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Abstract

Word embeddings – distributed represen-
tations of words – in deep learning are
beneficial for many tasks in NLP. How-
ever, different embedding sets vary greatly
in quality and characteristics of the cap-
tured information. Instead of relying on
a more advanced algorithm for embed-
ding learning, this paper proposes an en-
semble approach of combining different
public embedding sets with the aim of
learning metaembeddings. Experiments
on word similarity and analogy tasks and
on part-of-speech tagging show better per-
formance of metaembeddings compared to
individual embedding sets. One advan-
tage of metaembeddings is the increased
vocabulary coverage. We release our
metaembeddings publicly at http://
cistern.cis.lmu.de/meta-emb.

1 Introduction

Recently, deep neural network (NN) models have
achieved remarkable results in NLP (Collobert and
Weston, 2008; Sutskever et al., 2014; Yin and
Schütze, 2015). One reason for these results
are word embeddings, compact distributed word
representations learned in an unsupervised manner
from large corpora (Bengio et al., 2003; Mnih and
Hinton, 2009; Mikolov et al., 2013a; Pennington
et al., 2014).

Some prior work has studied differences in per-
formance of different embedding sets. For exam-
ple, Chen et al. (2013) show that the embedding
sets HLBL (Mnih and Hinton, 2009), SENNA
(Collobert and Weston, 2008), Turian (Turian et
al., 2010) and Huang (Huang et al., 2012) have
great variance in quality and characteristics of the
semantics captured. Hill et al. (2014; 2015a) show

that embeddings learned by NN machine transla-
tion models can outperform three representative
monolingual embedding sets: word2vec (Mikolov
et al., 2013b), GloVe (Pennington et al., 2014) and
CW (Collobert and Weston, 2008). Bansal et al.
(2014) find that Brown clustering, SENNA, CW,
Huang and word2vec yield significant gains for
dependency parsing. Moreover, using these repre-
sentations together achieved the best results, sug-
gesting their complementarity. These prior stud-
ies motivate us to explore an ensemble approach.
Each embedding set is trained by a different NN
on a different corpus, hence can be treated as a
distinct description of words. We want to lever-
age this diversity to learn better-performing word
embeddings. Our expectation is that the ensemble
contains more information than each component
embedding set.

The ensemble approach has two benefits. First,
enhancement of the representations: metaembed-
dings perform better than the individual embed-
ding sets. Second, coverage: metaembeddings
cover more words than the individual embedding
sets. The first three ensemble methods we intro-
duce are CONC, SVD and 1TON and they directly
only have the benefit of enhancement. They learn
metaembeddings on the overlapping vocabulary of
the embedding sets. CONC concatenates the vec-
tors of a word from the different embedding sets.
SVD performs dimension reduction on this con-
catenation. 1TON assumes that a metaembedding
for the word exists, e.g., it can be a randomly
initialized vector in the beginning, and uses this
metaembedding to predict representations of the
word in the individual embedding sets by projec-
tions – the resulting fine-tuned metaembedding is
expected to contain knowledge from all individual
embedding sets.

To also address the objective of increased cov-
erage of the vocabulary, we introduce 1TON+,
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a modification of 1TON that learns metaembed-
dings for all words in the vocabulary union in one
step. Let an out-of-vocabulary (OOV) word w
of embedding set ES be a word that is not cov-
ered by ES (i.e., ES does not contain an embed-
ding for w).1 1TON+ first randomly initializes the
embeddings for OOVs and the metaembeddings,
then uses a prediction setup similar to 1TON to
update metaembeddings as well as OOV embed-
dings. Thus, 1TON+ simultaneously achieves two
goals: learning metaembeddings and extending
the vocabulary (for both metaembeddings and in-
vidual embedding sets).

An alternative method that increases cover-
age is MUTUALLEARNING. MUTUALLEARNING

learns the embedding for a word that is an OOV in
embedding set from its embeddings in other em-
bedding sets. We will use MUTUALLEARNING

to increase coverage for CONC, SVD and 1TON,
so that these three methods (when used together
with MUTUALLEARNING) have the advantages
of both performance enhancement and increased
coverage.

In summary, metaembeddings have two benefits
compared to individual embedding sets: enhance-
ment of performance and improved coverage of
the vocabulary. Below, we demonstrate this ex-
perimentally for three tasks: word similarity, word
analogy and POS tagging.

