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Abstract

This paper presents neural probabilistic
parsing models which explore up to third-
order graph-based parsing with maximum
likelihood training criteria. Two neural
network extensions are exploited for per-
formance improvement. Firstly, a convo-
lutional layer that absorbs the influences
of all words in a sentence is used so that
sentence-level information can be effec-
tively captured. Secondly, a linear layer
is added to integrate different order neu-
ral models and trained with perceptron
method. The proposed parsers are evalu-
ated on English and Chinese Penn Tree-
banks and obtain competitive accuracies.

1 Introduction

Neural network methods have shown great
promise in the field of parsing and other related
natural language processing tasks, exploiting more
complex features with distributed representation
and non-linear neural network (Wang et al., 2013;
Wang et al., 2014; Cai and Zhao, 2016; Wang et
al., 2016). In transition-based dependency pars-
ing, neural models that can represent the partial or
whole parsing histories have been explored (Weiss
et al., 2015; Dyer et al., 2015). While for graph-
based parsing, on which we focus in this work, Pei
et al. (2015) also show the effectiveness of neural
methods.
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Technology Committee (No. 15JC1400103), Art and Sci-
ence Interdisciplinary Funds of Shanghai Jiao Tong Univer-
sity (No. 14JCRZ04), and Key Project of National Society
Science Foundation of China (No. 15-ZDA041).

The graph-based parser generally consists of
two components: one is the parsing algorithm for
inference or searching the most likely parse tree,
the other is the parameter estimation approach for
the machine learning models. For the former, clas-
sical dynamic programming algorithms are usu-
ally adopted, while for the latter, there are vari-
ous solutions. Like some previous neural methods
(Socher et al., 2010; Socher et al., 2013), to tackle
the structure prediction problems, Pei et al. (2015)
utilize a max-margin training criterion, which does
not include probabilistic explanations. Re-visiting
the traditional probabilistic criteria in log-linear
models, this work utilizes maximum likelihood
for neural network training. Durrett and Klein
(2015) adopt this method for constituency pars-
ing, which scores the anchored rules with neu-
ral models and formalizes the probabilities with
tree-structured random fields. Motivated by this
work, we utilize the probabilistic treatment for de-
pendency parsing: scoring the edges or high-order
sub-trees with a neural model and calculating the
gradients according to probabilistic criteria. Al-
though scores are computed by a neural network,
the existing dynamic programming algorithms for
gradient calculation remain the same as those in
log-linear models.

Graph-based methods search globally through
the whole space for trees and get the highest-
scored one, however, the scores for the sub-trees
are usually locally decided, considering only sur-
rounding words within a limited-sized window.
Convolutional neural network (CNN) provides a
natural way to model a whole sentence. By in-
troducing a distance-aware convolutional layer,
sentence-level representation can be exploited for
parsing. We will especially verify the effec-
tiveness of such representation incorporated with
window-based representation.

Graph-based parsing has a natural extension
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through raising its order and higher-order parsers
usually perform better. In previous work on high-
order graph-parsing, the scores of high-order sub-
trees usually include the lower-order parts in their
high-order factorizations. In traditional linear
models, combining scores can be implemented by
including low-order features. However, for neural
models, this is not that straightforward because of
nonlinearity. A straightforward strategy is simply
adding up all the scores, which in fact works well;
another way is stacking a linear layer on the top
of the representation from various already-trained
neural parsing models of different orders.

This paper presents neural probabilistic mod-
els for graph-based projective dependency pars-
ing, and explores up to third-order models. Here
are the three highlights of the proposed methods:

• Probabilistic criteria for neural network train-
ing. (Section 2.2)

• Sentence-level representation learned from a
convolutional layer. (Section 3.2)

• Ensemble models with a stacked linear out-
put layer. (Section 3.3)

Our main contribution is exploring sub-tree scor-
ing models which combine local features with a
window-based neural network and global features
from a distance-aware convolutional neural net-
work. A free distribution of our implementation
is publicly available1.

