
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 1117–1126,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

A short proof that O2 is an MCFL

Mark-Jan Nederhof
School of Computer Science

University of St Andrews, UK

Abstract

We present a new proof that O2 is a mul-
tiple context-free language. It contrasts
with a recent proof by Salvati (2015) in its
avoidance of concepts that seem specific
to two-dimensional geometry, such as the
complex exponential function. Our simple
proof creates realistic prospects of widen-
ing the results to higher dimensions. This
finding is of central importance to the rela-
tion between extreme free word order and
classes of grammars used to describe the
syntax of natural language.

1 Introduction

The alphabet of the MIX language has three sym-
bols, a, b and c. A string is in the language if and
only if the number of a’s, the number of b’s, and
the number of c’s are all the same. A different
way of defining the MIX language is as permu-
tation closure of the regular language (abc)∗, as
noted by Bach (1981); see also Pullum (1983).

If a, b and c represent, say, a transitive verb
and its subject and its object, then a string in
MIX represents a sentence with any number of
triples of these constituents, in a hypothetical lan-
guage with extreme free word order. This is ad-
mittedly rather unlike any actual natural language.
Joshi (1985) argued that because of this, grammat-
ical formalisms for describing natural languages
should not be capable of generating MIX. He also
conjectured that MIX was beyond the generative
capacity of one particular formalism, namely the
tree adjoining grammars. Several decades passed
before Kanazawa and Salvati (2012) finally proved
this conjecture.

MIX has been studied in the context of several
other formalisms. Joshi et al. (1991) showed that
MIX is generated by a generalization of tree ad-

joining grammars that decouples local domination
for linear precedence. Boullier (1999) showed that
MIX is generated by a range concatenation gram-
mar. Negative results were addressed by Sorokin
(2014) for well-nested multiple context-free gram-
mars, and by Capelletti and Tamburini (2009) for a
class of categorial grammars. The MIX language
is also of interest outside of computational linguis-
tics, e.g. in computational group theory (Gilman,
2005).

A considerable advance in the understanding
of the MIX language is due to Salvati (2015),
who showed that MIX is generated by a multiple
context-free grammar (MCFG). The main part of
the proof shows that the language O2 is generated
by a MCFG. This language has four symbols, a, a,
b and b. A string is in the language if and only if
the number of a’s equals the number of a’s, and the
number of b’s equals the number of b’s. MIX and
O2 are rationally equivalent, which means that if
one is generated by a multiple context-free gram-
mar, then so is the other.

The proof by Salvati (2015) is remarkable, in
that it is one of the few examples of geometry be-
ing used to prove a statement about formal lan-
guages. The proof has two related disadvantages
however. The first is that a key element of the
proof, that of the complex exponential function, is
not immediately understood without background
in geometry. The second is that this also seems
to restrict the proof technique to two dimensions,
and there is no obvious avenue to generalize the
result to a variant of MIX with four or five sym-
bols. We hope to remedy this by an alternative,
self-contained proof that avoids the complex expo-
nential function. The core idea is a straightforward
normalization of paths in two dimensions, which
allow simple arguments to lead to a proof by con-
tradiction. We also sketch part of a possible proof
in three dimensions.

1117

S(abababba)

R(ababab, ba)

R(ab, ab)

R(a, a) R(b, b)

R(ab, ba)

R(a, a) R(b, b)

(1)

(4)

(2) (3)

(6) (9) (7) (9)

Figure 1: Derivation in G. The numbers indicate
the rules that were used.

2 Initial problem

The MCFG G is defined as:

S(xy) ← R(x, y) (1)

R(xp, yq) ← R(x, y) R(p, q) (2)

R(xp, qy) ← R(x, y) R(p, q) (3)

R(xpy, q) ← R(x, y) R(p, q) (4)

R(p, xqy) ← R(x, y) R(p, q) (5)

R(a, a) ← (6)

R(a, a) ← (7)

R(b, b) ← (8)

R(b, b) ← (9)

R(ε, ε) ← (10)

For the meaning of MCFGs in general, see Seki
et al. (1991); for a closely related formalism, see
Vijay-Shanker et al. (1987); see Kallmeyer (2010)
for an overview of mildly context-sensitive gram-
mar formalisms.

The reader unfamiliar with this literature is en-
couraged to interpret the rules of the grammar as
logical implications, with S and R representing
predicates. There is an implicit conjunction be-
tween the two occurrences of R in the right-hand
side of each of the rules (2) — (5). The symbols
x, y, p, q are string-valued variables, with implicit
universal quantification that has scope over both
left-hand side and right-hand side of a rule. The
rules (6) — (10) act as axioms. The symbols a, a,
b, b are terminals, and ε denotes the empty string.

We can derive S(x) for certain strings x, and
R(x, y) for certain strings x and y. Figure 1
presents an example of a derivation. The language
generated by G is the set L of strings x such that
S(x) can be derived.

By induction on the depth of derivations, one
can show that if R(x, y), for strings x and y, then
xy ∈ O2. Thereby, if S(x) then x ∈ O2, which
means L ⊆ O2. The task ahead is to prove that if
xy ∈ O2, for some x and y, then R(x, y). From
this, L = O2 then follows.

Let |x| denote the length of string x. For an
inductive proof that xy ∈ O2 implies R(x, y),
the base cases are as follows. If xy ∈ O2 and
|x| ≤ 1 and |y| ≤ 1, then trivially R(x, y) by
rules (6) — (10).

Furthermore, if we can prove that xy ∈ O2,
x 6= ε and y 6= ε together imply R(x, y), for
|xy| = m, for some m, then we may also prove
that x′y′ ∈ O2 on its own implies R(x′, y′) for
|x′y′| = m. To see this, consider m > 0 and
z ∈ O2 with |z| = m, and write it as z = xy for
some x 6= ε and y 6= ε. If by assumption R(x, y),
then together with R(ε, ε) and rule (4) or (5) we
may derive R(xy, ε) or R(ε, xy), respectively. In
the light of this, the inductive step merely needs to
show that if for some x and y:

• xy ∈ O2, |x| ≥ 1, |y| ≥ 1 and |xy| > 2, and

• pq ∈ O2 and |pq| < |xy| imply R(p, q), for
all p and q,

then alsoR(x, y). One easy case is if x ∈ O2 (and
thereby y ∈ O2) because then we can write x =
x1x2 for some x1 6= ε and x2 6= ε. The induc-
tive hypothesis states that R(x1, x2) and R(ε, y),
which imply R(x, y) using rule (4).

A second easy case is if x or y has a proper pre-
fix or proper suffix that is in O2. For example,
assume there are z1 6= ε and z2 6= ε such that
x = z1z2 and z1 ∈ O2. Then we can use the
inductive hypothesis on R(z1, ε) and R(z2, y), to-
gether with rule (2).

At this time, the reader may wish to read Fig-
ure 1 from the root downward. First, abababba is
divided into a pair of strings, namely ababab and
ba. At each branching node in the derivation, a
pair of strings is divided into four strings, which
are grouped into two pairs of strings, using rules
(2) — (5), read from left to right. Rules (2) and
(3) divide each left-hand side argument into two
parts. Rule (4) divides the first left-hand side ar-
gument into three parts, and rule (5) divides the
second left-hand side argument into three parts.

What remains to show is that if z1z2 ∈ O2, z1 /∈
O2 and |z1z2| > 2, and no proper prefix or proper
suffix of z1 or of z2 is in O2, then there is at least

1118

one rule that allows us to divide z1 and z2 into four
strings altogether, say x, y, p, q, of which at least
three are non-empty, such that xy ∈ O2. This
will then permit use of the inductive hypothesis on
R(x, y) and on R(p, q).

We can in fact restrict our attention to z′1z′2 ∈
O2, |z′1z′2| > 2, and no non-empty substring of
z′1 or of z′2 is in O2, which can be justified as
follows. Suppose we have z1 and z2 as in the
previous paragraph, and suppose z′1 and z′2 result
from z1 and z2 by exhaustively removing all non-
empty substrings that are in O2; note that still
|z′1z′2| > 2. If we can use a rule to divide z′1 and z′2
into x′, y′, p′, q′, of which at least three are non-
empty, such that x′y′ ∈ O2, then the same rule
can be used to divide z1 and z2 into x, y, p, q with
the required properties, which can be found from
x′, y′, p′, q′ simply by reintroducing the removed
substrings at corresponding positions.

3 Geometrical view

We may interpret a string x geometrically in two
dimensions, as a path consisting of a series of line
segments of length 1, starting in some point (i, j).
Every symbol in x, from beginning to end, rep-
resents the next line segment in that path; an oc-
currence of a represents a line segment from the
previous point (i, j) to the next point (i + 1, j), a
represents a line segment from (i, j) to (i − 1, j),
b represents a line segment from (i, j) to (i, j+1),
and b represents a line segment from (i, j) to
(i, j − 1). If x ∈ O2, then the path is closed,
that is, the starting point and the ending point are
the same. If we have two strings x and y such
that xy ∈ O2 and x /∈ O2, then this translates to
two paths, connecting two distinct points, which
together form a closed path. This is illustrated in
Figure 2.

In the following, we assume a fixed choice of
some x and y such that xy ∈ O2, |xy| > 2, and
no non-empty substring of x or of y is in O2. If
we follow the path of x starting in P [0] = (0, 0),
then the path ends in some point P [1] = (i, j) such
that i is the number of occurrences of a minus the
number of occurrences of a and j is the number of
occurrences of b minus the number of occurrences
of b. This path from P [0] to P [1] will be called
A[0]. The path of y from P [1] back to P [0] will
be called B[1]. We generalize this by defining for
any integer k: P [k] is the point (k · i, k · j), A[k]
is the path of x from P [k] to P [k + 1] and B[k]

a

ba

bab

b

a

−2 −1 0 1 2
1

0

−1

−2

−3

Figure 2: Two strings x = ababab and y = ba to-
gether represent a closed path, consisting of a path
from (0, 0) to (−1,−1) and a path from (−1,−1)
to (0, 0).

is the path of y from P [k] to P [k − 1]. Where the
starting points are irrelevant and only the shapes
matter, we talk about paths A and B.

Let C be a path, which can be either A[k] or
B[k] for some k. We write Q ∈ C to denote that
Q is a point on C. Let Q = (i, j) ∈ C, not
necessarily with i and j being integers. We de-
fine the path-distance dC(Q) of Q on C to be the
length of the path along line segments of C to get
from P [k] to Q. In Figure 2, (0,−1) has path-
distance 3 on A[0], as the path on A[0] to reach
(0,−1) from P [0] = (0, 0) consists of the line
segments represented by the prefix aba of x. Sim-
ilarly, dA[0]((0.5,−1)) = 2.5.

Let C be a path as above and let points
Q1, Q2 ∈ C be such that dC(Q1) ≤ dC(Q2). We
define the subpath D = subC(Q1, Q2) to be such
that Q ∈ D if and only if Q ∈ C and dC(Q1) ≤
Q ≤ dC(Q2), and dD(Q) = dC(Q) − dC(Q1)
for every Q ∈ D. For two points Q1 and Q2, the
line segment between Q1 and Q2 is denoted by
seg(Q1, Q2).

The task formulated at the end of Section 2 is
accomplished if we can show that at least one of
the following must hold:

• the angle in P [0] between the beginning of
A[0] and that of B[0] is 180◦ (Figure 3);

• there is a point Q /∈ {P [0], P [1]} such that
Q ∈ A[0] and Q ∈ B[1] (Figure 4);

• there is a pointQ 6= P [1] such thatQ ∈ A[0],
Q ∈ A[1] and dA[0](Q) > dA[1](Q) (Fig-
ure 5); or

• there is a pointQ 6= P [0] such thatQ ∈ B[0],
Q ∈ B[1] and dB[1](Q) > dB[0](Q) (analo-
gous to Figure 5).

1119

a b

a

b

b

aa

b

aab

P [0]

P [1]

P [−1] 180◦

Figure 3: With x = a b a b b and y = a a b, the
beginning of path A[0] and the beginning of (dot-
ted) path B[0] have an 180◦ angle in P [0], which
implies x and y start with complementing symbols
(here a and a; the other possibility is b and b). By
applying rule (2), two smaller closed paths result,
one of which consists of these two complementing
symbols.

b

a a a b

aa

b

ba
P [0]

P [1]

Figure 4: The paths A[0] and B[1] of x = baaab
and y = a ab ba have point (1, 1) in common. Two
smaller closed paths result by applying rule (3).

aaab

b

a a

b
a a

ba
P [1]P [0] P [2]

Q

Figure 5: With x = b b a a b a a b a and y = a a a,
the pathA[0] and the (dotted) pathA[1] have point
Q in common, with dA[0](Q) = 6 > dA[1](Q) =
1. By applying rule (4), two smaller closed paths
result, one of which is formed by prefix b of length
1 and suffix ab a of length |x| − 6 = 3 of x.

We will do this through a contradiction that re-
sults if we assume:

(i) the angle in P [0] between the beginning of
A[0] and that of B[0] is not 180◦;

(ii) A[0] ∩B[1] = {P [0], P [1]};

(iii) there is no Q ∈ (A[0] ∩ A[1]) \ {P [1]} such
that dA[0](Q) > dA[1](Q); and

(iv) there is no Q ∈ (B[0] ∩ B[1]) \ {P [0]} such
that dB[1](Q) > dB[0](Q).

In the below, we will refer to these assumptions as
the four constraints.

4 Continuous view

Whereas paths A and B were initially formed out
of line segments of length 1 between points (i, j)
with integers i and j, the proof becomes consider-
ably easier if we allow i and j to be real numbers.
The benefit lies in being able to make changes to
the paths that preserve the four constraints, to ob-
tain a convenient normal form for A and B. If we
can prove a contradiction on the normal form, we
will have shown that no A and B can exist that
satisfy the four constraints.

We define, for each integer k, the line `[k],
which is perpendicular to the line through P [k]
and P [k + 1], and lies exactly half-way between
P [k] and P [k + 1]. Much as before, we write
Q ∈ `[k] to denote that Q is a point on line `[k].
We will consistently draw points . . . , P [−1], P [0],
P [1], . . . in a straight line from left to right.

Let C be a path, which can be either A[k′]
or B[k′], for some k′, and let Q ∈ C. We
write from rightC(Q, `[k]) to mean that path C
is strictly to the right of `[k] just before reaching
Q, or formally, there is some δ > 0 such that each
Q′ ∈ C with dC(Q) − δ < dC(Q′) < dC(Q)
lies strictly to the right of `[k]. The predicates
from left , to right , to left are similarly defined.

