
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 1105–1116,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

End-to-End Relation Extraction using LSTMs
on Sequences and Tree Structures

Makoto Miwa
Toyota Technological Institute

Nagoya, 468-8511, Japan
makoto-miwa@toyota-ti.ac.jp

Mohit Bansal
Toyota Technological Institute at Chicago

Chicago, IL, 60637, USA
mbansal@ttic.edu

Abstract

We present a novel end-to-end neural
model to extract entities and relations be-
tween them. Our recurrent neural net-
work based model captures both word se-
quence and dependency tree substructure
information by stacking bidirectional tree-
structured LSTM-RNNs on bidirectional
sequential LSTM-RNNs. This allows our
model to jointly represent both entities and
relations with shared parameters in a sin-
gle model. We further encourage detec-
tion of entities during training and use of
entity information in relation extraction
via entity pretraining and scheduled sam-
pling. Our model improves over the state-
of-the-art feature-based model on end-to-
end relation extraction, achieving 12.1%
and 5.7% relative error reductions in F1-
score on ACE2005 and ACE2004, respec-
tively. We also show that our LSTM-
RNN based model compares favorably to
the state-of-the-art CNN based model (in
F1-score) on nominal relation classifica-
tion (SemEval-2010 Task 8). Finally, we
present an extensive ablation analysis of
several model components.

1 Introduction

Extracting semantic relations between entities in
text is an important and well-studied task in in-
formation extraction and natural language pro-
cessing (NLP). Traditional systems treat this task
as a pipeline of two separated tasks, i.e., named
entity recognition (NER) (Nadeau and Sekine,
2007; Ratinov and Roth, 2009) and relation
extraction (Zelenko et al., 2003; Zhou et al.,
2005), but recent studies show that end-to-end

(joint) modeling of entity and relation is impor-
tant for high performance (Li and Ji, 2014; Miwa
and Sasaki, 2014) since relations interact closely
with entity information. For instance, to learn
that Toefting and Bolton have an Organization-
Affiliation (ORG-AFF) relation in the sentence
Toefting transferred to Bolton, the entity informa-
tion that Toefting and Bolton are Person and Orga-
nization entities is important. Extraction of these
entities is in turn encouraged by the presence of
the context words transferred to, which indicate an
employment relation. Previous joint models have
employed feature-based structured learning. An
alternative approach to this end-to-end relation ex-
traction task is to employ automatic feature learn-
ing via neural network (NN) based models.

There are two ways to represent relations be-
tween entities using neural networks: recur-
rent/recursive neural networks (RNNs) and convo-
lutional neural networks (CNNs). Among these,
RNNs can directly represent essential linguis-
tic structures, i.e., word sequences (Hammerton,
2001) and constituent/dependency trees (Tai et
al., 2015). Despite this representation ability,
for relation classification tasks, the previously re-
ported performance using long short-term memory
(LSTM) based RNNs (Xu et al., 2015b; Li et al.,
2015) is worse than one using CNNs (dos Santos
et al., 2015). These previous LSTM-based sys-
tems mostly include limited linguistic structures
and neural architectures, and do not model entities
and relations jointly. We are able to achieve im-
provements over state-of-the-art models via end-
to-end modeling of entities and relations based on
richer LSTM-RNN architectures that incorporate
complementary linguistic structures.

Word sequence and tree structure are known to
be complementary information for extracting rela-
tions. For instance, dependencies between words

1105

are not enough to predict that source and U.S.
have an ORG-AFF relation in the sentence “This
is ...”, one U.S. source said, and the context word
said is required for this prediction. Many tradi-
tional, feature-based relation classification mod-
els extract features from both sequences and parse
trees (Zhou et al., 2005). However, previous RNN-
based models focus on only one of these linguistic
structures (Socher et al., 2012).

We present a novel end-to-end model to extract
relations between entities on both word sequence
and dependency tree structures. Our model allows
joint modeling of entities and relations in a sin-
gle model by using both bidirectional sequential
(left-to-right and right-to-left) and bidirectional
tree-structured (bottom-up and top-down) LSTM-
RNNs. Our model first detects entities and then
extracts relations between the detected entities us-
ing a single incrementally-decoded NN structure,
and the NN parameters are jointly updated using
both entity and relation labels. Unlike traditional
incremental end-to-end relation extraction models,
our model further incorporates two enhancements
into training: entity pretraining, which pretrains
the entity model, and scheduled sampling (Ben-
gio et al., 2015), which replaces (unreliable) pre-
dicted labels with gold labels in a certain probabil-
ity. These enhancements alleviate the problem of
low-performance entity detection in early stages
of training, as well as allow entity information to
further help downstream relation classification.

On end-to-end relation extraction, we improve
over the state-of-the-art feature-based model, with
12.1% (ACE2005) and 5.7% (ACE2004) relative
error reductions in F1-score. On nominal relation
classification (SemEval-2010 Task 8), our model
compares favorably to the state-of-the-art CNN-
based model in F1-score. Finally, we also ab-
late and compare our various model components,
which leads to some key findings (both positive
and negative) about the contribution and effec-
tiveness of different RNN structures, input depen-
dency relation structures, different parsing mod-
els, external resources, and joint learning settings.

2 Related Work

LSTM-RNNs have been widely used for sequen-
tial labeling, such as clause identification (Ham-
merton, 2001), phonetic labeling (Graves and
Schmidhuber, 2005), and NER (Hammerton,
2003). