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Abstract

This paper complements semantic role
representations with spatial knowledge be-
yond indicating plain locations. Namely,
we extract where entities are (and are not)
located, and for how long (seconds, hours,
days, etc.). Crowdsourced annotations
show that this additional knowledge is in-
tuitive to humans and can be annotated by
non-experts. Experimental results show
that the task can be automated.

1 Introduction

Extracting meaning from text is crucial for true
text understanding and an important component
of several natural language processing systems.
Among many others, previous efforts have fo-
cused on extracting causal relations (Bethard and
Martin, 2008), semantic relations between nom-
inals (Hendrickx et al., 2010), spatial relations
(Kordjamshidi et al., 2011) and temporal relations
(Pustejovsky et al., 2003; Chambers et al., 2014).

In terms of corpora development and automated
approaches, semantic roles are one of the most
studied semantic representations (Toutanova et al.,
2005; Màrquez et al., 2008). They have been
proven useful for, among others, coreference reso-
lution (Ponzetto and Strube, 2006) and question
answering (Shen and Lapata, 2007). While se-
mantic roles provide a useful semantic layer, they
capture a portion of the meaning encoded in all
but the simplest statements. Consider the sentence
in Figure 1 and the semantic roles ofdrove(solid
arrows). In addition to these roles, humans in-
tuitively understand that (dashed arrow) (1)John
was not located inBerlin before or duringdrove,
(2) he was located inBerlin afterdrovefor a short
period of time (presumably, until he was done
picking up the package, i.e., for a few minutes to

John drove
AGENT

DESTINATION

PURPOSE

to
Berlin

to pick up
a package

Figure 1: Semantic roles (solid arrows) and addi-
tional spatial knowledge (dashed arrow).

an hour), and then leftBerlin and thus (3) was
not located there anymore. Some of this addi-
tional spatial knowledge is inherent to the mo-
tion verb drive: people cannot drive to the loca-
tion where they are currently located, and they
will be located at the destination of driving af-
ter driving takes place. But determining for how
long the agent ofdrive remains at the destina-
tion depends on the arguments ofdrive: from
[John]AGENT [drove]v [home]DESTINATION [after an
exhausting work day]TIME , it is reasonable to be-
lieve thatJohnwill be located athomeovernight.

This paper manipulates semantic roles in order
to extract temporally-anchored spatial knowledge.
We extract where entities are and arenot located,
and temporally anchor this information. Tempo-
ral anchors indicate for how long something is (or
is not) located somewhere, e.g., for 5 minutes be-
fore (or after) an event. We target additional spa-
tial knowledge not only between arguments of mo-
tion verbs as exemplified above, but also between
intra-sentential arguments of any verb. The main
contributions are: (1) crowdsourced annotations
on top of OntoNotes1 indicating where something
is and is not located (polarity), and for how long
(temporal anchors); (2) detailed annotation analy-
sis using coarse- and fine-grained labels (yes / no
vs. seconds, minutes, years, etc.); and (3) exper-
iments detailing results with several feature com-
binations, and using gold-standard and predicted
linguistic information.

1Available athttp://www.cse.unt.edu/ ˜ blanco/
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2 Definitions and Background

We useR(x, y) to denote a semantic relationship
R betweenx andy. R(x, y) can be read “x hasR

y”, e.g., AGENT(drove, John) can be read “drove
hasAGENT John.” By definition, semantic roles
are semantic relationships between predicates and
their arguments—for all semantic rolesR(x, y), x
is a predicate andy is an argument ofx. Generally
speaking, semantic roles capture who did what to
whom, how, when and where.

We use the termadditional spatial knowledge
to refer to spatial knowledge not captured with se-
mantic roles, i.e., spatial meaning betweenx andy
where (1)x is not a predicate or (2)x is a predicate
andy is not an argument ofx. As we shall see, we
go beyond extracting “x hasLOCATION y” with
plain LOCATION(x, y) relations. We extract where
entities are and are not located, and for how long
they are located (and not located) somewhere.

2.1 Semantic Roles in OntoNotes

OntoNotes (Hovy et al., 2006) is large corpus
(≈64K sentences) that includes verbal semantic
role annotations, i.e., the first argumentx of any
role R(x, y) is a verb.2 OntoNotes semantic roles
follow PropBank framesets (Palmer et al., 2005).
It uses a set of numbered arguments (ARG0–ARG5)
whose meanings are verb-dependent, e.g.,ARG2

is used for “employer” with verb work.01 and
“expected terminus of sleep” with verb sleep.01.
Additionally, it uses argument modifiers which
share a common meaning across verbs (ARGM-
LOC, ARGM-TMP, ARGM-PRP, ARGM-CAU, etc.).
For a detailed description of OntoNotes seman-
tic roles, we refer the reader to the LDC catalog3

and PropBank (Palmer et al., 2005). To improve
readability, we often rename numbered arguments,
e.g.,AGENT instead ofARG0 in Figure 1.

3 Related Work

Approaches to extract PropBank-style semantic
roles have been studied for years (Carreras and
Màrquez, 2005), state-of-the-art tools sobtain F-
measures of 83.5 (Lewis et al., 2015). In this pa-
per, we complement semantic role representations
with temporally-anchored spatial knowledge.

Extracting additional meaning on top of popu-
lar corpora is by no means a new problem. Ger-

2We use the CoNLL 2011 Shared Task release (Pradhan
et al., 2011),http://conll.cemantix.org/2011/

3
https://catalog.ldc.upenn.edu/LDC2013T19

ber and Chai (2010) augmented NomBank (Mey-
ers et al., 2004) annotations with additional num-
bered arguments appearing in the same or previ-
ous sentences, and Laparra and Rigau (2013) pre-
sented an improved algorithm for the same task.
The SemEval-2010 Task 10 (Ruppenhofer et al.,
2009) targeted cross-sentence missing arguments
in FrameNet (Baker et al., 1998) and PropBank
(Palmer et al., 2005). Silberer and Frank (2012)
casted the SemEval task as an anaphora resolu-
tion task. We have previously proposed an un-
supervised framework to compose semantic rela-
tions out of previously extracted relations (Blanco
and Moldovan, 2011), and a supervised approach
to infer additional argument modifiers (ARGM) for
verbs in PropBank (Blanco and Moldovan, 2014).
Unlike the current work, these previous efforts (1)
improve the semantic representation of verbal and
nominal predicates, or (2) infer relations between
arguments of the same predicate.

More recently, we showed that spatial rela-
tions can be inferred from PropBank-style seman-
tic roles (Blanco and Vempala, 2015; Vempala and
Blanco, 2016). In this paper, we expand on this
idea as follows. First, we not only extract whether
“x has LOCATION y” before, during or after an
event, but also specify for how long before and af-
ter (seconds, minutes, hours, days, weeks, months,
years, etc.). Second, we release crowdsourced an-
notations for 1,732 potential additional spatial re-
lations. Third, we experiment with both gold and
predicted linguistic information.

Spatial semantics has received considerable at-
tention in the last decade.

The task of spatial role labeling (Kordjamshidi
et al., 2011; Kolomiyets et al., 2013) aims at rep-
resenting spatial information with so-called spa-
tial roles, e.g., trajector, landmark, spatial and mo-
tion indicators, etc. Unlike us, spatial role label-
ing does not aim at extracting where entities are
not located or temporally-anchored spatial infor-
mation. But doing so is intuitive to humans, as
the examples and crowdsourced annotations in this
paper show. Spatial knowledge is intuitively as-
sociated with motion events, e.g.,drive, go, fly,
walk, run. Hwang and Palmer (2015) presented
a classifier to detect caused motion constructions
triggered by non-motion verbs, e.g.,The crowd
laughed the clownoff the stage(i.e., the crowd
made the clown leave the stage). Our work does
not target motion verbs or motion constructions,
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as the examples in Table 3 show, non-motion con-
structions triggered by non-motion verbs also al-
low us to infer temporally-anchored spatial mean-
ing, e.g.,played, honored, taught, fighting.

4 Corpus Creation and Analysis

Our goal is to complement semantic role represen-
tations with additional spatial knowledge. Specifi-
cally, our goal is to infer temporally-anchored spa-
tial knowledge betweenx andy, where semantic
rolesARGi(xverb, x) andARGM-LOC(yverb, y) ex-
ists in the same sentence. In order to achieve this
goal, we follow a two-step methodology. First, we
automatically generate potential additional spatial
knowledge by combining selected semantic roles.
Second, we crowdsource annotations, including
polarity and temporal anchors, to validate or dis-
card the potential additional knowledge.

4.1 Generating Potential Spatial Knowledge

We generate potential additional relationsLOCA-
TION(x, y) by combining allARGi(xverb, x) and
ARGM-LOC(yverb, y) semantic roles within a sen-
tence (xverb andyverb need not be the same). Then,
we enforce the following restrictions:

1. x andy must not overlap;

2. the head ofx must be a named entityperson,
org, work of art, fac, norp, productor event;

3. the head ofy must be a noun subsumed by
physicalentity.n.01in WordNet, or a named
entity fac, gpe, loc, or org;4 and

4. the heads ofx andy must be different than
the heads of all previously generated pairs.

These restrictions were designed after manual
analysis of randomly selected combinations of
ARGi and ARGM-LOC semantic roles with two
goals in mind: to (1) reduce the annotation effort
and (2) generate the least amount of invalid po-
tential additional spatial knowledge without arbi-
trarily discarding any predicates (e.g., focus only
on motion verbs). Additional relations not satisfy-
ing restriction 1 are nonsensical, and restriction 4
simply discards potential additional relations that
have already been generated. Restrictions 2 and
3 are designed to improve the likelihood that the
potential additional spatial knowledge will not be

4For a description and examples of these named entity
types, refer to (Weischedel and Brunstein, 2005).

discarded when crowdsourcing annotations, e.g.,
locations whose head is an adverb such ashereand
there (11% of all ARGM-LOC roles) do not yield
valid additional spatial knowledge.

OntoNotes annotates9,612 ARGM-LOC seman-
tic roles, and the number of potentialLOCATION

relations generated is1,732. Thus, our methodol-
ogy aims at adding 18% of additional spatial rela-
tions on top of OntoNotes semantic roles. If we
consider each temporal anchor as a different spa-
tial relation, we aim at adding 54% additional spa-
tial relations. As we shall see, over 69% of the ad-
ditional potential relations are valid (Section 4.3).

4.2 Crowdsourcing Spatial Knowledge

Once potential spatial knowledge is generated, it
must be validated or discarded. We are interested
in additional spatial knowledge as intuitively un-
derstood by humans, so we avoid lengthy annota-
tion guidelines and ask simple questions to non-
experts via Amazon Mechanical Turk.

After in-house pilot annotations, it became clear
that asking “Isx located in/aty” for each poten-
tial LOCATION(x, y) and forcing annotators to an-
sweryesor no is suboptimal. For example, con-
sider again Figure 1 and question “IsJohnlocated
in Berlin?”. An unabridged natural answer would
be “not before or duringdrove, but certainly after
drove for a few minutes until he was donepicking
up the package.” In other words, it is intuitive to
consider polarity (whetherx is or is not located at
y) and temporal anchors (for how long?).

We designed the interface in Figure 2 to gather
annotations including polarity and temporal an-
chors, and accounting for granularity levels. An-
swers map to the following coarse-grained labels:

• Before and after:yes , no , unk andinv .
• During: yes (first 2 options),no , unk and

inv .

Label unk stands forunknownand inv for
invalid. Furthermore,yes maps to these fine-
grained labels indicating specific periods of time:

• Before and after: an integer and a unit of
time (secs , mins , hours , days , weeks ,
months or years )5, or inf for infinity.

• During: entire or some.

5The interface restricts the range of valid integers, e.g.,
numbers selectable withsecs range from 1 to 59.
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Figure 2: Amazon Mechanical Turk interface to collect temporally-anchored spatial annotations. Anno-
tators were also provided with a description and examples ofall answers (not shown).

secs mins hours days weeks months years inf entire some
Before 0.20 7.55 11.33 7.36 3.78 8.15 46.72 14.91 n/a n/a
During n/a n/a n/a n/a n/a n/a n/a n/a 97.77 2.23
After 0.50 6.48 11.29 6.48 3.34 6.29 29.47 36.15 n/a n/a

Table 1: Percentage of fine-grained labels for instances annotated with coarse-grained labelyes .

Figure 3: Percentage of coarse-grained labels per
temporal anchor. Total number of annotations is
1,732 × 3 = 5,196.

We created one Human Intelligence Task (HIT)
per potentialLOCATION(x, y), and recruited an-
notators with previous approval rate≥ 95% and
5,000 or more previous approved HITs. A to-
tal of 74 annotators participated in the task, on
average, they annotated 163.24 HITs (maximum:
1,547, minimum: 1). We rejected submissions that
took unusually short time compared to other sub-
missions, and those from annotators who always
chose the same label. Overall, we only rejected
1.2% of submissions. We collected 7 annotations
per HIT and paid $0.05 per HIT.

4.3 Annotation Analysis

Figure 3 shows the percentage of coarse-grained
labels per temporal anchor. Labelsyes and no
combined account for 67.7% of labels (before),
77.4% (during) and 63.1% (after). Note that both
yes andno yield valid additional spatial knowl-

edge: whetherx is (or is not) located aty. Anno-
tators could not commit toyes or no in 16.1% of
questions on average (unk ), with a much smaller
percentage for during temporal anchor (5.8%; be-
fore: 18.7%, after: 23.7%). This is not surprising,
as arguments of some verbs, e.g.,AGENT of play,
must be located at the location of the event dur-
ing the event, but not necessarily before or after.
Finally, inv only accounts for 14.6% of labels
(before: 13.7%, during: 16.9%, after: 13.2%),
thus most potential additional knowledge automat-
ically generated (Section 4.1) can be understood.

Percentages of fine-grained labels per temporal
span, i.e., refinements ofyes coarse-grained la-
bels, are shown in Table 1. The vast majority of
times (97.77%) annotators believe an entity is at a
location during an event, the entity is there for the
entire duration of the event (entire ). Annotators
barely used labelsecs (before: 0.20% and after:
0.50%), but percentages range between 3.34% and
46.72% for other units of time (uniform distribu-
tion would be1/8 = 12.5%). Labelsyears and
inf , which indicate that an entity is located some-
where for years or indefinitely before (or after) an
event, are the most common fine-grained labels for
beforeandafter (14.91–46.72%).

4.3.1 Annotation Quality

Table 2 presents agreement measures. Pearson
correlations are the weighted averages between
each annotator and the majority label and are cal-
culated following this mapping: (coarse labels):
yes : 1, unk /inv : 0, no : −1; (fine labels): be-
fore/after: secs : 1, mins : 1 + 1/7, hours :
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Coarse-grained labels Fine-grained labels

Pearson % instances s.t.a annotators agree Pearson % instances s.t.a annotators agree
a = 7 a ≥ 6 a ≥ 5 a ≥ 4 a ≥ 3 a = 7 a ≥ 6 a ≥ 5 a ≥ 4 a ≥ 3

Before 0.73 0.9 8.0 30.0 65.8 97.2 0.67 0.8 6.0 21.6 49.3 85.2
During 0.81 8.9 39.9 59.1 81.4 98.3 0.79 2.1 19.5 45.8 71.8 94.1
After 0.66 0.7 6.0 27.0 62.9 96.6 0.62 0.5 4.6 19.8 49.9 87.1
All 0.67 3.5 18.0 38.8 70.0 97.4 0.64 1.1 10.0 29.0 57.0 88.8

Table 2: Weighed Pearson correlations between annotators and the majority label, and percentage of
instances for which at least 7, 6, 5, 4 and 3 annotators (out of7) agree.

Before During After
Statement C F C F C F
Statement 1: [. . . ] [Hsia]ARG0 , v1,v2 [stopped]v1 off [in Milan] ARGM-LOC,v1 [to [visit] v2 [Hsiao Chin]ARG1 ,v2 ]ARGM-PRP,v1 .
x: Hsia, y: Milan, yverb: stopped yes mins yes entire yes hours

x: Hsiao Chin, y: Milan, yverb: stopped yes years yes entire yes years

Statement 2: [President Clinton]ARG0 ,v1 [played]v1 [a supporting role]ARG1 ,v1 [today]ARGM-TMP,v1 [in [New York City
where]ARGM-LOC,v2 [the first lady, Senator Clinton]ARG1 ,v2 , was [honored]v2 [at Madison Square Garden]ARGM-LOC,v2 ]ARGM-LOC,v1 .
x: (President) Clinton, y: New York City, yverb: played yes hours yes entire yes hours

x: (President) Clinton, y: Madison Square Garden, yverb: honored yes mins yes entire yes mins

x: (Senator) Clinton, y: New York City, yverb: played yes hours yes entire yes hours

x: (Senator) Clinton, y: Madison Square Garden, yverb: honored yes mins yes entire yes mins

Statement 3: [Before [joining]v2 [Maidenform]ARG1 ,v2 [in 1972]ARGM-TMP, V2 ]ARGM-TMP, v1 , [[Mr. Brawer, who]ARG0 ,v3 [holds]v3
[a doctoral degree in English]ARG1 ,v3 ]ARG0, v1 ,v2 , [taught]v1 [at the University of Wisconsin]ARGM-LOC, v1 .
x: Maidenform, y: University of Wisconsin, yverb: taught no n/a no n/a no n/a
x: Mr. Brawer, y: University of Wisconsin, yverb: taught no n/a yes entire no n/a
Statement 4: [...] [George Koskotas, self-confessed embezzler]ARG0 , v1 , [now]ARGM-TMP,v1 [residing]v1 [in [a jail cell in Salem,
Mass., from where]ARGM-LOC, v2 [he]ARG0 , v2 is [fighting]v2 [extradition proceedings]ARG1 ,v2 ]ARG1,v1 .
x: George Koskotas,y: a jail cell in Salem, Mass., yverb: fighting yes months yes entire unk n/a

Table 3: Annotation examples. For each statement, we indicate semantic roles with square brackets, all
potential additional spatial knowledge (isx located aty?), and annotations with respect toyverb (coarse-
(C) and fine-grained (F) labels per temporal anchor: before,during and after).

