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Abstract

A key goal in natural language genera-
tion (NLG) is to enable fast generation
even with large vocabularies, grammars
and worlds. In this work, we build upon a
recently proposed NLG system, Sentence
Tree Realization with UCT (STRUCT).
We describe four enhancements to this
system: (i) pruning the grammar based on
the world and the communicative goal, (ii)
intelligently caching and pruning the com-
binatorial space of semantic bindings, (iii)
reusing the lookahead search tree at differ-
ent search depths, and (iv) learning and us-
ing a search control heuristic. We evaluate
the resulting system on three datasets of
increasing size and complexity, the largest
of which has a vocabulary of about 10K
words, a grammar of about 32K lexical-
ized trees and a world with about 11K enti-
ties and 23K relations between them. Our
results show that the system has a median
generation time of 8.5s and finds the best
sentence on average within 25s. These re-
sults are based on a sequential, interpreted
implementation and are significantly bet-
ter than the state of the art for planning-
based NLG systems.

1 Introduction and Related Work

We consider the restricted natural language gen-
eration (NLG) problem (Reiter and Dale, 1997):
given a grammar, lexicon, world and a commu-
nicative goal, output a valid sentence that satis-
fies this goal. Though restricted, this problem is
still challenging when the NLG system has to deal
with the large probabilistic grammars of natural
language, large knowledge bases representing re-
alistic worlds with many entities and relations be-

tween them, and complex communicative goals.
Prior work has approach NLG from two di-

rections. One strategy is over-generation and
ranking, in which an intermediate structure gen-
erates many candidate sentences which are then
ranked according to how well they match the
goal. This includes systems built on chart parsers
(Shieber, 1988; Kay, 1996; White and Baldridge,
2003), systems that use forest architectures such
as HALogen/Nitrogen, (Langkilde-Geary, 2002),
systems that use tree conditional random fields (Lu
et al., 2009), and newer systems that use recur-
rent neural networks (Wen et al., 2015b; Wen et
al., 2015a). Another strategy formalizes NLG as a
goal-directed planning problem to be solved using
an automated planner. This plan is then semanti-
cally enriched, followed by surface realization to
turn it into natural language. This is often viewed
as a pipeline generation process (Reiter and Dale,
1997).

An alternative to pipeline generation is inte-
grated generation, in which the sentence plan-
ning and surface realization tasks happen simul-
taneously (Reiter and Dale, 1997). CRISP (Koller
and Stone, 2007) and PCRISP (Bauer and Koller,
2010) are two such systems. These generators en-
code semantic components and grammar actions
in PDDL (Fox and Long, 2003), the input format
for many off-the-shelf planners such as Graphplan
(Blum and Furst, 1997). During the planning pro-
cess a semantically annotated parse is generated
alongside the sentence, preventing ungrammatical
sentences and structures that cannot be realized.
PCRISP builds upon the CRISP system by incor-
porating grammar probabilities as costs in an off-
the-shelf metric planner (Bauer and Koller, 2010).
Our work builds upon the Sentence Tree Realiza-
tion with UCT (STRUCT) system (McKinley and
Ray, 2014), described further in the next section.
STRUCT performs integrated generation by for-
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malizing the generation problem as planning in
a Markov decision process (MDP), and using a
probabilistic planner to solve it.

Results reported in previous work (McKinley
and Ray, 2014) show that STRUCT is able to cor-
rectly generate sentences for a variety of commu-
nicative goals. Further, the system scaled better
with grammar size (in terms of vocabulary) than
CRISP. Nonetheless, these experiments were per-
formed with toy grammars and worlds with arti-
ficial communicative goals written to test specific
experimental variables in isolation. In this work,
we consider the question: can we enable STRUCT
to scale to realistic generation tasks? For exam-
ple, we would like STRUCT to be able to generate
any sentence from the Wall Street Journal (WSJ)
corpus (Marcus et al., 1993). We describe four en-
hancements to the STRUCT system: (i) pruning
the grammar based on the world and the commu-
nicative goal, (ii) intelligently caching and prun-
ing the combinatorial space of semantic bindings,
(iii) reusing the lookahead search tree at different
search depths, and (iv) learning and using a search
control heuristic. We call this enhanced version
Scalable-STRUCT (S-STRUCT). In our experi-
ments, we evaluate S-STRUCT on three datasets
of increasing size and complexity derived from the
WSJ corpus. Our results show that even with vo-
cabularies, grammars and worlds containing tens
of thousands of constituents, S-STRUCT has a
median generation time of 8.5s and finds the best
sentence on average within 25s, which is signifi-
cantly better than the state of the art for planning-
based NLG systems.

