parenthesis) for baselines and LSTM variants on the
testset and 5-fold splits of different corpora. For MRDA, we use the same train-test-dev split as (Jeong
et al., 2009). Accuracy significantly superior to state-of-the-art is marked with *.

QC3 (Testset) TA (Testset)

ME 50.64 (71.15) 72.49 (84.10)
MLP 58.60 (74.36) 73.07 (86.29)
B-LSTMp 66.40 (80.65*) 73.14 (87.01*)

Table 7: Results on CAT dataset.

Train Dev Test

QC3 38 (1332) 4 (111) 5 (122)
TA 160 (2957) 20 (310) 20 (444)
Total 197 (4289) 24 (421) 25 (566)

Table 8: Setting for CON dataset. The numbers in-
side parentheses indicate the number of sentences.

opment, respectively.7 The testsets contain 5 and
20 conversations for QC3 and TA, respectively.

As baselines, we use three models: (i) MEb,
a MaxEnt using BOW representation; (ii) B-
LSTMp, which is now trained on the concatenated
set of sentences from MRDA and CON training
sets; and (iii) MEe, a MaxEnt using sentence em-
beddings extracted from the B-LSTMp, i.e., the
sentence embeddings are used as feature vectors.

We experiment with the CRF variants in Table
1. The CRFs are trained on the CON training set
using the sentence embeddings that are extracted
by applying the B-LSTMp model, as was done
with MEe. Table 9 shows our results. We notice
that CRFs generally outperform MEs in accuracy.
This indicates that there are conversational depen-
dencies between the sentences in a conversation.

When we compare between CRF variants, we
notice that the model that does not consider any
link across comments perform the worst; see CRF

(LC-NO). A simple linear chain connection be-
tween sentences in their temporal order does not

7We use the concatenated sets as train and dev. sets.

QC3 TA

MEb 56.67 (67.21) 63.29 (84.23)
B-LSTMp 65.15 (77.87) 66.93 (85.13)
MEe 59.94 (77.05) 59.55 (85.14)

CRF (LC-NO) 62.20 (77.87) 60.30 (85.81)
CRF (LC-LC) 62.35 (78.69) 60.30 (85.81)
CRF (LC-LC1) 65.94 (80.33*) 61.58 (86.54)
CRF (LC-FC1) 61.18 (77.87) 60.00 (85.36)
CRF (FC-FC) 64.54 (79.51*) 61.64 (86.81*)

Table 9: Results of CRFs on CON dataset.

improve much (CRF (LC-LC)), which indicates
that the widely used linear chain CRF (Lafferty
et al., 2001) is not the most appropriate model
for capturing conversational dependencies in these
conversations. The CRF (LC-LC1) is one of the
best performing models and perform significantly
(with 99% confidence) better than B-LSTMp.8

This model considers linear chain connections be-
tween sentences inside comments and only to the
first comment. Note that both QC3 and TA are
forum sites, where participants in a conversation
interact mostly with the person who posts the first
comment asking for some information. This is in-
teresting that our model can capture this aspect.

Another interesting observation is that when we
change the above model to consider relations with
every sentence in the first comment (CRF (LC-
FC1)), this degrades the performance. This could
be due to the fact that the information seeking per-
son first explains her situation, and then asks for
the information. Others tend to respond to the re-
quested information rather than to her situation.
The CRF (FC-FC) also yields as good results as
CRF (LC-LC1). This could be attributed to the ro-
bustness of the fully-connected CRF, which learns

8Significance was computed on the concatenated testset.

1753



from all possible relations.
To see some real examples in which CRF by

means of its global learning and inference makes
a difference, let us consider the example in Figure
1 again. We notice that the two sentences in com-
ment C4 were mistakenly identified as Statement
and Response, respectively, by the B-LSTMp local
model. However, by considering these two sen-
tences together with others in the conversation, the
global CRF (FC-FC) model could correct them.

5 Related Work

Three lines of research are related to our work:
(i) semantic compositionality with LSTM RNNs,
(ii) conditional structured models, and (iii) speech
act recognition in asynchronous conversations.

