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Abstract

We propose a new task in the field of
computational argumentation in which we
investigate qualitative properties of Web
arguments, namely their convincingness.
We cast the problem as relation classifica-
tion, where a pair of arguments having the
same stance to the same prompt is judged.
We annotate a large datasets of 16k pairs
of arguments over 32 topics and investi-
gate whether the relation “A is more con-
vincing than B” exhibits properties of total
ordering; these findings are used as global
constraints for cleaning the crowdsourced
data. We propose two tasks: (1) predicting
which argument from an argument pair is
more convincing and (2) ranking all argu-
ments to the topic based on their convinc-
ingness. We experiment with feature-rich
SVM and bidirectional LSTM and obtain
0.76-0.78 accuracy and 0.35-0.40 Spear-
man’s correlation in a cross-topic evalua-
tion. We release the newly created corpus
UKPConvArg1 and the experimental soft-
ware under open licenses.

1 Introduction

What makes a good argument? Despite the re-
cent achievements in computational argumenta-
tion, such as identifying argument components
(Habernal and Gurevych, 2015; Habernal and
Gurevych, 2016), finding evidence for claims
(Rinott et al., 2015), or predicting argument
structure (Peldszus and Stede, 2015; Stab and
Gurevych, 2014), this question remains too hard
to be answered.

Even Aristotle claimed that perceiving an argu-
ment as a “good” one depends on multiple fac-
tors (Aristotle and Kennedy (translator), 1991)

— not only the logical structure of the argument
(logos), but also on the speaker (ethos), emo-
tions (pathos), or context (cairos) (Schiappa and
Nordin, 2013). Experiments also show that differ-
ent audiences perceive the very same arguments
differently (Mercier and Sperber, 2011). A solid
body of argumentation research has been devoted
to the quality of arguments (Walton, 1989; John-
son and Blair, 2006), giving more profound cri-
teria that “good” arguments should fulfill. How-
ever, the empirical evidence proving applicabil-
ity of many theories falls short on everyday argu-
ments (Boudry et al., 2015).

Since the main goal of argumentation is persua-
sion (Nettel and Roque, 2011; Mercier and Sper-
ber, 2011; Blair, 2011; OKeefe, 2011) we take
a pragmatic perspective on qualitative properties
of argumentation and investigate a new high-level
task. We asked whether we could quantify and
predict how convincing an argument is.

Prompt: Should physical education be mandatory in

schools? Stance: Yes!

Argument 1 Argument 2
physical education should be

mandatory cuhz 112,000 peo-

ple have died in the year 2011

so far and it’s because of the

lack of physical activity and

people are becoming obese!!!!

YES, because some

children don’t under-

stand anything excect

physical education

especially rich children

of rich parents.

Figure 1: Example of an argument pair.

If we take Argument 1 from Figure 1, assigning
a single “convincingness score” is highly subjec-
tive, given the lack of context, reader’s prejudice,
beliefs, etc. However, when comparing both argu-
ments from the same example, one can decide that
A1 is probably more convincing than A2, because
it uses at least some statistics, addresses the health
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factor, and A2 is just harsh and attacks.1 We adapt
pairwise comparison as our backbone approach.

We propose a novel task of predicting con-
vincingness of arguments in an argument pair,
as well as ranking arguments related to a certain
topic. Since no data for such a task are avail-
able, we create a new annotated corpus. We em-
ploy SVM model with rich linguistic features as
well as bidirectional Long Short-Term Memory
(BLSTM) neural networks because of their excel-
lent performance across various end-to-end NLP
tasks (Goodfellow et al., 2016; Piech et al., 2015;
Wen et al., 2016; Dyer et al., 2015; Rocktäschel et
al., 2016).

Main contributions of this article are (1) large
annotated dataset consisting of 16k argument
pairs with 56k reasons in natural language
(700k tokens), (2) thorough investigation of
the annotated data with respect to properties
of convincingness as a measure, (3) a SVM
model and end-to-end BLSTM model. The an-
notated data, licensed under CC-BY-SA license,
and the experimental code are publicly avail-
able at https://github.com/UKPLab/
acl2016-convincing-arguments. We
hope it will foster future research in computational
argumentation and beyond.

2 Related Work

Recent years can be seen as a dawn of computa-
tional argumentation – an emerging sub-field of
NLP in which natural language arguments and
argumentation are modeled, searched, analyzed,
generated, and evaluated. The main focus has been
paid to analyzing argument structures, under the
umbrella entitled argumentation mining.

Web discourse as a data source has been ex-
ploited in several tasks in argumentation mining,
such as classifying propositions in user comments
into three classes (verifiable experiential, verifi-
able non-experiential, and unverifiable) (Park and
Cardie, 2014), or mapping argument components
to Toulmin’s model of argument in user-generated
Web discourse (Habernal and Gurevych, 2015), to
name a few. While these approaches are crucial for
understanding the structure of an argument, they
do not directly address any qualitative criteria of
argumentation.

Argumentation quality has been an active topic

1These are actual reasons provided by annotators, as will
be explained later in Section 3.

among argumentation scholars. Walton (1989)
discusses validity of arguments in informal logic,
while Johnson and Blair (2006) elaborate on crite-
ria for practical argument evaluation (namely Rel-
evance, Acceptability, and Sufficiency). Yet, em-
pirical research on argumentation quality does not
seem to reflect these criteria and leans toward sim-
plistic evaluation using argument structures, such
as how many premises support a claim (Stegmann
et al., 2011), or by the complexity of the ana-
lyzed argument scheme (Garcia-Mila et al., 2013).
To the best of our knowledge, there have been
only few attempts in computational argumentation
that go deeper than analyzing argument structures
(e.g., (Park and Cardie, 2014) mentioned above).
Persing and Ng (2015) model argument strength in
persuasive essays using a manually annotated cor-
pus of 1,000 documents labeled with a 1–4 score
value.

Our newly created corpus of annotated pairs
of arguments might resemble recent large-scale
corpora for textual inference. Bowman et al.
(2015) introduced a 570k sentence pairs writ-
ten by crowd-workers, the largest corpus to date.
Whereas their task is to classify whether the sen-
tence pair represents entailment, contradiction, or
is neutral (thus heading towards a deep semantic
understanding), our goal is to assess the pragmat-
ical properties of the given multiple sentence-long
arguments (to which extent they fulfill the goal of
persuasion). Moreover, each of our annotated ar-
gument pairs is accompanied with five textual rea-
sons that explain the rationale behind the labeler’s
decision. This is, to the best of our knowledge, a
unique novel feature of our data.

Pairwise assessment for obtaining relative pref-
erence was examined by (Chen et al., 2013),
among many others.2 Their system was tested
on ranking documents by their reading difficulty.
Relative preference annotations have also been
heavily employed in assessing machine translation
(Aranberri et al., 2016). By contrast to our work,
the underlying relations (reading difficulty 1-12 or
better translation) have well known properties of
total ordering, while convincingness of arguments
is a yet unexplored task, thus no assumptions can
be made apriori. There is also a substantial body
of work on learning to rank, where also a pair-
wise approach is widely used (Cao et al., 2007).
These methods have been traditionally used in IR,

2See (Shah et al., 2015) for a recent overview.
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where the retrieved documents are ranked accord-
ing to their relevance and pairs of documents are
automatically sampled.

Employing LSTM for natural language in-
ference tasks has recently gained popularity
(Rocktäschel et al., 2016; Wang and Jiang, 2016;
Cheng et al., 2016). These methods are usually
tested on the SNLI data introduced above (Bow-
man et al., 2015).

3 Data annotation

Since assessing convincingness of a single argu-
ment directly is a very subjective task with high
probability of introducing annotator’s bias (be-
cause of personal preferences, beliefs, or back-
ground), we cast the problem as a relation anno-
tation task. Given two arguments, one should be
selected as more convincing, or they might be both
equally convincing (see an example in Figure 1).

3.1 Sampling annotation candidates

Sampling large sets of arguments for annotation
from the Web poses several challenges. First, we
must be sure that the obtained texts are actual argu-
ments. Second, the context of the argument should
be known (the prompt and the stance). Finally, we
need sources with permissive licenses, which al-
low us to release the resulting corpus further to the
community. These criteria are met by arguments
from two debate portals.3

We will use the following terminology. We use
topic to refer to a subset of an on-line debate with
a given prompt and a certain stance (for exam-
ple, ”Should physical education be mandatory in
schools? – yes” is considered as a single topic).
Each debate has two topics, one for each stance.
Argument is a single comment directly addressing
the debate prompt. Argument pair is an ordered
set of two arguments (A1 and A2) belonging to the
same topic; see Figure 1.

We automatically selected debates that con-
tained at least 25 top-level4 arguments that were
10-110 words long (the mean for all top-level ar-
guments was 66 ± 130 and the median 36, so we
excluded the lengthy outliers in our sampling). We
manually filtered out obvious silly debates (e.g.,
’Superman vs. Batman’) and ended up with 32
topics (the full topic list is presented together with

3Namely, createdebate.com and procon.org.
4Such arguments directly address the topic and are not a

part of a threaded discussion.

experimental results later in Table 3). From each
topic we automatically sampled 25-35 random ar-
guments and created (n ∗ (n − 1)/2) argument
pairs by combining all selected arguments. Sam-
pling argument pairs only from the same topics
and not combining opposite stances was a design
decision how to mitigate annotators’ bias.5 The
order of arguments A1 and A2 in each argument
pair was randomly shuffled. In total we sampled
16,927 argument pairs.