2 Background: LTAG and STRUCT

STRUCT uses an MDP (Puterman, 1994) to for-
malize the NLG process. The states of the MDP
are semantically-annotated partial sentences. The
actions of the MDP are defined by the rules of the
grammar. STRUCT uses a probabilistic lexical-
ized tree adjoining grammar (PLTAG).

Tree Adjoining Grammars (TAGs) (Figure 1)
consist of two sets of trees: initial trees and aux-
iliary (adjoining) trees. An initial tree can be ap-
plied to an existing sentence tree by replacing a
leaf node whose label matches the initial tree’s
root label in an action called “substitution”. Aux-
iliary trees have a special “foot” node whose label
matches the label of its root, and uses this to en-
code recursive language structures. Given an ex-
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Figure 1: LTAG examples: initial tree (chased),
substitution (cat), and adjunction (black)

isting sentence tree, an auxiliary tree can be ap-
plied in a three-step process called “adjunction”.
First, an adjunction site is selected from the sen-
tence tree; that is, any node whose label matches
that of the auxiliary tree’s root and foot. Then, the
subtree rooted by the adjunction site is removed
from the sentence tree and substituted into the foot
node of the auxiliary tree. Finally, the modified
auxiliary tree is substituted back into the original
adjunction location. LTAG is a variation of TAG
in which each tree is associated with a lexical item
known as an anchor (Joshi and Schabes, 1997).
Semantics can be added to an LTAG by annotat-
ing each tree with compositional lambda seman-
tics that are unified via β-reduction (Jurafsky and
Martin, 2000). A PLTAG associates probabilities
with every tree in the LTAG and includes proba-
bilities for starting a derivation, probabilities for
substituting into a specific node, and probabilities
for adjoining at a node, or not adjoining.

The STRUCT reward function is a measure of
progress towards the communicative goal as mea-
sured by the overlap with the semantics of a partial
sentence. It gives positive reward to subgoals ful-
filled and gives negative reward for unbound enti-
ties, unmet semantic constraints, sentence length,
and ambiguous entities. Therefore, the best sen-
tence for a given goal is the shortest unambiguous
sentence which fulfills the communicative goal
and all semantic constraints. The transition func-
tion of the STRUCT MDP assigns the total proba-
bility of selecting and applying an action in a state
to transition to the next, given by the action’s prob-
ability in the grammar. The final component of the
MDP is the discount factor, which is set to 1. This
is because with lexicalized actions, the state does
not loop, and the algorithm may need to generate
long sentences to match the communicative goal.

STRUCT uses a modified version of the prob-
abilistic planner UCT (Kocsis and Szepesvári,
2006), which can generate near-optimal plans
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with a time complexity independent of the state
space size. UCT’s online planning happens in
two steps: for each action available, a lookahead
search tree is constructed to estimate the action’s
utility. Then, the best available action is taken and
the procedure is repeated. If there are any unex-
plored actions, UCT will choose one according to
an “open action policy” which samples PLTAGs
without replacement. If no unexplored actions re-
main, an action a is chosen in state s according to
the “tree policy” which maximizes Equation 1.

P (s, a) = Q(s, a) + c

√
lnN(s)
N(s, a)

(1)

Here Q(s, a) is the estimated value of a, com-
puted as the sum of expected future rewards after
(s, a). N(s, a) and N(s) are the visit counts for
s and (s, a) respectively. c is a constant term con-
trolling the exploration/exploitation trade off. Af-
ter an action is chosen, the policy is rolled out to
depth D by repeatedly sampling actions from the
PLTAG, thereby creating the lookahead tree.

UCT was originally used in an adversarial en-
vironment, so it selects actions leading to the best
average reward; however, language generation is
not adversarial, so STRUCT chooses actions lead-
ing to the best overall reward instead.