If we simply view metaembeddings as a way of
coming up with better embeddings, then the alter-
native is to develop a single embedding learning
algorithm that produces better embeddings. Some
improvements proposed before have the disadvan-
tage of increasing the training time of embedding
learning substantially; e.g., the NNLM presented
in (Bengio et al., 2003) is an order of magnitude
less efficient than an algorithm like word2vec and,
more generally, replacing a linear objective func-
tion with a nonlinear objective function increases
training time. Similarly, fine-tuning the hyperpa-
rameters of the embedding learning algorithm is
complex and time consuming. In terms of cover-
age, one might argue that we can retrain an ex-
isting algorithm like word2vec on a bigger cor-
pus. However, that needs much longer training
time than our simple ensemble approaches which
achieve coverage as well as enhancement with less
effort. In many cases, it is not possible to retrain

1We do not consider words in this paper that are not cov-
ered by any of the individual embedding sets. OOV refers to
a word that is covered by a proper subset of ESs.

using a different algorithm because the corpus is
not publicly available. But even if these obsta-
cles could be overcome, it is unlikely that there
ever will be a single “best” embedding learn-
ing algorithm. So the current situation of multi-
ple embedding sets with different properties be-
ing available is likely to persist for the forseeable
future. Metaembedding learning is a simple and
efficient way of taking advantage of this diver-
sity. As we will show below they combine several
complementary embedding sets and the resulting
metaembeddings are stronger than each individual
set.

2 Related Work

Related work has focused on improving perfor-
mance on specific tasks by using several embed-
ding sets simultaneously. To our knowledge, there
is no work that aims to learn generally useful
metaembeddings from individual embedding sets.

Tsuboi (2014) incorporates word2vec and
GloVe embeddings into a POS tagging system and
finds that using these two embedding sets together
is better than using them individually. Similarly,
Turian et al. (2010) find that using Brown clus-
ters, CW embeddings and HLBL embeddings for
Name Entity Recognition and chunking tasks to-
gether gives better performance than using these
representations individually.

Luo et al. (2014) adapt CBOW (Mikolov et
al., 2013a) to train word embeddings on differ-
ent datasets – a Wikipedia corpus, search click-
through data and user query data – for web search
ranking and for word similarity. They show that
using these embeddings together gives stronger re-
sults than using them individually.

Both (Yin and Schütze, 2015) and (Zhang et
al., 2016) try to incorporate multiple embedding
sets into channels of convolutional neural network
system for sentence classification tasks. The bet-
ter performance also hints the complementarity of
component embedding sets, however, such kind of
incorporation brings large numbers of training pa-
rameters.

In sum, these papers show that using multiple
embedding sets is beneficial. However, they ei-
ther use embedding sets trained on the same cor-
pus (Turian et al., 2010) or enhance embedding
sets by more training data, not by innovative learn-
ing algorithms (Luo et al., 2014), or make the
system architectures more complicated (Yin and
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Vocab Size Dim Training Data
HLBL (Mnih and Hinton, 2009) 246,122 100 Reuters English newswire August 1996-August 1997
Huang (Huang et al., 2012) 100,232 50 April 2010 snapshot of Wikipedia
Glove (Pennington et al., 2014) 1,193,514 300 42 billion tokens of web data, from Common Crawl
CW (Collobert and Weston, 2008) 268,810 200 Reuters English newswire August 1996-August 1997
word2vec (Mikolov et al., 2013b) 929,022 300 About 100 billion tokens from Google News

Table 1: Embedding Sets (Dim: dimensionality of word embeddings).

Schütze, 2015; Zhang et al., 2016). In our work,
we can leverage any publicly available embed-
ding set learned by any learning algorithm. Our
metaembeddings (i) do not require access to re-
sources such as large computing infrastructures or
proprietary corpora; (ii) are derived by fast and
simple ensemble learning from existing embed-
ding sets; and (iii) have much lower dimensional-
ity than a simple concatentation, greatly reducing
the number of parameters in any system that uses
them.

An alternative to learning metaembeddings
from embeddings is the MVLSA method that
learns powerful embeddings directly from multi-
ple data sources (Rastogi et al., 2015). Rastogi et
al. (2015) combine a large number of data sources
and also run two experiments on the embedding
sets Glove and word2vec. In contrast, our fo-
cus is on metaembeddings, i.e., embeddings that
are exclusively based on embeddings. The ad-
vantages of metaembeddings are that they outper-
form individual embeddings in our experiments,
that few computational resources are needed, that
no access to the original data is required and
that embeddings learned by new powerful (includ-
ing nonlinear) embedding learning algorithms in
the future can be immediately taken advantage of
without any changes being necessary to our basic
framework. In future work, we hope to compare
MVLSA and metaembeddings in effectiveness (Is
using the original corpus better than using embed-
dings in some cases?) and efficiency (Is using
SGD or SVD more efficient and in what circum-
stances?).

3 Experimental Embedding Sets

In this work, we use five released embedding sets.
(i) HLBL. Hierarchical log-bilinear (Mnih and
Hinton, 2009) embeddings released by Turian et
al. (2010);2 246,122 word embeddings, 100 di-
mensions; training corpus: RCV1 corpus (Reuters
English newswire, August 1996 – August 1997).

2metaoptimize.com/projects/wordreprs

(ii) Huang.3 Huang et al. (2012) incorporate
global context to deal with challenges raised by
words with multiple meanings; 100,232 word em-
beddings, 50 dimensions; training corpus: April
2010 snapshot of Wikipedia. (iii) GloVe4 (Pen-
nington et al., 2014). 1,193,514 word embed-
dings, 300 dimensions; training corpus: 42 billion
tokens of web data, from Common Crawl. (iv)
CW (Collobert and Weston, 2008). Released by
Turian et al. (2010);5 268,810 word embeddings,
200 dimensions; training corpus: same as HLBL.
(v) word2vec (Mikolov et al., 2013b) CBOW;6

929,022 word embeddings (we discard phrase
embeddings), 300 dimensions; training corpus:
Google News (about 100 billion words). Table 1
gives a summary of the five embedding sets.

The intersection of the five vocabularies has size
35,965, the union has size 2,788,636.

4 Ensemble Methods

This section introduces the four ensemble meth-
ods: CONC, SVD, 1TON and 1TON+.

4.1 CONC: Concatenation

In CONC, the metaembedding of w is the con-
catenation of five embeddings, one each from the
five embedding sets. For GloVe, we perform L2
normalization for each dimension across the vo-
cabulary as recommended by the GloVe authors.
Then each embedding of each embedding set is
L2-normalized. This ensures that each embedding
set contributes equally (a value between -1 and 1)
when we compute similarity via dot product.

We would like to make use of prior knowl-
edge and give more weight to well performing em-
bedding sets. In this work, we give GloVe and
word2vec weight i > 1 and weight 1 to the other
three embedding sets. We use MC30 (Miller and
Charles, 1991) as dev set, since all embedding sets
fully cover it. We set i = 8, the value in Figure 1

3ai.stanford.edu/˜ehhuang
4nlp.stanford.edu/projects/glove
5metaoptimize.com/projects/wordreprs
6code.google.com/p/Word2Vec

1353



where performance reaches a plateau. After L2
normalization, GloVe and word2vec embeddings
are multiplied by i and remaining embedding sets
are left unchanged.

The dimensionality of CONC metaembeddings
is k = 100+50+300+200+300 = 950. We also
tried equal weighting, but the results were much
worse, hence we skip reporting it. It nevertheless
gives us insight that simple concatenation, without
studying the difference among embedding sets, is
unlikely to achieve enhancement. The main disad-
vantage of simple concatenation is that word em-
beddings are commonly used to initialize words
in DNN systems; thus, the high-dimensionality of
concatenated embeddings causes a great increase
in training parameters.

4.2 SVD: Singular Value Decomposition
We do SVD on above weighted concatenation vec-
tors of dimension k = 950.

Given a set of CONC representations for n
words, each of dimensionality k, we compute an
SVD decomposition C = USV T of the corre-
sponding n×k matrix C. We then use Ud, the first
d dimensions of U , as the SVD metaembeddings
of the n words. We apply L2-normalization to
embeddings; similarities of SVD vectors are com-
puted as dot products.

d denotes the dimensionality of metaembed-
dings in SVD, 1TON and 1TON+. We use d =
200 throughout and investigate the impact of d be-
low.

4.3 1TON
Figure 2 depicts the simple neural network we em-
ploy to learn metaembeddings in 1TON. White
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Figure 1: Performance vs. Weight scalar i

rectangles denote known embeddings. The target
to learn is the metaembedding (shown as shaded
rectangle). Metaembeddings are initialized ran-
domly.

Figure 2: 1toN

Let c be the number of embedding sets under
consideration, V1, V2, . . . , Vi, . . . , Vc their vocab-
ularies and V ∩ = ∩c

i=1Vi the intersection, used
as training set. Let V∗ denote the metaembedding
space. We define a projection f∗i from space V∗ to
space Vi (i = 1, 2, . . . , c) as follows:

ŵi = M∗iw∗ (1)

where M∗i ∈ Rdi×d, w∗ ∈ Rd is the metaembed-
ding of word w in space V∗ and ŵi ∈ Rdi is the
projected (or learned) representation of word w in
space Vi. The training objective is as follows:

E =
c∑

i=1

ki · (
∑

w∈V ∩
|ŵi−wi|2 + l2 · |M∗i|2) (2)

In Equation 2, ki is the weight scalar of the ith em-
bedding set, determined in Section 4.1, i.e, ki = 8
for GloVe and word2vec embedding sets, other-
wise ki = 1; l2 is the weight of L2 normalization.

The principle of 1TON is that we treat each in-
dividual embedding as a projection of the metaem-
bedding, similar to principal component analysis.
An embedding is a description of the word based
on the corpus and the model that were used to cre-
ate it. The metaembedding tries to recover a more
comprehensive description of the word when it is
trained to predict the individual descriptions.

1TON can also be understood as a sentence
modeling process, similar to DBOW (Le and
Mikolov, 2014). The embedding of each word in
a sentence s is a partial description of s. DBOW
combines all partial descriptions to form a com-
prehensive description of s. DBOW initializes the
sentence representation randomly, then uses this
representation to predict the representations of in-
dividual words. The sentence representation of s
corresponds to the metaembedding in 1TON; and
the representations of the words in s correspond to
the five embeddings for a word in 1TON.
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4.4 1TON+

Recall that an OOV (with respect to embedding set
ES) is defined as a word unknown in ES. 1TON+

is an extension of 1TON that learns embeddings
for OOVs; thus, it does not have the limitation that
it can only be run on overlapping vocabulary.