3.2 Crowdsourcing annotations
Let us extend our terminology. Worker is a single
annotator in Amazon Mechanical Turk. Reason is
an explanation why A1 is more convincing than A2
(or the other way round, or why they are equally
convincing). Gold reason is a reason whose label
matches the gold label in the argument pair (see
Figure 2).

In the HIT, workers were presented with an ar-
gument pair, the prompt, and the stance as in Fig-
ure 1. They had to choose either “A1 is more con-
vincing than A2” (A1>A2), “A1 is less convinc-
ing than A2” (A1<A2), or “A1 and A2 are con-
vincing equally” (A1=A2). Moreover, they were
obliged to write the reason 30-140 characters long.
An example of fully annotated argument pair is
shown in Figure 2. The workers were also pro-
vided with clear and crisp instructions (e.g., do not
judge the truth of the proposition; be objective; do
not express your position; etc.).

All 16,927 argument pairs were annotated by
five workers each (85k assignments in total). We
also allowed workers to express their own stand-
point toward the topics. While 66% of workers
had no standpoint, 14% had the opposite view
and 20% the same view. This indicates that there
should be no systematic bias in the data. Crowd-
sourcing took about six weeks in 2016 plus two
weeks of pilot studies. In total, about 3,900 work-
ers participated. Total costs including pilot studies
and bonus payments were 5,520 USD.

3.3 Quality control and agreement
We performed several steps in controlling the
quality of the crowdsourced data. First, we al-
lowed only workers from the U.S. with≥ 96% ac-
ceptance rate to work on the task. Second, we em-
ployed MACE (Hovy et al., 2013) for estimating

5As some topics touch the very fundamental human be-
liefs and values, such as faith, trust, or sexuality, it is hard to
put them consciously aside when assessing convincingness.
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Argument 1 Argument 2
physical education should

be mandatory cuhz 112,000

people have [...]

YES, because some chil-

dren don’t understand any-

thing expect [...]

• A1>A2, because A1 uses statistics, and doesn’t make
assumptions.

• A1>A2, because A1 talks about the importance of
health.

• A1>A2, because A1 provides a health-related argu-
ment.

• A1>A2, because A2 is very harsh and attacks
• A1=A2, because Neither A1 or A2 cite evidence to

support their claims.

Figure 2: Example of an argument pair annotated
by five workers. The arguments are shortened
versions of Figure 1. The explanations (called
reasons) after ‘because’ are written by workers;
the estimated gold label for this pair is probably
A1>A2, thus there are four gold reasons.

the true labels and ranking the annotators. We set
the MACE’s parameter threshold to 0.95 to keep
only instances whose entropy is among the 95%
best estimates. Third, we manually checked all
the reasons for each worker. With paying more
attention to workers with low MACE scores, we
rejected all assignments of workers if they (1)
copied&pasted the same or very similar reasons
across argument pairs, (2) were only copying or
rephrasing the texts from the arguments, (3) pro-
vided their opinion or were arguing, (4) had many
typos or provided obvious nonsense. In total, we
rejected 1161 assignments.

We do not report any ‘standard’ inter-annotator
agreement measures such as Fleiss’ κ or Krippen-
dorff’s α, as their suitability for crowdsourcing
has been recently disputed (Passonneau and Car-
penter, 2014). However, in order to estimate the
human performance, we analyzed the output of the
pilot study. For each argument pair, we took the
best-ranked worker for that particular pair (worker
ranks are globally estimated by MACE) and com-
puted her accuracy against the estimated gold la-
bels.6 The best-ranked worker for each argument
pair is not necessarily the globally best-ranked
worker; in the pilot study, the average global rank
of this hypothetical worker was 11 ± 6.6. This
rank can be interpreted as a decently performing
worker; the obtained score reached 0.935 accu-
racy.

6A similar approach was recently reported by Nakov et al.
(2016).

3.4 Examining properties of convincingness

3.4.1 What makes a convincing argument?
We manually examined a small sample of 200
gold reasons to find out what makes one argu-
ment more convincing than the other. A very com-
mon type of answer mentioned giving examples
or actual reasons (“A1 cited several reasons to
back up their argument.”) and facts (“A1 cites an
outside source which can be more credible than
opinion”). This is not surprising, as argumenta-
tion is often perceived as reason giving (Freeley
and Steinberg, 2008). Others point out strengths
in explaining the reasoning or logical coherence
(“A1 gives a succinct and logical answer to the ar-
gument. A2 strays away from the argument in the
response.”). The confirmation bias (Mercier and
Sperber, 2011) also played a role (“A1 argues both
viewpoints, A2 chooses a side.”). Given the noisi-
ness of Web data, some of the arguments might be
non-sense, which was also pointed out as a reason
(“A1 attempts to argue that since porn exists, we
should watch it. A2 doesn’t make sense or answer
the question.”). Apart from the logical structure of
the argument, emotional aspects and rhetorical
moves were also spotted (“A1 contributes a view-
point based on morality, which is a stronger argu-
ment than A2, which does not argue for anything
at all.”, or “A1 calls for the killing of all politi-
cians, which is an immature knee-jerk reaction to
a topic. A2’s argument is more intellectually pre-
sented.”).