Algorithm 1 S-STRUCT Algorithm

Require: Grammar R, World W , Goal G, num
trials N , lookahead depth D, timeout T

1: †R← pruneGrammar(R)
2: state← empty state
3: uctTree← new search tree at state
4: while state not terminal and time < T do
5: †uctTree← getAction(uctTree,N,D)
6: state← uctTree.state
7: end while
8: return extractBestSentence(uctTree)

The modified STRUCT algorithm presented
in this paper, which we call Scalable-STRUCT
(S-STRUCT), is shown in Algorithm 1. If
the changes described in the next section (lines
marked with †) are removed, we recover the origi-
nal STRUCT system.

3 Scaling the STRUCT system

In this section, we describe five enhancements to
STRUCT that will allow it to scale to real world

Algorithm 2 getAction (Algorithm 1, line 5)

Require: Search Tree uctTree, num trials N ,
lookahead depth D, grammar R

1: for N do
2: node← uctTree
3: if node.state has unexplored actions then
4: †action← pick with open action policy
5: else
6: †action← pick with tree policy
7: end if
8: †node← applyAction(node, action)
9: depth← 1

10: while depth < D do
11: action← sample PLTAG from R
12: †node← applyAction(node, action)
13: reward← calcReward(node.state)
14: propagate reward up uctTree
15: depth← depth+ 1
16: end while
17: end for
18: uctTree← best child of uctTree
19: return uctTree

NLG tasks. Although the implementation details
of these are specific to STRUCT, all but one (reuse
of the UCT search tree) could theoretically be ap-
plied to any planning-based NLG system.

3.1 Grammar Pruning

It is clear that for a given communicative goal,
only a small percentage of the lexicalized trees in
the grammar will be helpful in generating a sen-
tence. Since these trees correspond to actions,
if we prune the grammar suitably, we reduce the
number of actions our planner has to consider.

Algorithm 3 pruneGrammar (Algorithm 1, line 1)

Require: Grammar R, World W , Goal G
1: G′ ← ∅
2: for e ∈ G.entities do
3: G′ ← G′ ∪ referringExpression(e,W )
4: end for
5: R′ ← ∅
6: for tree ∈ R do
7: if tree fulfills semantic constraints or

tree.relations ⊆ G′.relations then
8: R′ ← R′ ∪ {tree}
9: end if

10: end for
11: return R′

There are four cases in which an action is rele-
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vant. First, the action could directly contribute to
the goal semantics. Second, the action could sat-
isfy a semantic constraint, such as mandatory de-
terminer adjunction which would turn “cat” into
“the cat” in Figure 1. Third, the action allows
for additional beneficial actions later in the gener-
ation. An auxiliary tree anchored by “that”, which
introduces a relative clause, would not add any se-
mantic content itself. However, it would add sub-
stitution locations that would let us go from “the
cat” to “the cat that chased the rabbit” later in the
generation process. Finally, the action could dis-
ambiguate entities in the communicative goal. In
the most conservative approach, we cannot discard
actions that introduce a relation sharing an entity
with a goal entity (through any number of other
relations), as it may be used in a referring expres-
sion (Jurafsky and Martin, 2000). However, we
can optimize this by ensuring that we can find at
least one, instead of all, referring expressions.

This grammar pruning is “lossless” in that, after
pruning, the full communicative goal can still be
reached, all semantic constraints can be met, and
all entities can be disambiguated. However it is
possible that the solution found will be longer than
necessary. This can happen if we use two separate
descriptors to disambiguate two entities where one
would have sufficed. For example, we could gen-
erate the sentence “the black dog chased the red
cat” where saying “the large dog chased the cat”
would have sufficed (if “black”, “red”, and “large”
were only included for disambiguation purposes).

We implement the pruning logic in the
pruneGrammar algorithm shown in Algorithm
3. First, an expanded goal G′ is constructed by
explicitly solving for a referring expression for
each goal entity and adding it to the original goal.
The algorithm is based on prior work (Bohnet and
Dale, 2005) and uses an alternating greedy search,
which chooses the relation that eliminates the most
distractors, and a depth-first search to describe the
entities. Then, we loop through the trees in the
grammar and only keep those that can fulfill se-
mantic constraints or can contribute to the goal.
This includes trees introducing relative clauses.