Figure 3: 1toN+

Figure 3 depicts 1TON+. In contrast to Figure
2, we assume that the current word is an OOV in
embedding sets 3 and 5. Hence, in the new learn-
ing task, embeddings 1, 2, 4 are known, and em-
beddings 3 and 5 and the metaembedding are tar-
gets to learn.

We initialize all OOV representations and
metaembeddings randomly and use the same map-
ping formula as for 1TON to connect a metaem-
bedding with the individual embeddings. Both
metaembedding and initialized OOV embeddings
are updated during training.

Each embedding set contains information about
only a part of the overall vocabulary. However, it
can predict what the remaining part should look
like by comparing words it knows with the infor-
mation other embedding sets provide about these
words. Thus, 1TON+ learns a model of the de-
pendencies between the individual embedding sets
and can use these dependencies to infer what the
embedding of an OOV should look like.

CONC, SVD and 1TON compute metaembed-
dings only for the intersection vocabulary. 1TON+

computes metaembeddings for the union of all in-
dividual vocabularies, thus greatly increasing the
coverage of individual embedding sets.

5 MUTUALLEARNING

MUTUALLEARNING is a method that extends
CONC, SVD and 1TON such that they have in-
creased coverage of the vocabulary. With MU-
TUALLEARNING, all four ensemble methods –
CONC, SVD, 1TON and 1TON+ – have the ben-
efits of both performance enhancement and in-
creased coverage and we can use criteria like per-
formance, compactness and efficiency of training

bs lr l2
1TON 200 0.005 5× 10−4

MUTUALLEARNING (ml) 200 0.01 5× 10−8

1TON+ 2000 0.005 5× 10−4

Table 2: Hyperparameters. bs: batch size; lr:
learning rate; l2: L2 weight.

to select the best ensemble method for a particular
application.

MUTUALLEARNING is applied to learn OOV
embeddings for all c embedding sets; however,
for ease of exposition, let us assume we want to
compute embeddings for OOVs for embedding set
j only, based on known embeddings in the other
c− 1 embedding sets, with indexes i ∈ {1 . . . j −
1, j + 1 . . . c}. We do this by learning c− 1 map-
pings fij , each a projection from embedding set
Ei to embedding set Ej .

Similar to Section 4.3, we train mapping fij

on the intersection Vi ∩ Vj of the vocabularies
covered by the two embedding sets. Formally,
ŵj = fij(wi) = Mijwi where Mij ∈ Rdj×di ,
wi ∈ Rdi denotes the representation of word w
in space Vi and ŵj is the projected metaembed-
ding of word w in space Vj . Training loss has the
same form as Equation 2 except that there is no
“
∑c

i=1 ki” term. A total of c − 1 projections fij

are trained to learn OOV embeddings for embed-
ding set j.

Let w be a word unknown in the vocabulary Vj

of embedding set j, but known in V1, V2, . . . , Vk.
To compute an embedding for w in Vj , we first
compute the k projections f1j(w1), f2j(w2), . . .,
fkj(wk) from the source spaces V1, V2, . . . , Vk to
the target space Vj . Then, the element-wise aver-
age of f1j(w1), f2j(w2), . . ., fkj(wk) is treated
as the representation of w in Vj . Our motivation is
that – assuming there is a true representation of w
in Vj and assuming the projections were learned
well – we would expect all the projected vectors
to be close to the true representation. Also, each
source space contributes potentially complemen-
tary information. Hence averaging them is a bal-
ance of knowledge from all source spaces.

6 Experiments

We train NNs by back-propagation with AdaGrad
(Duchi et al., 2011) and mini-batches. Table 2
gives hyperparameters.

We report results on three tasks: word similar-
ity, word analogy and POS tagging.
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Model SL999 WS353 MC30 MEN RW sem. syn. tot.
in

d-
fu

ll
1 HLBL 22.1 (1) 35.7 (3) 41.5 (0) 30.7 (128) 19.1 (892) 27.1 (423) 22.8 (198) 24.7
2 Huang 9.7 (3) 61.7 (18) 65.9 (0) 30.1 (0) 6.4 (982) 8.4 (1016) 11.9 (326) 10.4
3 GloVe 45.3 (0) 75.4 (18) 83.6 (0) 81.6 (0) 48.7 (21) 81.4 (0) 70.1 (0) 75.2
4 CW 15.6 (1) 28.4 (3) 21.7 (0) 25.7 (129) 15.3 (896) 17.4 (423) 5.0 (198) 10.5
5 W2V 44.2 (0) 69.8 (0) 78.9 (0) 78.2 (54) 53.4 (209) 77.1 (0) 74.4 (0) 75.6

in
d-

ov
er

la
p 6 HLBL 22.3 (3) 34.8 (21) 41.5 (0) 30.4 (188) 22.2 (1212) 13.8 (8486) 15.4 (1859) 15.4