The remainder of the paper is organized as fol-
lows: Section 2 explains the probabilistic model
for graph-based parsing, Section 3 describes our
neural network models, Section 4 presents our ex-
periments and Section 5 discusses related work,
we summarize this paper in Section 6.

2 Probabilistic Graph-based Dependency
Parsing

2.1 Graph-based Dependency Parsing

Dependency parsing aims to predict a dependency
tree, in which all the edges connect head-modifier
pairs. In graph-based methods, a dependency tree
is factored into sub-trees, from single edge to mul-
tiple edges with different patterns; we will call
these specified sub-trees factors in this paper. Ac-
cording to the sub-tree size of the factors, we can

1https://github.com/zzsfornlp/nnpgdparser
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Figure 1: The decompositions of factors.

define the order of the graph model. Three differ-
ent ordered factorizations considered in this work
and their sub-tree patterns are shown in Figure 1.

The score for a dependency tree (T ) is defined
as the sum of the scores of all its factors (p):

Score(T ) =
∑
p∈T

Score(p)

In this way, the dependency parsing task is to
find a max-scoring tree. For projective depen-
dency parsing considered in this work, this search-
ing problem is conquered by dynamic program-
ming algorithms with the key assumption that the
factors are scored independently. Previous work
(Eisner, 1996; McDonald et al., 2005; McDonald
and Pereira, 2006; Koo and Collins, 2010; Ma and
Zhao, 2012) explores ingenious algorithms for de-
coding ranging from first-order to higher-orders.
Our proposed parsers also take these algorithms
as backbones and use them for inference.

2.2 Probabilistic Model

With the graph factorization and inference, the re-
maining problems are how to obtain the scores
and how to train the scoring model. For the scor-
ing models, traditional linear methods utilize man-
ually specified features and linear scoring mod-
els, while we adopt neural network models, which
may exploit better feature representations.

For the training methods, in recent neural
graph-based parsers, non-probabilistic margin-
based methods are usually used. However, follow-
ing the maximum likelihood criteria in traditional
log-linear models, we can treat it in a probabilistic
way. In fact, the probabilistic treatment still uti-
lizes the scores of sub-tree factors in graph mod-
els. As in log-linear models like Conditional Ran-
dom Field (CRF) (Lafferty et al., 2001), the expo-
nentials of scores are taken before re-normalizing,
and the probability distribution over trees condi-

1383



tioned on a sentence X is defined as follows:

Pr(T |X, θ) =
1

Z(X)
exp(Score(T |θ))

Z(X) =
∑
T ′

exp(Score(T ′|θ))

where θ represents the parameters andZ(X) is the
re-normalization partition function. The intuition
is that the higher the score is, the more potential or
mass it will get, leading to higher probability.

The training criteria will be log-likelihood in
the classical setting of maximum likelihood esti-
mation, and we define the loss for a parse tree as
negative log-likelihood:

L(θ) = − log Pr(Tg|X, θ)
= −Score(Tg|θ) + log(Z(X))

where Tg stands for the golden parse tree. Now
we need to calculate the gradients of θ according
to gradient-based optimization. Focusing on the
second term, we have (some conditions are left out
for simplicity):

∂ log(Z(X))
∂θ

=
∑
T ′

Pr(T ′)
∑
p∈T ′

∂Score(p)
∂θ

=
∑

p

∂Score(p)
∂θ

∑
T ′∈T (p)

Pr(T ′)

Here, T (p) is the set of trees that contain the fac-
tor p, and the inner summation is defined as the
marginal probability m(p):

m(p) =
∑

T ′∈T (p)

Pr(T ′)

which can be viewed as the mass of all the trees
containing the specified factor p. The calculation
of m(p) (Paskin, 2001; Ma and Zhao, 2015) is
solved by a variant of inside-outside algorithm,
which is of the same complexity compared with
the corresponding inference algorithms. Finally,
the gradients can be represented as:

∂L(θ)
∂θ

=
∑

p

∂Score(p)
∂θ

(
− [p ∈ Tg

]
+m(p)

)
where [p ∈ Tg] is a binary value which indicates
whether p is in tree Tg.

Traditional models usually utilize linear func-
tions for the Score function, which might need
carefully feature engineering such as (Zhao et al.,
2009a; Zhao et al., 2009b; Zhao et al., 2009c;
Zhao, 2009; Zhao et al., 2013), while we adopt
neural models with the probabilistic training crite-
ria unchanged.

2.3 Training Criteria
We take a further look between the maximum-
likelihood criteria and the max-margin criteria.
For the max-margin method, the loss is the differ-
ence between the scores of the golden tree and a
predicted tree, and its sub-gradient can be written
in a similar form:

∂Lm(θ)
∂θ

=
∑

p

∂Score(p)
∂θ

(
−[p ∈ Tg

]
+
[
p ∈ Tb

])
Here, the predicted tree Tb is the best-scored tree
with a structured margin loss in the score.

Comparing the derivatives, we can see that the
one of probabilistic criteria can be viewed as a
soft version of the max-margin criteria, and all
the possible factors are considered when calcu-
lating gradients for the probabilistic way, while
only wrongly predicted factors have non-zero sub-
gradients for max-margin training. This observa-
tion is not new and Gimpel and Smith (2010) pro-
vide a good review of several training criteria. It
might be interesting to explore the impacts of dif-
ferent training criteria on the parsing performance,
and we will leave it for future research.

2.4 Labeled Parsing
In a dependency tree, each edge can be given a la-
bel indicating the type of the dependency relation,
this labeling procedure can be integrated directly
into the parsing task, instead of a second pass af-
ter obtaining the structure.

For the probabilistic model, integrating labeled
parsing only needs some extensions for the in-
ference procedure and marginal probability cal-
culations. For the simplicity, we only consider a
single label for each factor (even for high-order
ones) which corresponds to Model 1 in (Ma and
Hovy, 2015): the label of the edge between head
and modifier word, which will only multiply O(l)
to the complexity. We find this direct approach
not only achieves labeled parsing in one pass,
but also improves unlabeled attachment accuracies
(see Section 4.3), which may benefit from the joint
learning with the labels.

3 Neural Model

The task for the neural models is computing the
labeled scores of the factors. The inputs are the
words in a factor with contexts, and the outputs
are the scores for this factor to be valid in the de-
pendency tree. We propose neural models to in-
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This      is       a           good      game      .
                     DT             JJ            NN

Modifier     Sibling       Head

Embdding

Hidden2

Output

Hidden1

s = Wsh2 + bs

h2 = tanh(W2h1 + b2)

h1 = tanh(W1h0 + b1)

h0

Figure 2: The architecture for the basic model
(second order parsing).

tegrate features from both local word-neighboring
windows and the entire sentence, and furthermore
explore ensemble models with different orders.

3.1 Basic Local Model

Architecture The basic model uses a window-
based approach, which includes only surround-
ing words for the contexts. Figure 2 illustrates a
second-order sibling model and models of other
orders adopt similar structures. It is simply a stan-
dard feed-forward neural network with two hid-
den layers (h1 and h2) above the embedding layer
(h0), the hidden layers all adopt tanh activation
function, and the output layer (noted as s) directly
represents the scores for different labels.

Feature Sets All the features representing the
input factor are atomic and projected to embed-
dings, then the embedding layer is formed by con-
catenating them. There are three categories of fea-
tures: word forms, POS (part-of-speech) tags and
distances. For each node in the factor, word forms
and POS tags of the surrounding words in a spec-
ified window are also considered. Special tokens
for start or end of sentences, root node and un-
known words are added for both word forms and
POS tags. Distances can be negative or positive to
represent the relative positions between the factor
nodes in surface string. Take the situation for the
second-order model as an example, there are three
nodes in a factor: h for head, m for modifier and
s for sibling. When considering three-word win-
dows, there will be three word forms and three tags
for each node and its surrounding context. m and
s both have one distance feature while h does not
have one as its parent does not exist in the factor.