3.4.2 Transitivity evaluation using argument
graphs

The previous section shows a variety of reasons
that makes one argument more convincing than
other arguments. Considering A1 is more con-
vincing than A2 as a binary relation R, we thus
asked the following research question: Is convinc-
ingness a measure with total strict order or strict
weak order? Namely, is relation R that compares
convingcingness of two arguments transitive, anti-
symmetric, and total?

In particular, does is exhibit properties such
that if A≥B and B≥C, then A≥C (total order-
ing)? We can treat arguments as nodes in a graph
and argument pairs as graph edges. We will
denote such graph as argument graph (and use
nodes/arguments and edges/pairs interchangeably
in this section).7 As the sampled argument pairs

7Argument pair A>B becomes a directed edge A → B
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contained all argument pair combinations for each
topic, we ended up with an almost fully connected
argument graph for each topic (remember that we
discarded 5% of argument pair annotations with
lowest reliability). We further investigate the prop-
erties of the argument graphs. Transitivity is only
guaranteed, if the argument graph is a DAG (di-
rected acyclic graph).

Building argument graph from crowdsourced
argument pairs We build the argument graph
iteratively by sampling annotated argument pairs
and adding them as graph edges (see Algorithm
1). We consider two possible scenarios in the
graph building algorithm. In the first scenario, we
accept only argument pairs without equivalency
(thus A>B is allowed but A=B is forbidden and
discarded). The second scenario accepts all pairs,
but since the resulting graph must be DAG, equiv-
alent arguments are merged into one node. We use
Johnson’s algorithm for finding all elementary cy-
cles in DAG (Johnson, 1975).

Argument pair weights By building argument
graph from all pairs, introducing cycles into the
graph seems to be inevitable, given a certain
amount of noise in the annotations. We asked the
following question: to which extent does occur-
rence of cycles in an argument graph depend on
the quality of annotations?

We thus compute a weight for each argument
pair. Let ei be a particular annotation pair (edge).
Let Gi be all labels in that pair that match the pre-
dicted gold label, and Oi opposite labels (different
from the gold label). Let v be a single worker’s
vote and cv a global worker’s competence score.
Then the weight w of edge ei is computed as fol-
lows:

wei = σ

 ∑
v∈Gi

cv − λ
∑
v∈Oi

cv

 (1)

where σ is a sigmoid function σ = 1
1+e−x to

squeeze the weight into the (0, 1) interval and λ
is a penalty for opposite labels (we set empirically
λ to 10.0 to ensure strict penalization). For exam-
ple, if the predicted gold label from Figure 2 were
A1>A2, then Gi would contain four votes and Oi

one vote (the last one).
This weight allows us to sort argument pairs

before sampling them for building the argument

in the argument graph.

graph. We test three following strategies. As a
baseline, we use random shuffling (Rand), where
no prior information about the weight of the pairs
is given. The other two sorting algorithms use the
argument pair weight computed by Equation 1. As
the worst case scenario, we sort the pairs in as-
cending order (Asc), which means that the “worse”
pairs come first to the graph building algorithm.
We used this scenario to see how much the prior
pair weight information actually matters, because
building a graph preferably from bad pair label es-
timates should cause more harm. Finally, the Desc
algorithm sorts the pairs given their weight in de-
scending order (the “better” estimates come first).

Algorithm 1: Building DAG from sorted ar-
gument pairs.

input : argumentPairs; sortingAlg
output: DAG
SortPairs(argumentPairs, sortingAlg);
finalPairs← [];
foreach pair in argumentPairs do

currentPairs← [finalPairs, pair ];
/* cluster edges labeled as equal so they will be
treated as a single node */
clusters← clusterEqNodes(currentPairs);
/* wire the pairs into directed graph */
g← buildGraph(currentPairs, clusters);
if hasCycles(g) then

// report about breaking DAG
else

finalPairs += pair;

return buildGraph(finalPairs);

Measuring transitivity score We measure how
“good” the graph is by a transitivity score. Here
we assume that the graph is a DAG. Given two
nodesA and Z, let PL be the longest path between
these nodes and PS the shortest path, respectively.
For example, let PL = A → B → C → Z and
PS = A→ D → Z. Then the transitivity score is
the ratio of longest and shortest path |PL|

|PS | . (which
is 1.5 is our example). The average transitivity
score is then an average of transitivity scores for
each pair of nodes from the graph that are con-
nected by two or more paths. Analogically, the
maximum transitivity score is the maximal value.
We restrict the shortest path to be a direct edge
only.

The motivation for the transitivity score is the
following. If the longest path between A and Z
(A → . . . → Z) consists of 10 other nodes, than
the total ordering property requires that there also
exists a direct edge A → Z. This is indeed em-
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Figure 3: Final argument graph example (topic:
“Christianity or Atheism? Atheism”). Node la-
bels: I/O/Tr (I: incoming edges, O: outgoing
edges, Tr: maximum transitivity score). Lighter
nodes have prevailing O; larger nodes have higher
absolute number of O.

pirically confirmed by the presence of the shortest
path betweenA andZ. Thus the longer the longest
path and the shorter the shortest path are on aver-
age, the bigger empirical evidence is given about
the transitivity property.

Figure 3 shows an example of argument graph
built using only non-equivalent pairs and desc
prior sort or argument pairs. There are few “bad”
arguments in the middle (many incoming edges,
none outcoming) and few very convincing argu-
ments (large circles). Notice the high maximum
transitivity score even for medium-sized nodes.

Observations First, let us compare the different
sorting algorithms for each sampling strategy. As
Table 1 shows, on average, 158 pairs are ignored
in total when all pairs are used for sampling (26
removed by MACE and 132 by the graph building
algorithm), while 164 pairs are ignored when only
non-equivalent pairs are sampled (129 had already
been removed apriori—26 by MACE and 103 as
equivalent pairs—and 35 by the graph algorithm).

The results show a tendency that, when sam-
pling annotated argument pairs for building a
DAG, sorting argument pairs by their weight based
on workers’ scores influences the number of pairs
that break the DAG by introducing cycles. In par-

ticular, starting with more confident argumenta-
tion pairs, the graph grows bigger while keeping
its DAG consistency. The presence of the equal
relation causes cycles to break the DAG sooner
as compared to argument pairs in which one ar-
gument is more convincing than the other. We in-
terpret this finding as that it is easier for humans to
judge A>B than A=B consistently across all pos-
sible pairs of arguments from a given topic.

3.4.3 Gold-standard corpora
Our experiments show that convincingness be-
tween a pair of arguments exhibits properties
of strict total order when the possibility of two
equally convincing arguments is prohibited. We
thus used the above-mentioned method for graph
building as a tool for posterior gold data filter-
ing. We discard the equal argument pairs in ad-
vance and filter out argument pairs that break the
DAG properties. As a result, a set of 11,650 ar-
gument pairs labeled as either A>B or A<B re-
mains, which is summarized in Table 2. We call
this corpus UKPConvArgStrict.

However, since the total strict ordering prop-
erty of convincingness is only an empirically con-
firmed working hypothesis, we also propose an-
other realistic application. We construct a mixed
graph by treating equal argument pairs (A=B)
as undirected edges. Using PageRank, we rank
the arguments (nodes) globally. The higher the
PageRank for a particular node is, the “less con-
vincing“ the argument is (has a global higher prob-
ability of incoming edges). This allows us to rank
all arguments for a particular topic. We call this
dataset UKPConvArgRank (see Table 2).

We also release the full dataset UKPConvAr-
gAll. In this data, no global filtering using graph
construction methods is applied, only the local
pre-filtering using MACE. We believe this dataset
can be used as a supporting training data for some
tasks that do not rely on the property of total or-
dering. Along the actual argument texts, all the
gold-standard corpora contain the reasons as well
as full workers’ information and debate meta-data.

4 Experiments

We experiment with two machine learning algo-
rithms on two tasks using the two new bench-
mark corpora (UKPConvArgStrict and UKPCon-
vArgRank). In both tasks, we perform 32-fold
cross-topic cross-validation (one topic is test data,
remaining 31 topics are training ones). This rather
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All pairs No equivalency pairs
Rand. Asc. Desc. Rand. Asc. Desc.

Fixed values All annotated pairs 529 529 529 529 529 529
Pairs removed apriori 26 26 26 129 129 129

Before first cycle
detected

Edges in graph 32 16 86 84 37 199
Nodes in graph 20 16 25 32 28 33
Pairs sampled 44 26 132 84 37 199
First cycle length 1,8 2,0 1,5 4,2 3,9 3,4

Final statistics after all
pairs sampled

avg. Transitivity score 6,4 5,9 6,8 11,1 11,3 10,8
max. Transitivity score 14,5 13,2 15,5 24,4 25,6 24,0
Edges in graph 105 81 114 357 339 365
Nodes in graph 16 14 16 33 33 33
Pairs sampled 339 294 369 356 339 364
Ignored pairs 162 208 132 42 60 35

Table 1: Values averaged over all 32 topics reported by different sampling strategies and scenarios for
argument graph building.