LSTM RNNs for composition Li et al. (2015)
compare recurrent neural models with recursive
(syntax-based) models for several NLP tasks and
conclude that recurrent models perform on par
with the recursive for most tasks (or even bet-
ter). For example, recurrent models outperform
recursive on sentence level sentiment classifica-
tion. This finding motivated us to use recurrent
models rather than recursive. The application of
LSTM RNNs to speech act recognition is novel to
the best of our knowledge. LSTM RNNs have also
been applied to sequence tagging in opinion min-
ing (Irsoy and Cardie, 2014; Liu et al., 2015).

Conditional structured models There has been
an explosion of interest in CRFs for solving struc-
tured output problems in NLP; see (Smith, 2011)
for an overview. Linear chain (for sequence label-
ing) and tree structured CRFs (for parsing) are the
common ones in NLP. However, speech act recog-
nition in asynchronous conversation posits a dif-
ferent problem, where the challenge is to model ar-
bitrary conversational structures. In this work we
propose a general class of models based on pair-
wise CRFs that work on arbitrary graph structures.

Speech act recognition in asynchronous conver-
sation Jeong et al. (2009) use semi-supervised
boosting to tag the sentences in email and forum
discussions with speech acts by adapting knowl-
edge from spoken conversations. Other sentence-
level approaches use supervised classifiers and se-
quence taggers (Qadir and Riloff, 2011; Tavafi et
al., 2013; Oya and Carenini, 2014).

Cohen et al. (2004) first use the term email
speech act for classifying emails based on their

acts (deliver, meeting). Their classifiers do not
capture any contextual dependencies between the
acts. To model contextual dependencies, Carvalho
and Cohen (2005) use a collective classification
approach with two different classifiers, one for
content and one for context, in an iterative algo-
rithm. Our approach is similar in spirit to their ap-
proach with three crucial differences: (i) our CRFs
are globally normalized to surmount the label bias
problem, where their classifiers are normalized lo-
cally; (ii) the graph structure of the conversation
is given in their case, which is not the case with
ours; and (iii) their approach works at the com-
ment level, where we work at the sentence level.

6 Conclusions and Future Work

We have presented a two-step framework for
speech act recognition in asynchronous conversa-
tion. A LSTM RNN first composes sentences into
vector representations by considering the word or-
der. Then a pairwise CRF jointly models the inter-
sentence dependencies in the conversation. We ex-
perimented with different LSTM variants (uni- vs.
bi-directional, random vs. pretrained initializa-
tion), and different CRF variants depending on the
underlying graph structure. We trained our models
on many different settings using synchronous and
asynchronous corpora and evaluated on two forum
datasets, one of which is presented in this work.

Our results show that LSTM RNNs provide bet-
ter representations but requires more data, and
global joint models improve over local models
given that it considers the right graph structure.

In the future, we would like to combine CRFs
with LSTMs for doing the two steps jointly, so that
the LSTMs can learn the embeddings using the
global thread-level feedback. This would require
the backpropagation algorithm to take error sig-
nals from the loopy BP inference. We would also
like to apply our models to conversations, where
the graph structure is extractable using the meta
data or other clues, e.g., the fragment quotation
graphs for email threads (Carenini et al., 2008).
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A Appendix

Algorithm 1: Online learning algorithm for
conditional random fields

1. Initialize the model parameters v and w;
2. repeat

for each thread G = (V,E) do
a. Compute node and edge factors
ψn(yi|z,v) and ψe(yi,j |z,w);
b. Infer node and edge marginals
using sum-product loopy BP;
c. Update: v = v − η 1

|V |f
′(v);

d. Update: w = w − η 1
|E|f

′(w) ;
end

until convergence;

Tag Description BC3 TA
S Statement 69.56% 65.62%
P Polite mechanism 6.97% 9.11%
QY Yes-no question 6.75% 8.33%
AM Action motivator 6.09% 7.71%
QW Wh-question 2.29% 4.23%
A Accept response 2.07% 1.10%
QO Open-ended question 1.32% 0.92%
AA Acknowledge and appreciate 1.24% 0.46%
QR Or/or-clause question 1.10% 1.16%
R Reject response 1.06% 0.64%
U Uncertain response 0.79% 0.65%
QH Rhetorical question 0.75% 0.08%

Table 10: Dialog act tags and their relative fre-
quencies in the BC3 and TA corpora.
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