Training As stated in Section 2.2, we use the
maximum likelihood criteria. Moreover, we add
two L2-regularizations: one is for all the weights
θ′ (biases and embeddings not included) to avoid
over-fitting and another is for preventing the final
output scores from growing too large. The for-
mer is common practice for neural network, while
the latter is to set soft limits for the norms of the
scores. Although the second term is not usually
adopted, it directly puts soft constraints on the
scores and improves the accuracies (about 0.1%
for UAS/LAS overall) according to our primary
experiments. So the final loss function will be:

L′(θ) =
∑

p

(
Score(p) · (− [p ∈ Tg

]
+m(p)

)
+ λs · Score(p)2

)
+ λm · ‖θ′‖2

where λm and λs respectively represent regular-
ization parameters for model and scores. The
training process utilizes a mini-batched stochastic
gradient descent method with momentum.

Comparisons Our basic model resembles the
one of Pei et al. (2015), but with some ma-
jor differences: probabilistic training criteria are
adopted, the structures of the proposed networks
are different and direction information is encoded
in distance features. Moreover, they simply av-
erage embeddings in specified regions for phrase-
embedding, while we will include sentence-
embedding in convolutional model as follows.

3.2 Convolutional Model
To encode sentence-level information and obtain
sentence embeddings, a convolutional layer of the
whole sentence followed by a max-pooling layer
is adopted. However, we intend to score a factor
in a sentence and the position of the nodes should
also be encoded. The scheme is to use the distance
embedding for the whole convolution window as
the position feature.

We will take the second-order model as an ex-
ample to introduce the related operations. Figure
3 shows the convolution operation for a convo-
lution window, the input atomic features are the
word forms and POS tags for each word inside
the window, and the distances of only the center
word (assuming an odd-sized window) to spec-
ified nodes in the factor are adopted as position
features. In the example, “game-good-a” is to be
scored as a second-order sibling factor, and for a
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This         is          a             good        game      .
 DT        VBZ       DT
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Figure 3: The operations for one convolution win-
dow (second order parsing).

convolution window of “This is a”, word forms
and corresponding POS tags are projected to em-
beddings and concatenated as the lexical vector vl,
the distances of the center word “is” to all the three
nodes in the factor are also projected to embed-
dings and concatenated as the distance vector vd,
then these two vectors go through difference linear
transformations into the same dimension and are
combined together through element-wise addition
or multiplication.

In general, assuming after the projection layer,
embeddings of the word forms and POS tags of
the sentence are represented as [w0,w1, ...,wn−1]
and [p0,p1, ...,pn−1]. Those embeddings in the
basic model may be reused here by sharing the em-
bedding look-up table. The second-order sibling
factor to be scored has nodes with indexes of m
(modifier), h (head) and s (sibling). The distance
embeddings are denoted by d, which can be either
negative or positive. These distance embeddings
are different from the ones in the basic model, be-
cause here we measure the distances between the
convolution window (its center word) and factor
nodes, while the distances between nodes inside
the factors are measured in the basic model.