3.2 Handling Semantic Bindings

As a part of the reward calculation in Algorithm
4, we must generate the valid bindings between
the entities in the partial sentence and the entities
in the world (line 2). We must have at least one

Algorithm 4 calcReward (Algorithm 2, line 13)

Require: Partial Sentence S, World W , Goal G
1: score← 0
2: †B ← getV alidBindings(S,W )
3: if |B| > 0 then
4: †m← getV alidBinding(S,G)
5: S ← apply m to S
6: score += C1 |G.relations ∩ S.relations|
7: score −= C2 |G.conds− S.conds|
8: score −= C3 |G.entities	 S.entities|
9: score −= C4 |S.sentence|

10: score /= C5 |B|
11: end if
12: return score

valid binding, as this indicates that our partial sen-
tence is factual (with respect to the world); how-
ever, more than one binding means that the sen-
tence is ambiguous, so a penalty is applied. Unfor-
tunately, computing the valid bindings is a com-
binatorial problem. If there are N world entities
andK partial sentence entities, there are

(
N
K

)
bind-

ings between them that we must check for validity.
This quickly becomes infeasible as the world size
grows.

Algorithm 5 getValidBindings (Alg. 4, line 2)

Require: Partial Sentence S, World W
1: validBindings← ∅
2: queue← prevBindings if exists else [∅]
3: while |queue| > 0 do
4: b← queue.pop()
5: S′ ← apply binding b to S
6: if S′,W consistent and S′.entities all

bound then
7: validBindings.append(b)
8: else if S′,W consistent then
9: freeS ← unbound S′.entities

10: freeW ←W .entities not in b
11: for es, ew ∈ freeS × freeW do
12: queue.push(b ∪ {es → ew})
13: end for
14: end if
15: end while
16: return validBindings

Instead of trying every binding, we use the pro-
cedure shown in Algorithm 5 to greatly reduce the
number of bindings we must check. Starting with
an initially empty binding, we repeatedly add a
single {sentenceEntity → worldEntity} pair
(line 12). If a binding contains all partial sentence
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entities and the semantics are consistent with the
world, the binding is valid (lines 6-7). If at any
point, a binding yields partial sentence semantics
that are inconsistent with the world, we no longer
need to consider any bindings which it is a sub-
set of (when condition on line 8 is false, no chil-
dren expanded). The benefit of this bottom-up ap-
proach is that when an inconsistency is caused by
adding a mapping of partial sentence entity e1 and
world entity e2, all of the

(
N−1
K−1

)
bindings contain-

ing {e1 → e2} are ruled out as well. This pro-
cedure is especially effective in worlds/goals with
low ambiguity (such as real-world text).

We further note that many of the binding checks
are repeated between action selections. Because
our sentence semantics are conjunctive, entity
specifications only get more specific with addi-
tional relations; therefore, bindings that were in-
validated earlier in the search procedure can never
again become valid. Thus, we can cache and
reuse valid bindings from the previous partial sen-
tence (line 2). For domains with very large worlds
(where most relations have no bearing on the com-
municative goal), most of the possible bindings
will be ruled out with the first few action appli-
cations, resulting in large computational savings.

3.3 Reusing the Search Tree

The STRUCT algorithm constructs a lookahead
tree of depth D via policy rollout to estimate the
value of each action. This tree is then discarded
and the procedure repeated at the next state. But
it may be that at the next state, many of the use-
ful actions will already have been visited by prior
iterations of the algorithm. For a lookahead depth
D, some actions will have already been explored
up to depth D − 1.

For example if we have generated the par-
tial sentence “the cat chased the rabbit” and S-
STRUCT looks ahead to find that a greater reward
is possible by introducing the relative clause “the
rabbit that ate”, when we transition to “the rabbit
that”, we do not need to re-explore “ate” and can
directly try actions that result in “that ate grass”,
“that ate carrots”, etc. Note that if there are still
unexplored actions at an earlier depth, these will
still be explored as well (action rollouts such as
“that drank water” in this example).