Let Q1, Q2 ∈ C ∩ `[k], for some k, such that
dC(Q1) ≤ dC(Q2). We say that C has an excur-
sion from the right between Q1 and Q2 at `[k] if
from rightC(Q1, `[k]) and to rightC(Q2, `[k]).
This is illustrated in Figure 6: the path is strictly
to the right of `[k] just before reaching Q1. From
there on it may (but need not) cross over to the left
of `[k]. Just after it reaches Q2, it must again be
strictly to the right of `[k]. The definition of excur-
sion from the left is symmetric. Note that excur-
sions may be nested; in Figure 6, subC(Q1, Q2)
has an excursion at `[k] from the left below Q2.

In Figure 6, the pair of pointsQ1 andR1 will be
called a crossing of `[k] from right to left, charac-
terized by Q1, R1 ∈ `[k], from rightC(Q1, `[k]),
to leftC(R1, `[k]) and subC(Q1, R1) being a line
segment. The pair of points R2 and Q2 is a cross-
ing of `[k] from left to right, where the length of
seg(R2, Q2) happens to be 0. In much of the fol-
lowing we will simplify the discussion by assum-
ing crossings consist of single points, as in the case
ofR2 = Q2. However, existence of crossings con-

1120

`[k − 1] `[k] `[k + 1]

Q1

R1

R2=Q2

P [k] P [k + 1] P [k + 2]

Figure 6: Excursion from the right at `[k].

`[k − 1] `[k] `[k + 1]

m

Q′1

Q′2

P [k] P [k + 1] P [k + 2]

Figure 7: The excursion from Figure 6 truncated
in Q′1 and Q′2 on line m.

sisting of line segments of non-zero length, as in
the case ofQ1 andR1, would not invalidate any of
the arguments of the proof.

Excursions are the core obstacle that needs to
be overcome for our proof. We can truncate an
excursion at `[k] by finding a suitable line m that
is parallel to `[k], some small distance away from
it, between `[k] and P [k + 1] for excursions from
the right, and between `[k] and P [k] for excur-
sions from the left. We further need to find points
Q′1, Q′2 ∈ C ∩m, where dC(Q′1) < dC(Q1) and
dC(Q2) < dC(Q′2). Because our coordinates no
longer need to consist of integers, it is clear that
m, Q′1 and Q′2 satisfying these requirements must
exist.

The truncation consists in changing
subC(Q′1, Q′2) to become seg(Q′1, Q′2), as il-
lustrated by Figure 7. Note that if C is say A[k′],
for some k′, then changing the shape of C means
changing the shape of A[k′′] for any other k′′ as
well; the difference between A[k′] and A[k′′] is
only in the starting point P [k′] versus P [k′′].

At this time, we must allow for the possibility
that for some excursions, no m, Q′1 and Q′2 can
be found with which we can implement a trun-
cation, if we also need to preserve the four con-
straints and preserve absence of self-intersections.
There is a small number of possible causes. First,

`[k]

Q1

Q2

R1

R2

(a)

`[k]

Q1

Q2

Q

P [k′]

(b)

`[k]

Q1

Q2

Q

Q′

(c)

Figure 8: (a) Regions (shaded) of an excursion at
`[k]; due to additional crossings in R1 and R2,
three more excursions exist, each with a smaller
area. (b) & (c) If truncation would introduce self-
intersection, then either the excursion is filled,
with some point P [k′] as in (b), or there is an ex-
cursion with smaller area, illustrated by shading in
(c).

suppose that C = A[k′] and B[k′ + 1] intersects
with seg(Q1, Q2). Then B[k′ + 1] may intersect
with seg(Q′1, Q′2) for any choice of m, Q′1 and
Q′2, and thereby no truncation is possible with-
out violating constraint (ii). Similarly, a trunca-
tion may be blocked if C = B[k′ + 1] and A[k′]
intersects with seg(Q1, Q2). Next, it could be
that C = A[k′], while dA[k′](Q1) > dA[k′+1](Q)
holds for some Q ∈ seg(Q1, Q2) ∩ A[k′ + 1], or
dA[k′−1](Q) > dA[k′](Q2) holds for some Q ∈
seg(Q1, Q2)∩A[k′−1], either of which potentially
blocks a truncation if constraint (iii) is to be pre-
served. Constraint (iv) has similar consequences.
Furthermore, if we need to preserve absence of
self-intersections, a truncation may be blocked if
dC(Q) < dC(Q1) or dC(Q2) < dC(Q) for some
Q ∈ seg(Q1, Q2) ∩ C.

5 Normal form

The regions of an excursion of C between Q1

and Q2 at `[k] are those that are enclosed by
(subpaths of) subC(Q1, Q2) and (subsegments of)
seg(Q1, Q2), as illustrated by Figure 8(a). The
area of the excursion is the surface area of all re-
gions together. We say an excursion is filled if any
of its regions contains at least one point P [k′], for
some integer k′, otherwise it is said to be unfilled.