7 Huang 9.7 (3) 62.0 (21) 65.9 (0) 30.7 (188) 3.9 (1212) 27.9 (8486) 9.9 (1859) 10.7
8 GloVe 45.0 (3) 75.5 (21) 83.6 (0) 81.4 (188) 59.1 (1212) 91.1 (8486) 68.2 (1859) 69.2
9 CW 16.0 (3) 30.8 (21) 21.7 (0) 24.7 (188) 17.4 (1212) 11.2 (8486) 2.3 (1859) 2.7

10 W2V 44.1 (3) 69.3 (21) 78.9 (0) 77.9 (188) 61.5 (1212) 89.3 (8486) 72.6 (1859) 73.3

di
sc

ar
d

11 CONC (-HLBL) 46.0 (3) 76.5 (21) 86.3 (0) 82.2 (188) 63.0 (1211) 93.2 (8486) 74.0 (1859) 74.8
12 CONC (-Huang) 46.1 (3) 76.5 (21) 86.3 (0) 82.2 (188) 62.9 (1212) 93.2 (8486) 74.0 (1859) 74.8
13 CONC (-GloVe) 44.0 (3) 69.4 (21) 79.1 (0) 77.9 (188) 61.5 (1212) 89.3 (8486) 72.7 (1859) 73.4
14 CONC (-CW) 46.0 (3) 76.5 (21) 86.6 (0) 82.2 (188) 62.9 (1212) 93.2 (8486) 73.9 (1859) 74.7
15 CONC (-W2V) 45.0 (3) 75.5 (21) 83.6 (0) 81.6 (188) 59.1 (1212) 90.9 (8486) 68.3 (1859) 69.2
16 SVD (-HLBL) 48.5 (3) 76.1 (21) 85.6 (0) 82.5 (188) 61.5 (1211) 90.6 (8486) 69.5 (1859) 70.4
17 SVD (-Huang) 48.8 (3) 76.5 (21) 85.4 (0) 83.0 (188) 61.7 (1212) 91.4 (8486) 69.8 (1859) 70.7
18 SVD (-GloVe) 46.2 (3) 66.9 (21) 81.6 (0) 78.8 (188) 59.1 (1212) 88.8 (8486) 67.3 (1859) 68.2
19 SVD (-CW) 48.5 (3) 76.1 (21) 85.7 (0) 82.5 (188) 61.5 (1212) 90.6 (8486) 69.5 (1859) 70.4
20 SVD (-W2V) 49.4 (3) 79.0 (21) 87.3 (0) 83.1 (188) 59.1 (1212) 90.3 (8486) 66.0 (1859) 67.1
21 1TON (-HLBL) 46.3 (3) 75.8 (21) 83.0 (0) 82.1 (188) 60.5 (1211) 91.9 (8486) 75.9 (1859) 76.5
22 1TON (-Huang) 46.5 (3) 75.8 (21) 82.3 (0) 82.4 (188) 60.5 (1212) 93.5 (8486) 76.3 (1859) 77.0
23 1TON (-GloVe) 43.4 (3) 67.5 (21) 75.6 (0) 76.1 (188) 57.3 (1212) 89.0 (8486) 73.8 (1859) 74.5
24 1TON (-CW) 47.4 (3) 76.5 (21) 84.8 (0) 82.9 (188) 62.3 (1212) 91.4 (8486) 73.1 (1859) 73.8
25 1TON (-W2V) 46.3 (3) 76.2 (21) 80.0 (0) 81.5 (188) 56.8 (1212) 92.2 (8486) 72.2 (1859) 73.0
26 1TON+ (-HLBL) 46.1 (3) 75.8 (21) 85.5 (0) 82.1 (188) 62.3 (1211) 92.2 (8486) 76.2 (1859) 76.9
27 1TON+ (-Huang) 46.2 (3) 76.1 (21) 86.3 (0) 82.4 (188) 62.2 (1212) 93.8 (8486) 76.1 (1859) 76.8
28 1TON+ (-GloVe) 45.3 (3) 71.2 (21) 80.0 (0) 78.8 (188) 62.5 (1212) 90.0 (8486) 73.3 (1859) 74.0
29 1TON+ (-CW) 46.9 (3) 78.1 (21) 85.5 (0) 82.5 (188) 62.7 (1212) 91.8 (8486) 73.3 (1859) 74.1
30 1TON+ (-W2V) 45.8 (3) 76.2 (21) 84.4 (0) 81.3 (188) 60.9 (1212) 92.4 (8486) 72.4 (1859) 73.2

en
se

m
bl

e 31 CONC 46.0 (3) 76.5 (21) 86.3 (0) 82.2 (188) 62.9 (1212) 93.2 (8486) 74.0 (1859) 74.8
32 SVD 48.5 (3) 76.0 (21) 85.7 (0) 82.5 (188) 61.5 (1212) 90.6 (8486) 69.5 (1859) 70.4
33 1TON 46.4 (3) 74.5 (21) 80.7 (0) 81.6 (188) 60.1 (1212) 91.9 (8486) 76.1 (1859) 76.8
34 1TON+ 46.3 (3) 75.3 (21) 85.2 (0) 80.8 (188) 61.6 (1212) 92.5 (8486) 76.3 (1859) 77.0
35 state-of-the-art 68.5 81.0 – – – – – –