Reusing the search tree is especially effective
given that the tree policy causes us to favor areas
of the search space with high value. Therefore,

when we transition to the state with highest value,
it is likely that many useful actions have already
been explored. Reusing the search tree is reflected
in Algorithms 1-2 by passing uctTree back and
forth to/from getAction instead of starting a new
search tree at each step. In applyAction, when
a state/action already in the tree is chosen, S-
STRUCT transitions to the next state without hav-
ing to recompute the state or its reward.

3.4 Learning and Using Search Control

During the search procedure, a large number of
actions are explored but relatively few of them
are helpful. Ideally, we would know which ac-
tions would lead to valuable states without actu-
ally having to expand and evaluate the resultant
states, which is an expensive operation. From
prior knowledge, we know that if we have a par-
tial sentence of “the sky is”, we should try actions
resulting in “the sky is blue” before those result-
ing in “the sky is yellow”. This prior knowledge
can be estimated through learned heuristics from
previous runs of the planner (Yoon et al., 2008).
To do this, a set of previously completed plans can
be treated as a training set: for each (state, action)
pair considered, a feature vector Φ(s, a) is emit-
ted, along with either the distance to the goal state
or a binary indicator of whether or not the state is
on the path to the goal. A perceptron (or similar
model) H(s, a) is trained on the (Φ(s, a), target)
pairs. H(s, a) can be incorporated into the plan-
ning process to help guide future searches.

We apply this idea to our S-STRUCT system by
tracking the (state, action) pairs visited in previ-
ous runs of the STRUCT system where STRUCT
obtained at least 90% of the reward of the known
best sentence and emit a feature vector for each,
containing: global tree frequency, tree probability
(as defined in Section 4.1), and the word corre-
lation of the action’s anchor with the two words
on either side of the action location. We define
the global tree frequency as the number of times
the tree appeared in the corpus normalized by the
number of trees in the corpus; this is different than
the tree probability as it does not take any context
into account (such as the parent tree and substitu-
tion location). Upon search completion, the fea-
ture vectors are annotated with a binary indicator
label of whether or not the (state, action) pair was
on the path to the best sentence. This training set
is then used to train a perceptron H(s, a).
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Table 1: Summary statistics for test data sets

Test Set Goals /
Sentences

Vocab
Size

Lex Trees /
Actions

World
Entities

World
Relations

Avg. Goal
Entities

Avg. Goal
Relations

Max
Depth

Small 50 130 395 77 135 1.54 2.70 0
Medium 500 1165 3734 741 1418 1.48 2.83 1
Large 5000 9872 31966 10998 23097 2.20 4.62 6

We use H(s, a) to inform both the open action
policy (Algorithm 2, line 4) and the tree policy
(Algorithm 2, line 6). In the open action policy ,
we choose open actions according to their heuris-
tic values, instead of just their tree probabilities.
In the tree policy, we incorporate H(s, a) into the
reward estimation by using Equation 2 in place of
Equation 1 in Algorithm 2 (Chaslot et al., 2008a):

P (s, a) = Q(s, a)+λH(s, a)+c

√
lnN(s)
N(s, a)

. (2)

Here, H(s, a) is a value prediction from prior
knowledge and λ is a parameter controlling the
trade-off between prior knowledge and estimated
value on this goal.

4 Empirical Evaluation

In this section, we evaluate three hypotheses: (1)
S-STRUCT can handle real-world datasets, as they
scale in terms of (a) grammar size, (b) world size,
(c) entities/relations in the goal, (d) lookahead
required to generate sentences, (2) S-STRUCT
scales better than STRUCT to such datasets and
(3) Each of the enhancements above provides a
positive contribution to STRUCT’s scalability in
isolation.

4.1 Datasets
We collected data in the form of grammars, worlds
and goals for our experiments, starting from the
WSJ corpus of the Penn TreeBank (Marcus et al.,
1993). We parsed this with an LTAG parser to
generate the best parse and derivation tree (Sarkar,
2000; XTAG Research Group, 2001). The parser
generated valid parses for 18,159 of the WSJ sen-
tences. To pick the best parse for a given sentence,
we choose the parse which minimizes the PAR-
SEVAL bracket-crossing metric against the gold-
standard (Abney et al., 1991). This ensures that
the major structures of the parse tree are retained.
We then pick the 31 most frequently occurring
XTAG trees (giving us 74% coverage of the parsed

sentences) and annotate them with compositional
semantics. The final result of this process was a
corpus of semantically annotated WSJ sentences
along with their parse and derivation trees 1.