We sayA andB are in normal form if no excur-
sion can be truncated without violating the four
constraints or introducing a self-intersection. Sup-

1121

pose A and B are in normal form, while one or
more excursions remain. Let us first consider the
unfilled excursions. Among them choose one that
has the smallest area. By assumption, one of the
four constraints must be violated or a new self-
intersection must be introduced, if we were to
truncate that excursion. We will consider all rel-
evant cases.

Each case will assume an unfilled excursion
from the right (excursions from the left are sym-
metric) of a path C between Q1 and Q2 at `[k].
We may assume that subC(Q1, Q2) ∩ `[k] =
{Q1, Q2}, as additional crossings of `[k] would
mean that excursions exist with smaller areas
(cf. Figure 8(a)), contrary to the assumptions.
Now assume truncation is blocked due to Q ∈
seg(Q1, Q2) ∩ C such that dC(Q) < dC(Q1)
(the case dC(Q2) < dC(Q) is symmetric), as we
need to preserve absence of self-intersection. Sup-
pose Q is the only such point, so that C crosses
seg(Q1, Q2) from left to right once without ever
crossing it from right to left, until Q1 is reached.
Then C starts in the area of the excursion, or in
other words, the excursion is filled, contrary to the
assumptions (cf. Figure 8(b)). Now suppose there
are points Q′ and Q where C crosses seg(Q1, Q2)
from right to left and from left to right, respec-
tively and dC(Q′) < dC(Q) < dC(Q1). If there
are several choices, choose Q′ and Q such that
subC(Q′, Q) ∩ `[k] = {Q′, Q}. This means the
excursion between Q′ and Q has an area smaller
than the one between Q1 and Q2, contrary to the
assumptions (cf. Figure 8(c)).

Note that excursions with zero area, that is,
those that intersect with `[k] without crossing over
to the other side, can always be truncated. We
can therefore further ignore non-crossing intersec-
tions.

Now suppose a truncation would violate con-
straint (ii), where C = B[k′ + 1] and D = A[k′]
crosses seg(Q1, Q2). Then much as above, we
may distinguish two cases. In the first, D has
only one crossing of seg(Q1, Q2) in some pointQ,
which means the excursion is filled with the start-
ing or ending point of D, as in Figure 9(a). In the
second, D has at least two consecutive crossings,
say in Q and Q′, from right to left and from left
to right, respectively, which means the excursion
between Q and Q′ has smaller area than the one
between Q1 and Q2, illustrated by shading in Fig-
ure 9(b). Both cases contradict the assumptions.

`[k]

Q1
C

Q2

D
Q

P [k′]

(a)

`[k]

Q1
C

Q2

D
Q

Q′

(b)

Figure 9: Truncating the excursion would intro-
duce a violation of constraint (ii). The assump-
tions are contradicted in one of two ways.

For C = A[k′] and D = B[k′ + 1], the reasoning
is symmetric.

Next, suppose a truncation would violate con-
straint (iii), where C = A[k′] and A[k′ − 1]
crosses seg(Q1, Q2) in Q, while dA[k′−1](Q) >
dA[k′](Q2). If the crossing in Q is from right to
left, and there is an immediately next crossing in
Q′ from left to right, then we have the same sit-
uation as in Figure 9(b), involving an excursion
with smaller area, contradicting the assumptions.
If the crossing in Q is the only one, and it is
from right to left, then we can use the fact that
subA[k′](Q1, Q2) ∩ subA[k′−1](Q,P [k′]) = ∅, as
we assume the four constraints as yet hold. This
means P [k′] must be contained in the area of the
excursion, as illustrated in Figure 10(a), contra-
dicting the assumption that the excursion is un-
filled. If the crossing in Q is the only one, and
it is from left to right, then we can use the fact
that subA[k′](Q1, Q2) ∩ subA[k′−1](Q′2, Q) = ∅,
for the unique Q′2 ∈ A[k′ − 1] ∩ `[k − 1] such
that dA[k′−1](Q′2) = dA[k′](Q2). This means the
excursion contains Q′2, which implies there is an-
other unfilled excursion between points R1, R2 ∈
A[k′] ∩ `[k − 1] with smaller area, as shaded in
Figure 10(b), contrary to the assumptions.

Suppose a truncation would violate con-
straint (iii), where C = A[k′] and A[k′ + 1]
crosses seg(Q1, Q2) in Q, while dA[k′](Q1) >
dA[k′+1](Q). The reasoning is now largely sym-
metric to the above, with the direction of the cross-
ing reversed, except that the case analogous to Fig-
ure 10(b) is immediately excluded, as Q′2 cannot
be both to the left and to the right of `[k]. Con-
straint (iv) is symmetric to constraint (iii). All pos-

1122

`[k]

Q1

A[k′]

Q2

A[k′ − 1]
Q

P [k′]

(a)

`[k]`[k−1]

Q1

A[k′]

Q2

A[k′ − 1]
Q

Q′2

R1

R2

(b)

Figure 10: Truncating the excursion would in-
troduce a violation of constraint (iii), where
dA[k′−1](Q) > dA[k′](Q2). The assumptions are
contradicted in one of three ways, the first as in
Figure 9(b), and the second and third as in (a) and
(b) above.

sible cases have been shown to lead to contradic-
tions, and therefore we conclude that there are no
unfilled excursions if A and B are in normal form.