Dataset Size Instance type Size per topic Gold label distribution Gold reasons
a1 a2 eq size tokens

UKPConvArgAll 16,081 argument pair 502.5± 91.3 6,398 6,394 3,289 56,446 696,537
UKPConvArgStrict 11,650 argument pair 364.1± 71.1 5,872 5,778 0 44,121 547,057
UKPConvArgRank 1,052 argument 32.9± 3.2 — —

Table 2: Properties of resulting gold data.

challenging setting ensures that no arguments are
seen in both training and test data.

4.1 Predicting convincingness of pairs

Since this task is a binary classification and the
classes are equally distributed (see Table 2), we
report accuracy and average the final score over
folds (Forman and Scholz, 2010).

Methods As a “traditional” method, we employ
SVM with RBF kernel8 based on a large set of
rich linguistic features. They include uni- and
bi-gram presence, ratio of adjective and adverb
endings that may signalize neuroticism (Corney et
al., 2002), contextuality measure (Heylighen and
Dewaele, 2002), dependency tree depth, ratio of
exclamation or quotation marks, ratio of modal
verbs, counts of several named entity types, ra-
tio of past vs. future tense verbs, POS n-grams,
presence of dependency tree production rules,
seven different readability measures (e.g., Ari
(Senter and Smith, 1967), Coleman-Liau (Cole-
man and Liau, 1975), Flesch (Flesch, 1948), and
others), five sentiment scores (from very nega-
tive to very positive) (Socher et al., 2013), spell-
checking using standard Unix words, ratio of su-
perlatives, and some surface features such as sen-
tence lengths, longer words count, etc. The result-
ing feature vector dimension is about 64k.

We also use bidirectional Long Short-Term

8Using LISBVM (Chang and Lin, 2011).

Memory (BLSTM) neural network for end-to-end
processing.9 The input layer relies on pre-trained
word embeddings, in particular GloVe (Penning-
ton et al., 2014) trained on 840B tokens from
Common Crawl;10 the embedding weights are fur-
ther updated during training. The core of the
model consists of two bi-directional LSTM net-
works with 64 output neurons each. Their output
is then concatenated into a single drop-out layer
and passed to the final sigmoid layer for binary
predictions. We train the network with ADAM op-
timizer (Kingma and Ba, 2015) using binary cross-
entropy loss function and regularize by early stop-
ping (5 training epochs) and high drop-out rate
(0.5) in the dropout layer. For both models, each
training/test instance simply concatenates A1 and
A2 from the argument pair.

Results and error analysis As shown in Table
3, SVM (0.78) outperforms BSLTM (0.76) with a
subtle but significant difference. It is also apparent
that some topics are more challenging regardless
of the system (e.g., “Is it better to have a lousy fa-
ther or to be fatherless? – Lousy father”). Both
systems outperform a simple baseline (lemma n-
gram presence features with SVM, not reported
in detail, achieved 0.65 accuracy) but still do not
reach the human upper bounds (0.93 as reported in
Section 3.3).

9Using http://keras.io/
10http://nlp.stanford.edu/projects/

glove/
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Topic SVM BLSTM
Ban Plastic Water
Bottles?

No .85 .76
Yes .90 .83

Christianity or Atheism Atheism .81 .80
Christianity .68 .75

Evolution vs. Creation Creation .84 .88
Evolution .66 .77

Firefox vs. Internet
Explorer

IE .84 .81
Firefox .82 .78

Gay marriage - right or
wrong?

Right .76 .74
Wrong .82 .87

Should parents use
spanking?

No .84 .78
Yes .79 .68

If your spouse
committed murder [...]

No .71 .64
Yes .79 .72

India has the potential
to lead the world

No .82 .77
Yes .69 .79

Is it better to have a
lousy father or to be
fatherless?

Fatherless .77 .69
Lousy fa-
ther

.67 .60

Is porn wrong? No .82 .79
Yes .85 .85

Is the school uniform a
good or bad idea?

Bad .75 .78
Good .83 .74

Pro choice vs. Pro life Choice .71 .68
Life .79 .80

Should physical edu.
be mandatory?

No .79 .80
Yes .79 .78

TV is better than books No .78 .73
Yes .78 .75

Personal pursuit or
common good?

Common .72 .78
Personal .67 .68

Farquhar as the founder
of Singapore

No .79 .63
Yes .85 .76

Average .78 .76

Table 3: Accuracy results on UKPConvArgStrict
data. The difference between SVM and bi-
directional LSTM is significant, p = 0.0414 using
two-tailed Wilcoxon signed-rank test.

We examined about fifty random false predic-
tions to gain some insight into the limitations of
both systems. We looked into argument pairs,
in which both methods failed, as well as into
instances where only one model was correct.
BLSTM won in few cases by properly catching
jokes or off-topic arguments; SVM was properly
catching all-upper-case arguments (considered as
less convincing). By examining failures common
to both systems, we found several cases where the
prediction was wrong due to very negative senti-
ment (which might be a sign of the less convinc-
ing argument), but in other cases an argument with
strong negative sentiment was actually the more
convincing one. In general, we did not find any
tendency on failures; they were also independent
of the worker assignments distribution, thus not
caused by likely ambiguous (hard) instances.

SVM BLSTM p-value
Pearson’s r .351 .270 � 0.01
Spearman’s ρ .402 .354 � 0.01

Table 4: Correlation results on UKPConvArg-
Rank.

4.2 Ranking arguments
We address this problem as a regression task. We
use the UKPConvArgRank data, in which a real-
value score is assigned to each argument so the
arguments can be ranked by their convincingness
(for each topic independently). The task is thus to
predict a real-value score for each argument from
the test topic (remember that we use 32-fold cross
validation). We measure Spearman’s and Pear-
son’s correlation coefficients on all results com-
bined (not on each fold separately).

Without any modifications, we use the same
SVM and features as described in Section 4.1. Re-
garding the BLSTM, we only replace the output
layer with a linear activation function and optimize
mean absolute error loss. Table 4 shows that SVM
outperforms BLSTM. All correlations are highly
statistically significant.

4.3 Results discussion
Although the “traditional” SVM with rich linguis-
tic features outperforms BLSTM in both tasks,
there are other aspects to be considered. First,
the employed features require heavy language-
specific preprocessing machinery (lemmatizer,
POS tagger, parser, NER, sentiment analyzer). By
contrast, BLSTM only requires pre-trained em-
bedding vectors, while delivering comparable re-
sults. Second, we only experimented with vanilla
LSTMs. Recent developments of deep neural net-
works (especially attention mechanisms or grid-
LSTMs) open up many future possibilities to gain
performance in this end-to-end task.

5 Conclusion and future work

We propose a novel task of predicting Web argu-
ment convincingness. We crowdsourced a large
corpus of 16k argument pairs over 32 topics and
used global constraints based on transitivity prop-
erties of convincingness relation for cleaning the
data. We experimented with feature-rich SVM and
bidirectional LSTM and obtain 0.76-0.78 accuracy
and 0.35-0.40 Spearman’s correlation in a cross-
topic scenario. We release the newly created cor-
pus UKPConvArg1 and the experimental software
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under free licenses.11 To the best of our knowl-
edge, we are the first who deal with argument con-
vincingness in Web data on such a large scale.

In the current article, we have only slightly
touched the annotated natural text reasons. We
believe that the presence of 44k reasons (550k to-
kens) is another important asset of the newly cre-
ated corpus, which deserves future investigation.

Acknowledgements

This work has been supported by the Volk-
swagen Foundation as part of the Lichtenberg-
Professorship Program under grant No I/82806,
by the German Institute for Educational Re-
search (DIPF), by the German Research Founda-
tion (DFG) via the German-Israeli Project Cooper-
ation (DIP, grant DA 1600/1-1), by the GRK 1994
AIPHES (DFG), and by Amazon Web Services in
Education Grant award. Lastly, we would like to
thank the anonymous reviewers for their valuable
feedback.

References
Nora Aranberri, Gorka Labaka, Arantza Dı́az de Ilar-

raza, and Kepa Sarasola. 2016. Ebaluatoia: crowd
evaluation for English-Basque machine translation.
Language Resources and Evaluation. In press.

Aristotle and George Kennedy (translator). 1991. On
Rhetoric: A Theory of Civil Discourse. Oxford Uni-
versity Press, USA.

J. Anthony Blair. 2011. Argumentation as rational per-
suasion. Argumentation, 26(1):71–81.

Maarten Boudry, Fabio Paglieri, and Massimo Pigli-
ucci. 2015. The Fake, the Flimsy, and the Falla-
cious: Demarcating Arguments in Real Life. Argu-
mentation, 29(4):431–456.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and
Hang Li. 2007. Learning to rank: From pairwise ap-
proach to listwise approach. In Proceedings of the
24th International Conference on Machine Learn-
ing, ICML ’07, pages 129–136, New York, NY,
USA. ACM.
11https://github.com/UKPLab/

acl2016-convincing-arguments

Chih-Chung Chang and Chih-Jen Lin. 2011. LIB-
SVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology,
2:27:1–27:27.

Xi Chen, Paul N. Bennett, Kevyn Collins-Thompson,
and Eric Horvitz. 2013. Pairwise ranking aggrega-
tion in a crowdsourced setting. In Proceedings of the
sixth ACM international conference on Web search
and data mining - WSDM ’13, page 193, New York,
New York, USA. ACM Press.

Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016.
Long Short-Term Memory-Networks for Machine
Reading. arXiv.

Meri Coleman and T. L. Liau. 1975. A computer read-
ability formula designed for machine scoring. Jour-
nal of Applied Psychology, 60:283–284.