To show the scalability of the improved
STRUCT system, we extracted 3 datasets of in-
creasing size and complexity from the semanti-
cally annotated WSJ corpus. We nominally refer
to these datasets as Small, Medium, and Large.
Summary statistics of the data sets are shown in
Table 1. For each test set, we take the grammar
to be all possible lexicalizations of the unlexical-
ized trees given the anchors of the test set. We set
the world as the union of all communicative goals
in the test set. The PLTAG probabilities are de-
rived from the entire parseable portion of the WSJ.
Due to the data sparsity issues (Bauer and Koller,
2010), we use unlexicalized probabilities.

The reward function constants C were set to
[500, 100, 10, 10, 1]. In the tree policy, c was set
to 0.5. These are as in the original STRUCT
system. λ was chosen as 100 after evaluating
{0, 10, 100, 1000, 10000} on a tuning set.

In addition to test sets, we extract an inde-
pendent training set using 100 goals to learn the
heuristic H(s, a). We train a separate perceptron
for each test set and incorporate this into the S-
STRUCT algorithm as described in Section 3.4.

4.2 Results
For these experiments, S-STRUCT was imple-
mented in Python 3.4. The experiments were run
on a single core of a Intel(R) Xeon(R) CPU E5-
2450 v2 processor clocked at 2.50GHz with ac-
cess to 8GB of RAM. The times reported are from
the start of the generation process instead of the
start of the program execution to reduce variation
caused by interpreter startup, input parsing, etc. In

1Not all of the covered trees were able to recursively de-
rive their semantics, despite every constituent tree being se-
mantically annotated. This is because β-reduction of the λ-
semantics is not associative in many cases where the syntac-
tic composition is associative, causing errors during semantic
unification. Due to this and other issues, the number of usable
parse trees/sentences was about 7500.
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Figure 2: Avg. Best Normalized Reward (y-axis) vs. Time in Seconds (x-axis) for (a) Small Baseline,
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Figure 3: Best sentence available during S-STRUCT generation at 5.5 (s), 18.0 (s), and 28.2 (s)

all experiments, we normalize the reward of a sen-
tence by the reward of the actual parse tree, which
we take to be the gold standard. Note that this
means that in some cases, S-STRUCT can produce
solutions with better than this value, e.g. if there
are multiple ways to achieve the semantic goal.

To investigate the first two hypotheses that
S-STRUCT can handle the scale of real-world
datasets and scales better than STRUCT, we plot
the average best reward of all goals in the test set
over time in Figure 2. The results show the cu-
mulative effect of the enhancements; working up
through the legend, each line represents “switch-
ing on” another option and includes the effects of
all improvements listed below it. The addition of
the heuristic represents the entire S-STRUCT sys-
tem. On each line, × marks the time at which the
first grammatically correct sentence was available.

The Baseline shown in Figure 2a is the origi-
nal STRUCT system proposed in (McKinley and
Ray, 2014). Due to the large number of actions
that must be considered, the Baseline experiment’s
average first sentence is not available until 26.20
seconds, even on the Small dataset. In previ-
ous work, the experiments for both STRUCT and
CRISP were on toy examples, with grammars hav-
ing 6 unlexicalized trees and typically < 100 lexi-
calized trees (McKinley and Ray, 2014; Koller and
Stone, 2007). In these experiments, STRUCT was

shown to perform better than or as well as CRISP.
Even in our smallest domain, however, the base-
line STRUCT system is impractically slow. Fur-
ther, prior work on PCRISP used a grammar that
was extracted from the WSJ Penn TreeBank, how-
ever it was restricted to the 416 sentences in Sec-
tion 0 with <16 words. With PCRISP’s extracted
grammar, the most successful realization experi-
ment yielded a sentence in only 62% of the tri-
als, the remainder having timed out after five min-
utes (Bauer and Koller, 2010). Thus it is clear that
these systems do not scale to real NLG tasks.

Adding the grammar pruning to the Baseline al-
lows S-STRUCT to find the first grammatically
correct sentence in 1.3 seconds, even if the re-
ward is still sub-optimal. For data sets larger
than Small, the Baseline and Prune Grammar ex-
periments could not be completed, as they still
enumerated all semantic bindings. For even the
medium world, a sentence with 4 entities would
have to consider 1.2 × 1010 bindings. There-
fore, the cumulative experiments start with Prune
Grammar and Search Bindings turned on.

Figures 2b, 2c and 2d show the results for each
enhancement above on the corresponding dataset.
We observe that the improved binding search fur-
ther improves performance on the Small task. The
Small test set does not require any lookahead, so
it is expected that there would be no benefit to
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Figure 4: (a) Large Non-Cumulative Experiment
(b) αnx0Ax1 XTAG tree (c) Time to 90%
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reusing the search tree, and little to no benefit from
caching bindings or using a heuristic. In the Small
domain, S-STRUCT is able to generate sentences
very quickly; the first sentence is available by
44ms and the best sentence is available by 100ms.
In the medium and large domains, the “Reuse
Search Tree”, “Cache Bindings”, and “Heuristic”
changes do improve upon the use of only “Search
Bindings”. The Medium domain is still extremely
fast, with the first sentence available in 344ms and
the best sentence available around 1s. The large
domain slows down due to the larger lookahead re-
quired, the larger grammar, and the huge number
of bindings that have to be considered. Even with
this, S-STRUCT can generate a first sentence in
7.5s and the best sentence in 25s. In Figure 4c, we
show a histogram of the generation time to 90%
of the best reward. The median time is 8.55s (•
symbol).

Additionally, histograms of the lookahead re-
quired for guaranteed optimal generation are
shown for the entire parsable WSJ and our Large
world in Figure 4d. The complexity of the en-
tire WSJ does not exceed our Large world, thus
we argue that our results are representative of S-
STRUCT’s performance on real-world tasks.

To investigate the third hypothesis that each im-
provement contributes positively to the scalability,
the noncumulative impact of each improvement is
shown in Figure 4a. All experiments still must
have Prune Grammar and Search Bindings turned
on in order to terminate. Therefore, we take this
as a baseline to show that the other changes pro-
vide additional benefits. Looking at Figure 4a, we
see that each of the changes improves the reward
curve and the time to generate the first sentence.

4.3 Discussion, Limitations and Future Work

As an example of sentences available at a given
time in the process, we annotate the Large Cumu-
lative Heuristic Experiment with � symbols for a
specific trial of the Large dataset. Figure 3 shows
the best sentence that was available at three differ-
ent times. The first grammatically correct sentence
was available 5.5 seconds into the generation pro-
cess, reading “The provision eliminated losses”.
This sentence captured the major idea of the com-
municative goal, but missed some critical details.
As the search procedure continued, S-STRUCT
explored adjunction actions. By 18 seconds, addi-
tional semantic content was added to expand upon
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the details of the provision and losses. S-STRUCT
settled on the best sentence it could find at 28.2
seconds, able to match the entire communicative
goal with the sentence “The one-time provision
eliminated future losses at the unit”.

In domains with large lookaheads required,
reusing the Search Tree has a large effect on both
the best reward at a given time and on the time
to generate the first sentence. This is because S-
STRUCT has already explored some actions from
depth 1 to D − 1. Additionally, in domains with
a large world, the Cache Binding improvement is
significant. The learned heuristic, which achieves
the best reward and the shortest time to a complete
sentence, tries to make S-STRUCT choose better
actions at each step instead of allowing STRUCT
to explore actions faster; this means that there
is less overlap between the improvement of the
heuristic and other strategies, allowing the total
improvement to be higher.

One strength of the heuristic is in helping S-
STRUCT to avoid “bad” actions. For example,
the XTAG tree αnx0Ax1 shown in Figure 4b is
an initial tree lexicalized by an adjective. This tree
would be used to say something like “The dog is
red.” S-STRUCT may choose this as an initial ac-
tion to fulfill a subgoal; however, if the goal was
to say that a red dog chased a cat, S-STRUCT
will be shoehorned into a substantially worse goal
down the line, when it can no longer use an initial
tree that adds the “chase” semantics. Although the
rollout process helps, some sentences can share
the same reward up to the lookahead and only di-
verge later. The heuristic can help by biasing the
search against such troublesome scenarios.