We now show that there cannot be any filled ex-
cursions either. For this, assume that A[k′] has a
filled excursion between Q1 and Q2 at `[k] from
the right. This means A[k′ − 1] has an identically
shaped, filled excursion at `[k − 1] from the right,
between corresponding points Q′1 and Q′2. Let us
consider how path A[k′] proceeds after reaching
Q2. There are only three possibilities:

• it ends in P [k + 1], with k′ = k, without
further crossings of `[k] or `[k + 1];

• it next crosses `[k] leftward; or

• it next crosses `[k + 1] in some point Q3.

The first of these can be excluded, in the light
of dA[k′−1](Q) ≥ dA[k′](Q2) for each Q ∈
subA[k′−1](Q′2, P [k′]). Due to constraint (iii)
therefore, this subpath of A[k′ − 1] cannot inter-
sect with the excursion of A[k′] to reach P [k], and
therefore A[k′] cannot reach P [k+1]. The second
possibility is also excluded, as this would imply
the existence of an unfilled excursion. For the re-
maining possibility, Q3 ∈ A[k′]∩ `[k+ 1] may be
lower down than Q2 (in the now familiar view of
the points P [0], P [1], . . . being drawn from left to
right along a horizontal line), or it may be higher
up than Q1. These two cases are drawn in Fig-
ures 11 and 12. The choice of Q3 also determines
a corresponding Q′3 ∈ A[k′ − 1] ∩ `[k].

`[k−1]

Q′1

Q′2

P [k−1]

Q′3
Q′4

`[k]

Q1

Q2

P [k]

Q3

Q4

`[k+1]

P [k+1]

`[k+2]

P [k+2]

Figure 11: Continuing the (solid) path A[k′] after
a filled excursion, restricted by the (dashed) path
A[k′ − 1], in the light of constraint (iii).

`[k−1]

Q′1

Q′2

P [k−1]

Q′3

Q′4

`[k]

Q1

Q2

P [k]

Q3

Q4

`[k+1]

P [k+1]

`[k+2]

P [k+2]

Figure 12: As in Figure 11 but Q3 is chosen to be
higher up than Q1.

We now consider how A[k′] continues after
Q3 in the case of Figure 11. If it next crosses
`[k + 1] leftward, this would imply the existence
of an unfilled excursion. Further, dA[k′−1](Q) ≥
dA[k′](Q3) for each Q ∈ subA[k′−1](Q′3, P [k′]).
Due to constraint (iii) therefore, this subpath of
A[k′ − 1] cannot intersect with subA[k′](Q2, Q3),
above which lies P [k + 1]. Therefore, A[k′] must
cross `[k + 2] in some Q4, which is lower down
than Q3. This continues ad infinitum, and A[k′]
will never reach its supposed end point P [k′ + 1].
The reasoning for Figure 12 is similar.

Filled excursions from the left are symmetric,
but instead of investigating the path after Q2, we
must investigate the path beforeQ1. The case ofB
is symmetric to that of A. We may now conclude
no filled excursions exist.

6 The final contradiction

We have established that after A and B have been
brought into normal form, there can be no remain-
ing excursions. This means that A[0] crosses `[0]
exactly once, in some point RA, and B[0] crosses
`[−1] exactly once, in some point LB . Further, let
LA be the unique point whereA[−1] crosses `[−1]
and RB the unique point where B[1] crosses `[0].

The region of the plane between `[−1] and `[0]

1123

`[−1] `[0]

P [−1]
P [0]

P [1]

A[0]
B[0]

B[1]

A[−1]

LB

LA

RA

RB

Figure 13: The region between `[−1] and `[0]
is divided by A[0] and B[0] into a ‘top’ region
(lightly shaded), a ‘bottom’ region (white), and
areas enclosed by intersections of A[0] and B[0]
(darkly shaded). Here A[−1] and B[1] are both in
the ‘bottom’ region.

can now be partitioned into a ‘top’ region, a ‘bot-
tom’ region, and zero or more enclosed regions.
The ‘top’ region consists of those points that are
reachable from any point between `[−1] and `[0]
arbitrarily far above any point of A[0] and B[0],
without intersecting withA[0],B[0], `[−1] or `[0].
This is the lightly shaded region in Figure 13. The
‘bottom’ region is similarly defined, in terms of
reachability from any point between `[−1] and `[0]
arbitrarily far below any point of A[0] and B[0].
The zero or more enclosed regions stem from pos-
sible intersections of A[0] and B[0]; the two such
enclosed regions in Figure 13 are darkly shaded.
Note that the four constraints do not preclude in-
tersections of A[0] and B[0].

However, constraint (ii) implies that, between
`[−1] and `[0], A[0] and B[1] do not intersect
other than in P [0], and similarly, A[−1] and
B[0] do not intersect other than in P [0]. More-
over, for any Q ∈ subA[−1](LA, P [0]) and any
Q′ ∈ subA[0](P [0], RA) we have dA[−1](Q) ≥
dA[0](Q′). By constraint (iii) this means A[−1]
and A[0] do not intersect other than in P [0]. Sim-
ilarly, B[1] and B[0] do not intersect other than in
P [0].

The angles in P [0] between A[0], B[0], A[−1]
and B[1] are multiples of 90◦. Because of
constraint (i), which excludes a 180◦ angle be-
tween A[0] and B[0], it follows that either
subA[−1](LA, P [0]) and subB[1](RB, P [0]) both
lie entirely in the ‘top’ region, or both lie entirely
in the ‘bottom’ region. The latter case is illustrated
in Figure 13. In the former case, LA and RB are

above LB and RA, respectively, and in the latter
case LA and RB are below LB and RA. This is
impossible, as LA and RA should be at the same
height, these being corresponding points of A[−1]
and A[0], which have the same shape, and simi-
larly LB and RB should be at the same height.

This contradiction now leads back to the very
beginning of our proof, and implies that the four
constraints cannot all be true, and therefore that
at least one rule is always applicable to allow use
of the inductive hypothesis, and therefore that G
generates O2.

7 Conclusions and outlook

We have presented a new proof that O2 is gen-
erated by a MCFG. It has at least superficial
elements in common with the proof by Salvati
(2015). Both proofs use essentially the same
MCFG, both are geometric in nature, and both in-
volve a continuous view of paths next to a discrete
view. The major difference lies in the approach
to tackling the myriad ways in which the paths
can wind around each other and themselves. In
the case of Salvati (2015), the key concept is that
of the complex exponential function, which seems
to restrict the proof technique to two-dimensional
geometry. In our case, the key concepts are excur-
sions and truncation thereof, and the identification
of top and bottom regions.

At this time, no proof is within reach that gener-
alizes the result to O3, i.e. the language of strings
over an alphabet of six symbols, in which the num-
ber of a’s equals the number of a’s, the number
of b’s equals the number of b’s, and the number
of c’s equals the number of c’s; this language is
rationally equivalent to MIX-4, which is defined
analogously to MIX, but with four symbols. One
may expect however that a proof would use three-
dimensional geometry and generalize some of the
arguments from this paper. Our aim here is to
make this plausible, while emphasizing that an ac-
tual proof will require a novel framework at least
as involved as that presented in the previous sec-
tions.

Omitting the start rule and the axioms, an
obvious candidate MCFG to generate O3 would
among others have the three rules:
R(p1q1, p2q2, q3p3)← R(p1, p2, p3) R(q1, q2, q3)
R(p1q1, q2p2, p3q3)← R(p1, p2, p3) R(q1, q2, q3)
R(q1p1, p2q2, p3q3)← R(p1, p2, p3) R(q1, q2, q3)
as well as the six rules:

1124

R(p1q1p2, p3q2, q3)← R(p1, p2, p3) R(q1, q2, q3)
R(p1q1p2, q2, p3q3)← R(p1, p2, p3) R(q1, q2, q3)
R(p1q1, p2q2p3, q3)← R(p1, p2, p3) R(q1, q2, q3)
R(p1q1, q2, p2q3p3)← R(p1, p2, p3) R(q1, q2, q3)
R(p1, q1p2q2, q3p3)← R(p1, p2, p3) R(q1, q2, q3)
R(p1, q1p2, q2p3q3)← R(p1, p2, p3) R(q1, q2, q3)

Consider three strings x, y and z such that
xyz ∈ O3. If we can use any of the above rules
to divide these into six strings out of which we
can select three, which concatenated together are
a non-empty string in O3 shorter than xyz , then
we can use the inductive hypothesis, much as in
Section 2. For a proof by contradiction, therefore
assume that no pair of prefixes of x and y and a
suffix of z together form a non-empty string in O3

shorter than xyz , etc., in the light of the first three
rules above, and assume that no ’short enough’
prefix of x, a prefix of y and a ’short enough’ suf-
fix of x together form a non-empty string in O3,
etc., in the light of the next six rules above.

For a geometric interpretation, consider the
paths of x, y and z, leading from point P0 =
(0, 0, 0) to points Px, Py and Pz , respectively.
The concatenations of prefixes of x and y, and
similarly those of x and z and those of y and z
form three connecting surfaces, together forming
one surface dividing the space around P0 into an
‘above’ and a ‘below’; cf. Figure 14. Our assump-
tions imply that the final parts of the paths of x, y
and z from −Px, −Py and −Pz , respectively, to
P0 should not intersect with this surface. In addi-
tion, no pair of strings from x, y and z should end
on complementing symbols, i.e. a and a, b and b,
or c and c. This means that the three paths leading
towards P0 must all end in P0 strictly ‘above’ or
all strictly ‘below’ the surface.