For a specified window [i : j], always assuming
an odd number sized window, and the center token
is indexed to c = i+j

2 , the vl and vd are obtained
through simple concatenation:

vl = [wi,pi,wi+1,pi+1, ...,wj ,pj ]
vd = [dc−h,dc−m,dc−s]

then vl and vd go through difference linear trans-
formations into same dimension space: v′l,v′d ∈
Rn, where n is also the dimension of the output
vector vo for the window. The linear operations

can be expressed as:

v′l = Wl · vl + bl

v′d = Wd · vd + bd

The final vector vo is obtained by element-wise
operations of v′l and v′d. We consider two strate-
gies: (1) add: simple element-wise addition, (2)
mul: element-wise multiplication with v′d acti-
vated by tanh. They can be formalized as:

vo-add = v′l ⊕ v′d
vo-mul = v′l � tanh(v′d)

All the windows whose center-located word is
valid (exists) in the sentence are considered and
we will get a sequence of convolution outputs
whose number is the same as the sentence length.
The convolution outputs (all vo) are collapsed into
one global vector vg using a standard max-pooling
operation. Finally, for utilizing the sentence-level
representation in the basic model, we can either
replace the original first hidden layer h1 with vg

or concatenate vg to h1 for combining local and
global features.

3.3 Ensemble Models
For higher-order dependency parsing, it is a stan-
dard practice to include the impact of lower-order
parts in the scoring of higher-order factors, which
actually is an ensemble method of different order
models for scoring.

A simple adding scheme is often used. For non-
linear neural models, we use an explicit adding
method. For example, in third-order parsing, the
final score for the factor (g, h,m, s) will be:

sadd(g, h,m, s) = so3(g, h,m, s) + so2(h,m, s)
+ so1(h,m)

Here, g, h, m and s represent the grandparent,
head, modifier and sibling nodes in the grand-
sibling third-order factor; so1, so2 and so3 stand for
the corresponding lower-order scores from first,
second and third order models, respectively.

We notice that ensemble or stacking methods
for dependency parsing have explored in previous
work (Nivre and McDonald, 2008; Torres Martins
et al., 2008). Recently, Weiss et al. (2015) stack a
linear layer for the final scoring in a single model,
and we extend this method to combine multiple
models by stacking a linear layer on their output
and hidden layers. The simple adding scheme can
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be viewed as adopting a final layer with specially
fixed weights.

For each model to be combined, we concatenate
the output layer and all hidden layers (except em-
bedding layer h0):

vall = [s,h1,h2]

All vall from different models are again concate-
nated to form the input for the final linear layer
and the final scores are obtained through a linear
transformation (no bias adding):

vcombine = [vall-o1,vall-o2,vall-o3]
scombine = Wcombine · vcombine

We no longer update weights for the underlying
neural models, and the learning of the final layer
is equally training a linear model, for which struc-
tured average perceptron (Collins, 2002; Collins
and Roark, 2004) is adopted for simplicity.

This ensemble scheme can be extended in sev-
eral ways which might be explored in future work:
(1) feed-forward network can be stacked rather
than a single linear layer, (2) traditional sparse fea-
tures can also be concatenated to vcombine to com-
bine manually specified representations with dis-
tributed neural representations as in (Zhang and
Zhang, 2015).

4 Experiments

The proposed parsers are evaluated on English
Penn Treebank (PTB) and Chinese Penn Tree-
bank (CTB). Unlabeled attachment scores (UAS),
labeled attachment scores (LAS) and unlabeled
complete matches (CM) are the metrics. Punctu-
ations2 are ignored as in previous work (Koo and
Collins, 2010; Zhang and Clark, 2008).

For English, we follow the splitting conven-
tion for PTB3: sections 2-21 for training, 22 for
developing and 23 for test. We prepare three
datasets of PTB, using different conversion tools:
(1) Penn2Malt3 and the head rules of Yamada and
Matsumoto (2003), noted as PTB-Y&M; (2) de-
pendency converter in Stanford parser v3.3.0 with
Stanford Basic Dependencies (De Marneffe et al.,
2006), noted as PTB-SD; (3) LTH Constituent-
to-Dependency Conversion Tool4 (Johansson and

2Tokens whose gold POS tags are one of {“ ” : , .} for
PTB or PU for CTB.