1 + 2/7, days : 1 + 3/7, weeks : 1 + 4/7,
months : 1 + 5/7, years : 1 + 6/7, inf : 2;
during: some: 1 entire :2. Calculating the
weighted average of individual Pearson correla-
tions allows us to take into account the number of
questions answered by each annotator.

Correlations range between 0.66 and 0.81 with
coarse-grained labels, and are slightly lower with
fine-grained labels (0.67 vs. 0.73, 0.79 vs. 0.81,
and 0.62 vs. 0.66). Questions forduring tempo-
ral anchor are easier to answer with both kinds of
labels (coarse: 0.81, fine: 0.79).

Table 2 also shows how many annotators (out
of 7) chose the same label (exact match). At least
4 annotators agreed with coarse-grained labels in
most instances (70%), and at least 3 annotators
agreed virtually always (97.4%). Percentages are
lower with fine-grained labels: 57.0% and 88.8%.

4.4 Annotation Examples

Table 3 presents several annotation examples. We
include all potential additional spatial knowledge
(Section 4.1) and annotations per temporal anchor.

Two additionalLOCATION(x, y) can be inferred
from Statement (1): whetherHsia and Hisao
Chin are located inMilan before, during and af-
ter stopped. Annotators understood thatHsia was
in Milan temporarily: for a few minutes before
stopped, during the full duration ofstoppedand
for a few hours afterstopped. In other words,Hsia
was elsewhere, then went toMilan and left after
visiting with Hsiao for a few hours. Regarding
Hsiao, annotators interpreted thatMilan is her per-
manent location: for years before and afterHsia
stoppedto visit her. While somehow ambiguous,
these annotations are reasonably intuitive.

Statement (2) has 2ARGM-LOC roles and 4 po-
tential additional relations. Annotations forduring
are straightforward: bothPresident Clintonand
Senator Clintonwere located inNew York City
duringplayedand atMadison Square Gardendur-
ing honored. Annotations forbeforeandafter are
more challenging: both Clintons where located in
New York City for hours (not days) before and af-
ter played, but at Madison Square Gardenfor a
few minutes (not hours) before and afterhonored.
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Feature Description
basic 1–4 xverb, yverb and their part-of-speech tags

lexical 5–12 first and last words ofx andy, and their part-of-speech tags
13 whetherx occurs before or aftery

heads 14–17 heads ofx andy, and their part-of-speech tags
18–19 named entity types of the heads ofx andy

semantic

20 semantic role label linkingxverb andx
21–24 number ofARGM-TMP andARGM-LOC roles inxroles andyroles

25–26 number ofARGM-TMP andARGM-LOC roles in the sentence to whichx andy belong
27 whetherxverb andyverb are the same verb

Table 4: Feature set to determine whetherx is (or is not) located aty, and for how long.xverb (yverb)
denote the verbs to whichx (y) attach, andxroles (yroles) denote the semantic roles ofxverb (yverb).

In other words, they arrived toMadison Square
Gardenshortly beforehonoredand left shortly af-
ter, but stayed inNew York City for some hours.

Statement (3) exemplifiesno label. Poten-
tial additional spatial knowledge includes whether
Maidenformis located atUniversity of Wisconsin,
which is never true (no). Additionally, University
of Wisconsinwas a location ofMr. Brawer while
he taughtthere (during), but norbeforeor after.

Statement (4) exemplifies contrastive coarse-
grained labels andunk label. Annotators inter-
preted thatGeorge Koskotaswas in thejail cell for
months before and duringfighting extradition, and
that it is unknown (unk ) afterfighting because the
outcome of the fight is unknown.

5 Inferring Temporally-Anchored
Spatial Knowledge

We follow a standard machine learning approach,
and use the training, development and test sets
released by the organizers of the CoNLL-2011
Shared Task (Pradhan et al., 2011). We first gen-
erate additional spatial knowledge deterministi-
cally as described in Section 4.1. Then, for each
additional LOCATION(x, y), we generate one in-
stance per temporal anchor and discard those an-
notatedinv . The total number of instances is
1,732 × 3− 754 = 4,442. We trained SVM mod-
els with RBF kernel using scikit-learn (Pedregosa
et al., 2011). The feature set and SVM parameters
were tuned using 10-fold cross-validation with the
train and development sets, and results are calcu-
lated using the test set. During the tuning pro-
cess, we discovered that it is beneficial to train
one SVM per temporal anchor instead of a single
model for the 3 temporal anchors.