This might lead to a contradiction, similar to
that in Section 6, but only if one can ensure that
none of the three paths to P0 ‘sneak around’ the
surface. This is illustrated in Figure 15, where the
path of z is ‘entangled’ with a copy of itself. It
appears this can be achieved by adding three more
rules, namely:

R(p1q1p2q2, p3, q3)← R(p1, p2, p3) R(q1, q2, q3)
R(p1, q1p2q2p3, q3)← R(p1, p2, p3) R(q1, q2, q3)
R(p1, q1, q2p2q3p3)← R(p1, p2, p3) R(q1, q2, q3)

The physical interpretation of, say, the last rule
seems to be that the path of z from −Pz to P0 can
be iteratively shifted such that points other than
its ending point coincide with P0. At some stage

P0Px

Py

Pz

−Pz

−Py

−Px

Figure 14: By taking prefixes of two strings from
{x, y, z} and concatenating them, we obtain a sur-
face dividing the space around P0 into ‘above’ and
‘below’. Here the path of z from −Pz to P0 ends
‘above’, if our view is from above the surface.

P0Px

Py

Pz

−Pz

−Py

−Px

Figure 15: The path of z from −Pz to P0 is ini-
tially above the surface, but ‘sneaks around’ the
path of z from Py to −Px, to end below.

the shifted path must intersect with the path of z
from Py to −Px, before the entanglement of the
two paths is broken.

The considerable challenges ahead involve find-
ing a suitable definition of ‘excursions’ in three di-
mensions, and proving that these can be systemat-
ically truncated without violating appropriate con-
straints that preclude application of the above 12
rules.

Acknowledgements

This work came out of correspondence with Gior-
gio Satta. Gratefully acknowledged are also fruit-
ful discussions with Sylvain Salvati, Vinodh Ra-
jan, and Markus Pfeiffer. Much appreciated are
anonymous referees and editors for their efforts
and their courage to consider a theoretical paper
for publication at this venue.

1125

References
[Bach1981] E. Bach. 1981. Discontinuous constituents

in generalized categorial grammars. In Proceedings
of the Eleventh Annual Meeting of the North Eastern
Linguistic Society, pages 1–12.

[Boullier1999] P. Boullier. 1999. Chinese numbers,
MIX, scrambling, and Range Concatenation Gram-
mars. In Ninth Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 53–60, Bergen, Norway, June.

[Capelletti and Tamburini2009] M. Capelletti and
F. Tamburini. 2009. Parsing with polymorphic
categorial grammars. Research in Computing
Science, 41(2009):87–98.

[Gilman2005] R.H. Gilman. 2005. Formal languages
and their application to combinatorial group theory.
Contemporary Mathematics, 378:1–36.

[Joshi et al.1991] A.K. Joshi, K. Vijay-Shanker, and
D. Weir. 1991. The convergence of mildly context-
sensitive grammar formalisms. In P. Sells, S.M.
Shieber, and T. Wasow, editors, Foundational Issues
in Natural Language Processing, chapter 2, pages
31–81. MIT Press.

[Joshi1985] A.K. Joshi. 1985. Tree adjoining gram-
mars: How much context-sensitivity is required to
provide reasonable structural descriptions? In D.R.
Dowty, L. Karttunen, and A.M. Zwicky, editors,
Natural language parsing: Psychological, computa-
tional, and theoretical perspectives, pages 206–250.
Cambridge University Press.

[Kallmeyer2010] Laura Kallmeyer. 2010. Parsing Be-
yond Context-Free Grammars. Springer-Verlag.

[Kanazawa and Salvati2012] M. Kanazawa and S. Sal-
vati. 2012. MIX is not a tree-adjoining language. In
50th Annual Meeting of the Association for Compu-
tational Linguistics, Proceedings of the Conference,
pages 666–674, Jeju Island, Korea, July.

[Pullum1983] G.K. Pullum. 1983. Context-freeness
and the computer processing of human languages.
In 21st Annual Meeting of the Association for Com-
putational Linguistics, Proceedings of the Confer-
ence, pages 1–6, Cambridge, Massachusetts, July.

[Salvati2015] S. Salvati. 2015. MIX is a 2-MCFL and
the word problem in Z2 is captured by the IO and
the OI hierarchies. Journal of Computer and System
Sciences, 81:1252–1277.

[Seki et al.1991] H. Seki, T. Matsumura, M. Fujii, and
T. Kasami. 1991. On multiple context-free gram-
mars. Theoretical Computer Science, 88:191–229.

[Sorokin2014] A. Sorokin. 2014. Pumping lemma and
Ogden lemma for displacement context-free gram-
mars. In Developments in Language Theory, 18th
International Conference, volume 8633 of Lecture
Notes in Computer Science, pages 154–165, Ekater-
inburg, Russia. Springer-Verlag.

[Vijay-Shanker et al.1987] K. Vijay-Shanker, D.J. Weir,
and A.K. Joshi. 1987. Characterizing structural
descriptions produced by various grammatical for-
malisms. In 25th Annual Meeting of the Associa-
tion for Computational Linguistics, Proceedings of
the Conference, pages 104–111, Stanford, Califor-
nia, USA, July.

1126