3http://stp.lingfil.uu.se/˜nivre/research/Penn2Malt.html
4http://nlp.cs.lth.se/software/treebank converter

Nugues, 2007), noted as PTB-LTH. We use Stan-
ford POS tagger (Toutanova et al., 2003) to get
predicted POS tags for development and test sets,
and the accuracies for their tags are 97.2% and
97.4%, respectively.

For Chinese, we adopt the splitting convention
for CTB5 described in (Zhang and Clark, 2008).
The dependencies (noted as CTB), are converted
with the Penn2Malt converter. Gold segmentation
and POS tags are used as in previous work.

4.1 Settings

Settings of our models will be described in this
sub-section, including pre-processing and initial-
izations, hyper-parameters, and training details.

We ignore the words that occur less than 3 times
in the training treebank and use a special token
to replace them. For English parsing, we initial-
ize word embeddings with word vectors trained on
Wikipedia using word2vec (Mikolov et al., 2013);
all other weights and biases are initialized ran-
domly with uniform distribution.

For the structures of neural models, all the em-
beddings (word, POS and distances) have dimen-
sions of 50. For basic local models, h1 and h2 are
set to 200 and 100, and the local window size is set
to 7. For convolutional models, a three-word-sized
window for convolution is specified, and convolu-
tion output dimension (number of filters) is 100.
When concatenating the convolution vector (after
pooling) to h1, it will make the first hidden layer’s
dimension 300.

For the training of neural network, we set the
initial learning rate to 0.1 and the momentum to
0.6. After each iteration, the parser is tested on
the development set and if the accuracy decreases,
the learning rate will be halved. The learning rate
will also be halved if no decreases of the accuracy
for three epochs. We train the neural models for
12 epochs and select the one that performs best on
the development set. The regularization parame-
ters λm and λs are set to 0.0001 and 0.001. For the
perceptron training of the ensemble model, only
one epoch is enough based on the results of the
development set.

The runtime of the model is influenced by the
hyper-parameter setting. According to our ex-
periments, using dual-core on 3.0 GHz i7 CPU,
the training costs 6 to 15 hours for different-order
models and the testing is comparably efficient as
recent neural graph-parsers. The calculation of the

1387



Method UAS LAS CM
Basic (first-order)

Unlabeled 91.53 – 42.82
Labeled 92.13 89.60 45.06
Labeled+pre-training 92.19 89.73 45.18

Convolutional (first-order)
replace-add 92.26 89.83 44.76
replace-mul 92.02 89.61 44.24
concatenate-add 92.63 90.20 46.18
concatenate-mul 92.33 89.83 44.94

Higher-orders
o2-nope 92.85 90.51 49.65
o2-adding 93.47 91.13 51.41
o2-perceptron 93.63 91.39 51.53
o3-nope 92.47 90.01 49.06
o3-adding 93.70 91.37 53.53
o3-perceptron 93.51 91.20 51.76

Table 1: Effects of the components, on PTB-SD
development set.

convolution model approximately takes up 40%
of all computations. The convolution operation
indeed costs more, but the lexical parts v′l of
the convolution do not concern the factors and
are computed only once for one sentence, which
makes it less computationally expensive.

4.2 Pruning
For high-order parsing, the computation cost rises
in proportion to the length of the sentence, and
it will be too expensive to calculate scores for all
the factors. Fortunately, many edges are quite un-
likely to be valid and can be pruned away using
low-order models. We follow the method of Koo
and Collins (2010) and directly use the first-order
probabilistic neural parser for pruning. We com-
pute the marginal probability m(h,m) for each
edge and prune away the edges whose marginal
probability is below ε×maxh′m(h′,m). ε means
the pruning threshold that is set to 0.0001 for
second-order. For third-order parsing, considering
the computational cost, we set it to 0.001.

4.3 Model Analysis
This section presents experiments to verify the ef-
fectiveness of the proposed methods and only the
PTB-SD development set will be used in these ex-
periments, which fall into three groups concerning
basic models, convolutional models and ensemble
ones, as shown in Table 1.