5.1 Feature Selection

We use a mixture of standard features from seman-
tic role labeling, and semantic features designed

for extracting temporally-anchored spatial knowl-
edge from semantic roles. In order to determine
whetherx is (or is not) located aty and for how
long, we extract features fromx andy, the verbs
to which they attach (xverb andyverb) and all se-
mantic roles ofxverb andyverb (xroles andyroles).

Basic, lexicalandheadsfeatures are standard in
role labeling (Gildea and Jurafsky, 2002).Basic
features are the word form and part-of-speech of
xverb andyverb. Lexical features capture the first
and last words ofx andy and their part-of-speech
tags, as well as a binary flag indicating whetherx
occurs before or aftery. Headsfeatures capture
the heads ofx andy and their part-of-speech tags,
as well as their named entity types, if any.

Semantic features include features 20–27. Fea-
ture 20 indicates the semantic role linkingx and
xverb (ARG0, ARG1, ARG2, etc.); recall that the se-
mantic role betweeny andyverb is alwaysARGM-
LOC (Section 4.1). Features 21–24 are counts of
ARGM-TMP andARGM-LOC semantic roles in the
verb-argument structures to whichx andy attach.
Features 25–26 are the same counts of roles, but
taking into account all the roles in the sentence to
which x andy belong. Finally, feature 27 signals
whetherx andy attach to the same verb.

We tried many other features, including counts
of all roles, heads of all semantic roles present, se-
mantic role ordering, VerbNet (Schuler, 2005) and
Levin (Levin, 1993) verb classes, and WordNet
hypernyms (Miller, 1995), but they did not yield
any improvements during the tuning process.

We exemplify features with pair (x: George
Koskotas, self-confessed embezzler, y: a jail cell
in [...], from where) from Statement 4 in Table 3:

• Basic: features 1–4:{residing, VBG, fight-
ing, VBG}.

• Lexical: feature 5–12: {George, NNP,
Koskotas, NNP, a, DT, where, WRB}, fea-
tures 13:{before}.
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Before During After All
P R F P R F P R F P R F

baseline

yes 0.00 0.00 0.00 0.77 1.00 0.87 0.00 0.00 0.00 0.77 0.55 0.64
no 0.49 1.00 0.65 0.00 0.00 0.00 0.40 1.00 0.57 0.44 0.86 0.58

unk 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Weighted avg. 0.24 0.49 0.32 0.60 0.77 0.67 0.16 0.40 0.23 0.51 0.55 0.50

basic

yes 0.48 0.34 0.40 0.82 0.94 0.88 0.53 0.50 0.52 0.71 0.71 0.71
no 0.52 0.63 0.57 0.62 0.36 0.46 0.47 0.49 0.48 0.51 0.54 0.52

unk 0.23 0.21 0.22 0.33 0.10 0.15 0.29 0.29 0.29 0.26 0.23 0.25
Weighted avg. 0.44 0.45 0.44 0.76 0.79 0.76 0.44 0.44 0.44 0.55 0.56 0.56

basic + lexical
+ heads

yes 0.68 0.37 0.48 0.83 0.92 0.87 0.73 0.38 0.50 0.79 0.67 0.73
no 0.59 0.80 0.68 0.47 0.32 0.38 0.53 0.66 0.59 0.56 0.68 0.61

unk 0.36 0.29 0.32 0.20 0.10 0.13 0.32 0.39 0.35 0.33 0.32 0.32
Weighted avg. 0.56 0.56 0.54 0.73 0.77 0.74 0.54 0.50 0.50 0.62 0.61 0.61

basic + lexical
+ heads
+ semantics

yes 0.86 0.44 0.58 0.85 0.94 0.90 0.79 0.38 0.51 0.84 0.70 0.77
no 0.63 0.80 0.71 0.56 0.47 0.50 0.55 0.69 0.61 0.59 0.71 0.64

unk 0.37 0.38 0.38 0.50 0.10 0.17 0.33 0.42 0.37 0.35 0.37 0.36
Weighted avg. 0.64 0.60 0.60 0.78 0.81 0.78 0.57 0.52 0.52 0.66 0.64 0.65

Table 5: Results obtained with gold-standard linguistic annotations and coarse-grained labels using the
baseline and several feature combinations (basic, lexical, heads and semantic features).

• Head: features 14–17:{Koskotas, NNP, cell,
NN}, features 18–19:{person, none},

• Semantic feature 20:{ARG0}, features 21–
24: {1, 0, 0, 1}, feature 25–26:{1, 1}, fea-
ture 27:{no}.

6 Experiments and Results

We present results using gold-standard (Section
6.1) and predicted (Section 6.2) linguistic anno-
tations. POS tags, parse trees, named entities and
semantic roles are taken directly fromgold or auto
files in the CoNLL-2011 Shared Task release.

6.1 Gold-Standard Linguistic Annotations

Using gold-standard linguistic annotations has two
advantages. First, because we have gold seman-
tic roles and named entities, we generate the same
potential additional spatial knowledge generated
while creating our annotations (Section 4.1). Sec-
ond, feature values are guaranteed to be correct.

6.1.1 Predicting Coarse-Grained Labels

Table 5 presents results with coarse-grained labels
using a baseline and learning with several com-
binations of features extracted from gold-standard
linguistic annotations (POS tags, parse trees, se-
mantic roles, etc.). The baseline predicts the most
frequent label per temporal anchor, i.e.,yes for
during, andno for beforeandafter (Figure 3).

Best results for all labels and temporal anchors
are obtained with all features (basic, lexical, heads
and semantics). Overall F-measure is 0.65, and
during instances obtain higher F-measure (0.78)

thanbefore(0.60) andafter (0.52). Regarding la-
bels,yes obtains best results (overall 0.77), fol-
lowed byno (0.64) andunk (0.36). Not surpris-
ingly, the most frequent label per temporal anchor
obtains the best results with all features (before:
no , 0.71;during: yes , 0.90;after: no , 0.61).

Beforeandafter instances benefit the most from
learning with all features with respect to the base-
line (before: 0.32 vs. 0.60, after: 0.23 vs. 0.52).
While during instances also benefit, the difference
in F-measure is lower (0.67 vs. 0.78).

Feature Ablation. The bottom 3 blocks in Ta-
ble 5 present results using several feature types
incrementally. Basic features yield an overall F-
measure of 0.56, and surprisingly good results for
during instances (0.76). Indeed, the best perfor-
mance obtained withduring instances is 0.78 (all
features), suggesting that the verbs to whichx and
y attach are very strong features.

Lexical andheadsfeatures are most useful for
before (0.44 vs. 0.54, +22.7%) andafter (0.44
vs. 0.50, +13.6%) instances, and are actually detri-
mental forduring instances (0.76 vs. 0.74, -2.6%).
Including semanticfeatures, however, improves
results with respect tobasicfeatures for all tempo-
ral anchors: before: 0.44 vs. 0.60, 36.4% during:
0.76 vs. 0.78, 2.6% after: 0.44 vs. 0.52, 18.2%.

Differences in overall F-measure are not statis-
tically significant betweenbasicandbasic + lex-
ical + heads (0.56 vs. 0.61, Z-test, two-tailed,
p-value = 0.05), but the difference includingse-
manticfeatures is significant (0.50 vs. 0.65, Z-test,
two-tailed,p-value= 0.009).
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Before During After All
P R F P R F P R F P R F

baseline
spurious 0.50 1.00 0.66 0.50 1.00 0.66 0.50 1.00 0.66 0.50 1.00 0.66

other 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Weighted avg. 0.25 0.50 0.33 0.25 0.50 0.33 0.25 0.50 0.33 0.25 0.50 0.33

basic

yes 0.00 0.00 0.00 0.47 0.56 0.51 0.00 0.00 0.00 0.52 0.36 0.43
no 0.55 0.33 0.42 0.40 0.20 0.27 0.43 0.38 0.41 0.43 0.32 0.37

unk 0.26 0.30 0.28 0.11 0.07 0.08 0.37 0.25 0.30 0.24 0.18 0.21
spurious 0.68 0.91 0.78 0.68 0.71 0.70 0.67 0.93 0.78 0.69 0.88 0.77

Weighted avg. 0.51 0.58 0.53 0.53 0.55 0.54 0.49 0.58 0.52 0.54 0.58 0.55

basic + lexical
+ heads
+ semantics

yes 1.00 0.07 0.13 0.74 0.87 0.80 0.00 0.00 0.00 0.74 0.56 0.64
no 0.64 0.48 0.55 0.67 0.20 0.31 0.43 0.46 0.44 0.53 0.49 0.51

unk 0.41 0.78 0.54 0.50 0.47 0.48 0.41 0.61 0.49 0.51 0.68 0.58
spurious 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Weighted avg. 0.82 0.75 0.73 0.84 0.84 0.83 0.66 0.71 0.68 0.80 0.79 0.79

Table 7: Results obtained with predicted linguistic annotations and coarse-grained labels.spurious is
a new label indicating overgenerated pairs not present in the gold standard.