All of the results discussed above are with-
out parallelization and other engineering optimiza-
tions (such as writing S-STRUCT in C), as it
would make for an unfair comparison with the
original system. The core UCT procedure used
by STRUCT and S-STRUCT could easily be par-
allelized, as the sampling shown in Algorithm 2
can be done independently. This has been done in
other domains in which UCT is used (Computer
Go), to achieve a speedup factor of 14.9 using 16
processor threads (Chaslot et al., 2008b). There-
fore, we believe these optimizations would result
in a constant factor speedup.

Currently, the STRUCT and S-STRUCT sys-
tems only focuses on the domain of single sen-
tence generation, rather than discourse-level plan-

ning. Additionally, neither system handles non-
semantic feature unification, such as constraints
on number, tense, or gender. While these represent
practical concerns for a production system, we ar-
gue that their presence will not affect the system’s
scalability, as there is already feature unification
happening in the λ-semantics. In fact, we believe
that additional features could improve the scalabil-
ity, as many available actions will be ruled out at
each state.

5 Conclusion

In this paper we have presented S-STRUCT, which
enhances the STRUCT system to enable better
scaling to real generation tasks. We show via
experiments that this system can scale to large
worlds and generate complete sentences in real-
world datasets with a median time of 8.5s. To
our knowledge, these results and the scale of
these NLG experiments (in terms of grammar size,
world size, and lookahead complexity) represents
the state-of-the-art for planning-based NLG sys-
tems. We conjecture that the parallelization of S-
STRUCT could achieve the response times nec-
essary for real-time applications such as dialog.
S-STRUCT is available through Github upon re-
quest.

References
S. Abney, S. Flickenger, C. Gdaniec, C. Grishman,

P. Harrison, D. Hindle, R. Ingria, F. Jelinek, J. Kla-
vans, M. Liberman, M. Marcus, S. Roukos, B. San-
torini, and T. Strzalkowski. 1991. Procedure for
quantitatively comparing the syntactic coverage of
english grammars. In E. Black, editor, Proceedings
of the Workshop on Speech and Natural Language,
HLT ’91, pages 306–311, Stroudsburg, PA, USA.
Association for Computational Linguistics.

D. Bauer and A. Koller. 2010. Sentence generation as
planning with probabilistic LTAG. Proceedings of
the 10th International Workshop on Tree Adjoining
Grammar and Related Formalisms, New Haven, CT.

A.L. Blum and M.L. Furst. 1997. Fast planning
through planning graph analysis. Artificial intelli-
gence, 90(1):281–300.

Bernd Bohnet and Robert Dale. 2005. Viewing re-
ferring expression generation as search. In Inter-
national Joint Conference on Artificial Intelligence,
pages 1004–1009.

Guillaume M. JB Chaslot, Mark H.M. Winands,
H. Jaap van Den Herik, Jos W.H.M. Uiterwijk, and
Bruno Bouzy. 2008a. Progressive strategies for

1156



monte-carlo tree search. New Mathematics and Nat-
ural Computation, 4(03):343–357.

Guillaume M. JB Chaslot, Mark H.M. Winands, and
H Jaap van Den Herik. 2008b. Parallel monte-carlo
tree search. In Computers and Games, pages 60–71.
Springer.

M. Fox and D. Long. 2003. PDDL2.1: An extension
to PDDL for expressing temporal planning domains.
Journal of Artificial Intelligence Research, 20:61–
124.

Aravind K Joshi and Yves Schabes. 1997. Tree-
adjoining grammars. In Handbook of formal lan-
guages, pages 69–123. Springer.

Daniel Jurafsky and James H. Martin. 2000. Speech
and Language Processing: An Introduction to Nat-
ural Language Processing, Computational Linguis-
tics, and Speech Recognition. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1st edition.

Martin Kay. 1996. Chart generation. In Proceed-
ings of the 34th annual meeting on Association for
Computational Linguistics, ACL ’96, pages 200–
204, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Levente Kocsis and Csaba Szepesvári. 2006. Ban-
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