The first group focuses on the basic local mod-
els of first order. The first two, Unlabeled and
Labeled, do not use pre-training vectors for ini-
tialization, while the third, Labeled+pre-training,
utilizes them. The Unlabeled does not utilize the

 0.65

 0.7
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 0.95

 1

 5  10  15  20  25  30

F1

Dependency Length

labeled+pre-training (no CNN)
replace-add (only CNN)

concatenate-add (plus CNN)

Figure 4: F1 measure of different dependency
lengths, on PTB-SD development set.

labels in training set and its model only gives
one dependency score (we do not train a second
stage labeling model, so the LAS of the unlabeled
one is not available) and the Labeled directly pre-
dicts the scores for all labels. We can see that
labeled parsing not only demonstrates the conve-
nience of outputting dependency relations and la-
bels for once, but also obtains better parsing per-
formances. Also, we observe that pre-trained word
vectors bring slight improvements. Pre-trained
initialization and labeled parsing will be adopted
for the next two groups and the rest experiments.

Next, we explore the effectiveness of the CNN
enhancement. In the four entries of this group,
concatenate or replace means whether to concate-
nate the sentence-level vector vg to the first hid-
den layer h1 or just replace it (just throw away
the representation from basic models), add or mul
means to use which way for attaching distance in-
formation. Surprisingly, simple adding method
surpasses the more complex multiplication-with-
activation method, which might indicate that the
direct activation operation may not be suitable for
encoding distance information. With no surprises,
the concatenating method works better because it
combines both the local window-based and global
sentence-level information. We also explore the
influences of the convolution operations on depen-
dencies of different lengths, as shown in Figure
4, the convolutional methods help the decisions of
long-range dependencies generally. For the high-
order parsing in the rest of this paper, we will all
adopt the concatenate-add setting.

In the third group, we can see that high-order
parsing brings significant performance improve-
ment. For high-order parsing, three ensemble
schemes are examined: no combination, adding
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PTB-Y&M PTB-SD PTB-LTH CTB
Methods UAS LAS CM UAS LAS CM UAS LAS CM UAS LAS CM
Graph-NN:proposed

o3-adding 93.20 92.12 48.92 93.42 91.29 50.37 93.14 90.07 43.38 87.55 86.19 35.65
o3-perceptron 93.31 92.23 50.00 93.42 91.26 49.92 93.12 89.53 43.83 87.65 86.17 36.07

Graph-NN:others
Pei et al. (2015) 93.29 92.13 – – – – – – – – – –
Fonseca and Aluı́sio (2015) – – – – – – 91.6– 88.9– – – – –
Zhang and Zhao (2015) – – – – – – 92.52 – 41.10 86.01 – 31.88

Graph-Linear
Koo and Collins (2010) 93.04 – – – – – – – – – – –
Martins et al. (2013) 93.07 – – 92.82 – – – – – – – –
Ma and Zhao (2015) 93.0– – 48.8– – – – – – – 87.2– – 37.0–

Transition-NN
Chen and Manning (2014) – – – 91.8– 89.6– – 92.0– 90.7– – 83.9– 82.4– –
Dyer et al. (2015) – – – 93.1– 90.9– – – – – 87.2– 85.7– –
Weiss et al. (2015) – – – 93.99 92.05 – – – – – – –
Zhou et al. (2015) 93.28 92.35 – – – – – – – – – –

Table 2: Comparisons of results on the test sets.

and stacking another linear perceptron layer (with
the suffixes of -nope, -adding and -perceptron re-
spectively). The results show that model ensemble
improves the accuracies quite a few. For third-
order parsing, the no-combination method per-
forms quite poorly compared to the others, which
may be caused by the relative strict setting of the
pruning threshold. Nevertheless, with model en-
semble, the third-order models perform better than
the second-order ones. Though the perceptron
strategy does not work well for third-order pars-
ing in this dataset, it is still more general than the
simple adding method, since the latter can be seen
as a special parameter setting of the former.