Malcolm Corney, Olivier de Vel, Alison Anderson, and
George Mohay. 2002. Gender-preferential text min-
ing of e-mail discourse. In Proceedings of the 18th
Annual Computer Security Applications Conference
(ACSAC02), pages 282–289.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 334–343, Beijing, China, July. Asso-
ciation for Computational Linguistics.

Rudolf Flesch. 1948. A new readability yardstick.
Journal of Applied Psychology, 32:221–233.

George Forman and Martin Scholz. 2010. Apples-to-
Apples in Cross-Validation Studies: Pitfalls in Clas-
sifier Performance Measurement. ACM SIGKDD
Explorations Newsletter, 12(1):49–57.

Austin J. Freeley and David L. Steinberg. 2008. Ar-
gumentation and Debate. Cengage Learning, Stam-
ford, CT, USA, 12th edition.

Merce Garcia-Mila, Sandra Gilabert, Sibel Erduran,
and Mark Felton. 2013. The effect of argumentative
task goal on the quality of argumentative discourse.
Science Education, 97(4):497–523.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
2016. Deep learning. Book in preparation for MIT
Press.

Ivan Habernal and Iryna Gurevych. 2015. Exploit-
ing debate portals for semi-supervised argumenta-
tion mining in user-generated web discourse. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
2127–2137, Lisbon, Portugal, September. Associa-
tion for Computational Linguistics.

1597



Ivan Habernal and Iryna Gurevych. 2016. Ar-
gumentation Mining in User-Generated Web Dis-
course. Computational Linguistics. Under review.
http://arxiv.org/abs/1601.02403.

Francis Heylighen and Jean-Marc Dewaele. 2002.
Variation in the contextuality of language: An em-
pirical measure. Foundations of Science, 7(3):293–
340.

Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish Vaswani,
and Eduard Hovy. 2013. Learning Whom to Trust
with MACE. In Proceedings of NAACL-HLT 2013,
pages 1120–1130, Atlanta, Georgia. Association for
Computational Linguistics.

Ralph H. Johnson and Anthony J. Blair. 2006. Logical
Self-Defense. International Debate Education Asso-
ciation.

Donald B. Johnson. 1975. Finding all the elementary
circuits of a directed graph. SIAM Journal on Com-
puting, 4(1):77–84.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the 3rd International Conference for Learning
Representations, San Diego, CA.

Hugo Mercier and Dan Sperber. 2011. Why do hu-
mans reason? Arguments for an argumentative the-
ory. The Behavioral and Brain Sciences, 34(2):57–
74; discussion 74–111.

Preslav Nakov, Sara Rosenthal, Svetlana Kiritchenko,
Saif M. Mohammad, Zornitsa Kozareva, Alan Ritter,
Veselin Stoyanov, and Xiaodan Zhu. 2016. Devel-
oping a successful SemEval task in sentiment anal-
ysis of Twitter and other social media texts. Lan-
guage Resources and Evaluation, 50(1):35–65.

Ana Laura Nettel and Georges Roque. 2011. Persua-
sive argumentation versus manipulation. Argumen-
tation, 26(1):55–69.

Daniel J. OKeefe. 2011. Conviction, persuasion, and
argumentation: Untangling the ends and means of
influence. Argumentation, 26(1):19–32.

Joonsuk Park and Claire Cardie. 2014. Identifying
appropriate support for propositions in online user
comments. In Proceedings of the First Workshop
on Argumentation Mining, pages 29–38, Baltimore,
Maryland, June. Association for Computational Lin-
guistics.

Rebecca J. Passonneau and Bob Carpenter. 2014. The
Benefits of a Model of Annotation. Transactions
of the Association for Computational Linguistics,
2:311–326.

Andreas Peldszus and Manfred Stede. 2015. Joint
prediction in MST-style discourse parsing for ar-
gumentation mining. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 938–948, Lisbon, Portugal,

September. Association for Computational Linguis-
tics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Isaac Persing and Vincent Ng. 2015. Modeling ar-
gument strength in student essays. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 543–552, Beijing,
China, July. Association for Computational Linguis-
tics.

Chris Piech, Jonathan Bassen, Jonathan Huang, Surya
Ganguli, Mehran Sahami, Leonidas J. Guibas, and
Jascha Sohl-Dickstein. 2015. Deep Knowledge
Tracing. In Corinna Cortes, Neil D. Lawrence,
Daniel D. Lee, Masashi Sugiyama, and Roman Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 28, pages 505—-513, Montreal,
CA. Curran Associates, Inc.

Ruty Rinott, Lena Dankin, Carlos Alzate Perez,
Mitesh M. Khapra, Ehud Aharoni, and Noam
Slonim. 2015. Show me your evidence - an au-
tomatic method for context dependent evidence de-
tection. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing, pages 440–450, Lisbon, Portugal, September.
Association for Computational Linguistics.
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