Table 3: Results on five word similarity tasks (Spearman correlation metric) and analogical reasoning
(accuracy). The number of OOVs is given in parentheses for each result. “ind-full/ind-overlap”: indi-
vidual embedding sets with respective full/overlapping vocabulary; “ensemble”: ensemble results using
all five embedding sets; “discard”: one of the five embedding sets is removed. If a result is better
than all methods in “ind-overlap”, then it is bolded. Significant improvement over the best baseline
in “ind-overlap” is underlined (online toolkit from http://vassarstats.net/index.html for
Spearman correlation metric, test of equal proportions for accuracy, p < .05).

RW(21) semantic syntactic total
RND AVG ml 1TON+ RND AVG ml 1TON+ RND AVG ml 1TON+ RND AVG ml 1TON+

in
d HLBL 7.4 6.9 17.3 17.5 26.3 26.4 26.3 26.4 22.4 22.4 22.7 22.9 24.1 24.2 24.4 24.5

Huang 4.4 4.3 6.4 6.4 1.2 2.7 21.8 22.0 7.7 4.1 10.9 11.4 4.8 3.3 15.8 16.2
CW 7.1 10.6 17.3 17.7 17.2 17.2 16.7 18.4 4.9 5.0 5.0 5.5 10.5 10.5 10.3 11.4

en
se

m
bl

e CONC 14.2 16.5 48.3 – 4.6 18.0 88.1 – 62.4 15.1 74.9 – 36.2 16.3 81.0 –
SVD 12.4 15.7 47.9 – 4.1 17.5 87.3 – 54.3 13.6 70.1 – 31.5 15.4 77.9 –
1TON 16.7 11.7 48.5 – 4.2 17.6 88.2 – 60.0 15.0 76.8 – 34.7 16.1 82.0 –
1TON+ – – – 48.8 – – – 88.4 – – – 76.3 – – – 81.1

Table 4: Comparison of effectiveness of four methods for learning OOV embeddings. RND: random
initialization. AVG: average of embeddings of known words. ml: MUTUALLEARNING. RW(21) means
there are still 21 OOVs for the vocabulary union.
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6.1 Word Similarity and Analogy Tasks

We evaluate on SimLex-999 (Hill et al., 2015b),
WordSim353 (Finkelstein et al., 2001), MEN
(Bruni et al., 2014) and RW (Luong et al., 2013).
For completeness, we also show results for MC30,
the validation set.

The word analogy task proposed in (Mikolov et
al., 2013b) consists of questions like, “a is to b as
c is to ?”. The dataset contains 19,544 such ques-
tions, divided into a semantic subset of size 8869
and a syntactic subset of size 10,675. Accuracy is
reported.

We also collect the state-of-the-art report for
each task. SimLex-999: (Wieting et al., 2015),
WS353: (Halawi et al., 2012). Not all state-of-
the-art results are included in Table 3. One reason
is that a fair comparison is only possible on the
shared vocabulary, so methods without released
embeddings cannot be included. In addition, some
prior systems can possibly generate better per-
formance, but those literature reported lower re-
sults than ours because different hyperparameter
setup, such as smaller dimensionality of word em-
beddings or different evaluation metric. In any
case, our main contribution is to present ensem-
ble frameworks which show that a combination of
complementary embedding sets produces better-
performing metaembeddings.

Table 3 reports results on similarity and anal-
ogy. Numbers in parentheses are the sizes of
words in the datasets that are uncovered by inter-
section vocabulary. We do not consider them for
fair comparison. Block “ind-full” (1-5) lists the
performance of individual embedding sets on the
full vocabulary. Results on lines 6-34 are for the
intersection vocabulary of the five embedding sets:
“ind-overlap” contains the performance of individ-
ual embedding sets, “ensemble” the performance
of our four ensemble methods and “discard” the
performance when one component set is removed.

The four ensemble approaches are very promis-
ing (31-34). For CONC, discarding HLBL, Huang
or CW does not hurt performance: CONC (31),
CONC(-HLBL) (11), CONC(-Huang) (12) and
CONC(-CW) (14) beat each individual embedding
set (6-10) in all tasks. GloVe contributes most in
SimLex-999, WS353, MC30 and MEN; word2vec
contributes most in RW and word analogy tasks.

SVD (32) reduces the dimensionality of CONC
from 950 to 200, but still gains performance in
SimLex-999 and MEN. GloVe contributes most in

SVD (larger losses on line 18 vs. lines 16-17, 19-
20). Other embeddings contribute inconsistently.