Label P R F

Before

mins 1.00 0.67 0.80
days 1.00 0.50 0.67
years 0.15 0.17 0.16
inf 1.00 0.33 0.50
no 0.63 0.80 0.71
unk 0.37 0.38 0.38
other 0.00 0.00 0.00
Weighted avg. 0.52 0.54 0.51

During

entire 0.84 0.94 0.88
some 0.00 0.00 0.00
no 0.56 0.45 0.50
unk 0.50 0.10 0.17
Weighted avg. 0.77 0.80 0.77

After

years 0.27 0.25 0.26
inf 0.56 0.24 0.33
no 0.55 0.69 0.61
unk 0.33 0.42 0.37
other 0.00 0.00 0.00
Weighted avg. 0.41 0.44 0.41

All

mins 0.50 0.50 0.50
days 1.00 0.29 0.44
years 0.21 0.21 0.21
inf 0.67 0.27 0.38
entire 0.84 0.94 0.89
no 0.59 0.71 0.64
unk 0.35 0.37 0.36
other 0.00 0.00 0.00
Weighted avg. 0.56 0.59 0.57

Table 6: Results obtained with gold linguistic an-
notations and fine-grained labels using all features.

6.1.2 Predicting Fine-Grained Labels

Table 6 presents results using fine-grained labels
and all features. Overall F-measure is lower than
with coarse-grained labels (0.57 vs. 0.65). Re-
sults for during instances barely decreases (0.78
vs. 0.77) because almost 98% of fine-grained la-
bels areentire (Table 1).

Most fine-grained labels forbefore and after
are infrequent (Table 1), our best model is un-
able to predict labelssecs , hours , weeks and

months for before, and secs , mins , hours ,
days , weeks and months for after (other
rows). But these labels account for relatively
few instances: individually, between 0.2% and
11.33%, and among all of them, 23.46% forbe-
foreand 34.38% forafter instances.

It is worth noting thatmins , days and inf
obtain relatively high F-measures forbefore: 0.80,
0.67 and 0.50 respectively. In other words, we can
distinguish whether an entity is somewhere only
for a few minutes or days (but not longer) before
an event, or at all times before an event.

6.2 Predicted Linguistic Annotations

In order to make an honest evaluation in a realistic
environment, we also experiment with predicted
linguistic annotations. The major disadvantage
of doing so is that predicted semantic roles and
named entities are often incorrect or missing, thus
we generate spurious additional spatial knowledge
and miss some additional spatial knowledge be-
cause the potential relation cannot be generated.

Table 7 presents results using predicted linguis-
tic annotations. The additional labelspurious
is used for instances generated from incorrect se-
mantic roles or named entities, as these instances
do not appear in the crowdsourced annotations
(Section 4). Due to space constraints, we only
present results using coarse-grained labels, but
provide results per temporal anchor.

The baseline, which predicts the most likely
label per temporal anchor, always predicts
spurious since 50% of generated additional po-
tential knowledge does not appear in the crowd-
sourced annotations. Using all features clearly
outperforms basic features (overall F-measure:
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0.79 vs 0.55), thus we focus on the former.
Using all features,spurious is always pre-

dicted correctly. While useful to discard addi-
tional spatial knowledge that should not have been
generated,spurious does not allow us to make
meaningful inferences. The labels that we are
most interested in,yes andno , obtain overall F-
measures of 0.64 and 0.51 (compared to 0.77 and
.64 with gold linguistic annotations). Regarding
labels,yes can only be reliably predicted fordur-
ing instances (F-measure: 0.80), andno is pre-
dicted with modest F-measures for all temporal
anchors: before: 0.55, during: 0.31, after: 0.44.

7 Conclusions

This paper demonstrates that semantic roles are a
reliable semantic layer from which one can infer
whether entities are located or not located some-
where, and for how long (seconds, minutes, days,
years, etc.). Crowdsourced annotations show that
this kind of inferences are intuitive to humans.
Moreover, most potential additional spatial knowl-
edge generated following a few simple determin-
istic rules was validated by annotators (yes and
no ; before: 67.7%, during: 77.4%, after: 63.1%).

Experimental results with gold-standard seman-
tic roles and named entities show that inference
can be done with standard supervised machine
learning (overall F-measure: 0.65,yes : 0.77,no :
0.64). Using predicted linguistic information, re-
sults decrease substantially (yes : 0.64,no : 0.51).
This is mostly due to the fact that predicted se-
mantic roles and named entities are often wrong
or missing, and this fact unequivocally makes the
inference process more challenging.

We believe that combining semantic roles and
other semantic representation in a similar fashion
to the one used in this paper could be useful to in-
fer knowledge beyond spatial inferences. For ex-
ample, one could infer who is inPOSSESSIONof
something over time by manipulating the events in
which the object in question participates in.
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