4.4 Results

We show the results of two of the best proposed
parsers: third-order adding (o3-adding) and third-
order perceptron (o3-perceptron) methods, and
compare with the reported results of some previ-
ous work in Table 2. We compare with three cat-
egories of models: other Graph-based NN (neu-
ral network) models, traditional Graph-based Lin-
ear models and Transition-based NN models. For
PTB, there have been several different dependency
converters which lead to different sets of depen-
dencies and we choose three of the most popular
ones for more comprehensive comparisons. Since
not all work report results on all of these depen-
dencies, some of the entries might be not available.

From the comparison, we see that the pro-
posed parser has output competitive performance
for different dependency conversion conventions
and treebanks. Compared with traditional graph-

based linear models, neural models may benefit
from better feature representations and more gen-
eral non-linear transformations.

The results and comparisons in Table 2 demon-
strate the proposed models can obtain comparable
accuracies, which show the effectiveness of com-
bining local and global features through window-
based and convolutional neural networks.

5 Related Work

CNN has been explored in recent work of rela-
tion classification (Zeng et al., 2014; Chen et al.,
2015), which resembles the task of deciding de-
pendency relations in parsing. However, relation
classification usually involves labeling for given
arguments and seldom needs to consider the global
structure. Parsing is more complex for it needs to
predict structures and the use of CNN should be
incorporated with the searching algorithms.

Neural network methods have been proved ef-
fective for graph-based parsing. Lei et al. (2014)
explore a tensor scoring method, however, it needs
to combine scores from linear models and we
are not able to compare with it because of dif-
ferent datasets (they take datasets from CoNLL
shared task). Zhang and Zhao (2015) also ex-
plore a probabilistic treatment, but its model may
give mass to illegal trees or non-trees. Fonseca
and Aluı́sio (2015) utilize CNN for scoring edges,
though only explore first-order parsing. Its model
is based on head selection for each modifier and
might be difficult to be extended to high-order
parsing. Recently, several neural re-ranking mod-
els, like Inside-Outside Recursive Neural Network
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(Le and Zuidema, 2014) and Recursive CNN (Zhu
et al., 2015), are utilized for capturing features
with more contexts. However, re-ranking mod-
els depend on the underlying base parsers, which
might already miss the correct trees. Generally,
the re-ranking techniques play a role of additional
enhancement for basic parsing models, and there-
fore they are not included in our comparisons.

The conditional log-likelihood probabilistic cri-
terion utilized in this work is actually a (condi-
tioned) Markov Random Field for tree structures,
and it has been applied to parsing since long time
ago. Johnson et al. (1999) utilize the Markov Ran-
dom Fields for stochastic grammars and gradient
based methods are adopted for parameter estima-
tions, and Geman and Johnson (2002) extend this
with dynamic programming algorithms for infer-
ence and marginal-probability calculation. Collins
(2000) uses the same probabilistic treatment for
re-ranking and the denominator only includes the
candidate trees which can be seen as an approx-
imation for the whole space of trees. Finkel et
al. (2008) utilize it for feature-based parsing. The
probabilistic training criterion for linear graph-
based dependency models have been also explored
in (Li et al., 2014; Ma and Zhao, 2015). How-
ever, these previous methods usually exploit log-
linear models utilizing sparse features for input
representations and linear models for score calcu-
lations, which are replaced by more sophisticated
distributed representations and neural models, as
shown in this work.

6 Conclusions

This work presents neural probabilistic graph-
based models for dependency parsing, together
with a convolutional part which could capture the
sentence-level information. With distributed vec-
tors for representations and complex non-linear
neural network for calculations, the model can ef-
fectively capture more complex features when de-
ciding the scores for sub-tree factors and exper-
iments on standard treebanks show that the pro-
posed techniques improve parsing accuracies.
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