1TON performs well only on word analogy, but
it gains great improvement when discarding CW
embeddings (24). 1TON+ performs better than
1TON: it has stronger results when considering all
embedding sets, and can still outperform individ-
ual embedding sets while discarding HLBL (26),
Huang (27) or CW (29).

These results demonstrate that ensemble meth-
ods using multiple embedding sets produce
stronger embeddings. However, it does not mean
the more embedding sets the better. Whether an
embedding set helps, depends on the complemen-
tarity of the sets and on the task.

CONC, the simplest ensemble, has robust per-
formance. However, size-950 embeddings as input
means a lot of parameters to tune for DNNs. The
other three methods (SVD, 1TON, 1TON+) have
the advantage of smaller dimensionality. SVD re-
duces CONC’s dimensionality dramatically and
still is competitive, especially on word similar-
ity. 1TON is competitive on analogy, but weak
on word similarity. 1TON+ performs consistently
strongly on word similarity and analogy.

Table 3 uses the metaembeddings of intersec-
tion vocabulary, hence it shows directly the qual-
ity enhancement by our ensemble approaches; this
enhancement is not due to bigger coverage.

System comparison of learning OOV embed-
dings. In Table 4, we extend the vocabularies of
each individual embedding set (“ind” block) and
our ensemble approaches (“ensemble” block) to
the vocabulary union, reporting results on RW and
analogy – these tasks contain the most OOVs. As
both word2vec and GloVe have full coverage on
analogy, we do not rereport them in this table. This
subtask is specific to “coverage” property. Appar-
ently, our mutual learning and 1TON+ can cover
the union vocabulary, which is bigger than each in-
dividual embedding sets. But the more important
issue is that we should keep or even improve the
embedding quality, compared with their original
embeddings in certain component sets.

For each embedding set, we can compute the
representation of an OOV (i) as a randomly initial-
ized vector (RND); (ii) as the average of embed-
dings of all known words (AVG); (iii) by MUTU-
ALLEARNING (ml) and (iv) by 1TON+. 1TON+

learns OOV embeddings for individual embedding
sets and metaembeddings simultaneously, and it
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Figure 4: Influence of dimensionality

newsgroups reviews weblogs answers emails wsj
ALL OOV ALL OOV ALL OOV ALL OOV ALL OOV ALL OOV

ba
se

lin
es

TnT 88.66 54.73 90.40 56.75 93.33 74.17 88.55 48.32 88.14 58.09 95.76 88.30
Stanford 89.11 56.02 91.43 58.66 94.15 77.13 88.92 49.30 88.68 58.42 96.83 90.25
SVMTool 89.14 53.82 91.30 54.20 94.21 76.44 88.96 47.25 88.64 56.37 96.63 87.96
C&P 89.51 57.23 91.58 59.67 94.41 78.46 89.08 48.46 88.74 58.62 96.78 88.65
FLORS 90.86 66.42 92.95 75.29 94.71 83.64 90.30 62.15 89.44 62.61 96.59 90.37

+i
nd

iv

FLORS+HLBL 90.01 62.64 92.54 74.19 94.19 79.55 90.25 62.06 89.33 62.32 96.53 91.03
FLORS+Huang 90.68 68.53 92.86 77.88 94.71 84.66 90.62 65.04 89.62 64.46 96.65 91.69
FLORS+GloVe 90.99 70.64 92.84 78.19 94.69 86.16 90.54 65.16 89.75 65.61 96.65 92.03
FLORS+CW 90.37 69.31 92.56 77.65 94.62 84.82 90.23 64.97 89.32 65.75 96.58 91.36
FLORS+W2V 90.72 72.74 92.50 77.65 94.75 86.69 90.26 64.91 89.19 63.75 96.40 91.03

+m
et

a

FLORS+CONC 91.87 72.64 92.92 78.34 95.37 86.69 90.69 65.77 89.94 66.90 97.31 92.69
FLORS+SVD 90.98 70.94 92.47 77.88 94.50 86.49 90.75 64.85 89.88 65.99 96.42 90.36
FLORS+1TON 91.53 72.84 93.58 78.19 95.65 87.62 91.36 65.36 90.31 66.48 97.66 92.86
FLORS+1TON+ 91.52 72.34 93.14 78.32 95.65 87.29 90.77 65.28 89.93 66.72 97.14 92.55

Table 5: POS tagging results on six target domains. “baselines” lists representative systems for this task,
including FLORS. “+indiv / +meta”: FLORS with individual embedding set / metaembeddings. Bold
means higher than “baselines” and “+indiv”.

would not make sense to replace these OOV em-
beddings computed by 1TON+ with embeddings
computed by “RND/AVG/ml”. Hence, we do not
report “RND/AVG/ml” results for 1TON+.

Table 4 shows four interesting aspects. (i) MU-
TUALLEARNING helps much if an embedding set
has lots of OOVs in certain task; e.g., MUTUAL-
LEARNING is much better than AVG and RND
on RW, and outperforms RND considerably for
CONC, SVD and 1TON on analogy. However,
it cannot make big difference for HLBL/CW on
analogy, probably because these two embedding
sets have much fewer OOVs, in which case AVG
and RND work well enough. (ii) AVG produces
bad results for CONC, SVD and 1TON on anal-
ogy, especially in the syntactic subtask. We notice
that those systems have large numbers of OOVs in
word analogy task. If for analogy “a is to b as c is

to d”, all four of a, b, c, d are OOVs, then they are
represented with the same average vector. Hence,
similarity between b− a + c and each OOV is 1.0.
In this case, it is almost impossible to predict the
correct answer d. Unfortunately, methods CONC,
SVD and 1TON have many OOVs, resulting in the
low numbers in Table 4. (iii) MUTUALLEARN-
ING learns very effective embeddings for OOVs.
CONC-ml, 1TON-ml and SVD-ml all get better re-
sults than word2vec and GloVe on analogy (e.g.,
for semantic analogy: 88.1, 87.3, 88.2 vs. 81.4
for GloVe). Considering further their bigger vo-
cabulary, these ensemble methods are very strong
representation learning algorithms. (iv) The per-
formance of 1TON+ for learning embeddings for
OOVs is competitive with MUTUALLEARNING.
For HLBL/Huang/CW, 1TON+ performs slightly
better than MUTUALLEARNING in all four met-
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rics. Comparing 1TON-ml with 1TON+, 1TON+

is better than “ml” on RW and semantic task, while
performing worse on syntactic task.

Figure 4 shows the influence of dimensionality
d for SVD, 1TON and 1TON+. Peak performance
for different data sets and methods is reached for
d ∈ [100, 500]. There are no big differences in
the averages across data sets and methods for high
enough d, roughly in the interval [150, 500]. In
summary, as long as d is chosen to be large enough
(e.g., ≥ 150), performance is robust.

6.2 Domain Adaptation for POS Tagging

In this section, we test the quality of those individ-
ual embedding embedding sets and our metaem-
beddings in a Part-of-Speech (POS) tagging task.
For POS tagging, we add word embeddings into
FLORS7 (Schnabel and Schütze, 2014) which is
the state-of-the-art POS tagger for unsupervised
domain adaptation.

FLORS tagger. It treats POS tagging as a
window-based (as opposed to sequence classifica-
tion), multilabel classification problem using LIB-
LINEAR,8 a linear SVM. A word’s representation
consists of four feature vectors: one each for its
suffix, its shape and its left and right distributional
neighbors. Suffix and shape features are standard
features used in the literature; our use of them in
FLORS is exactly as described in (Schnabel and
Schütze, 2014).

Let f(w) be the concatenation of the two distri-
butional and suffix and shape vectors of word w.
Then FLORS represents token vi as follows:
f(vi−2)⊕ f(vi−1)⊕ f(vi)⊕ f(vi+1)⊕ f(vi+2)
where⊕ is vector concatenation. Thus, token vi is
tagged based on a 5-word window.

FLORS is trained on sections 2-21 of Wall
Street Journal (WSJ) and evaluate on the devel-
opment sets of six different target domains: five
SANCL (Petrov and McDonald, 2012) domains –
newsgroups, weblogs, reviews, answers, emails –
and sections 22-23 of WSJ for in-domain testing.

Original FLORS mainly depends on distribu-
tional features. We insert word’s embedding as
the fifth feature vector. All embedding sets (except
for 1TON+) are extended to the union vocabulary
by MUTUALLEARNING. We test if this additional
feature can help this task.

Table 5 gives results for some representa-

7cistern.cis.lmu.de/flors (Yin et al., 2015)
8liblinear.bwaldvogel.de (Fan et al., 2008)

tive systems (“baselines”), FLORS with individ-
ual embedding sets (“+indiv”) and FLORS with
metaembeddings (“+meta”). Following conclu-
sions can be drawn. (i) Not all individual embed-
ding sets are beneficial in this task; e.g., HLBL
embeddings make FLORS perform worse in 11
out of 12 cases. (ii) However, in most cases,
embeddings improve system performance, which
is consistent with prior work on using embed-
dings for this type of task (Xiao and Guo, 2013;
Yang and Eisenstein, 2014; Tsuboi, 2014). (iii)
Metaembeddings generally help more than the in-
dividual embedding sets, except for SVD (which
only performs better in 3 out of 12 cases).

7 Conclusion

This work presented four ensemble methods for
learning metaembeddings from multiple embed-
ding sets: CONC, SVD, 1TON and 1TON+.
Experiments on word similarity and analogy
and POS tagging show the high quality of the
metaembeddings; e.g., they outperform GloVe
and word2vec on analogy. The ensemble meth-
ods have the added advantage of increasing vo-
cabulary coverage. We make our metaem-
beddings available at http://cistern.cis.
lmu.de/meta-emb.
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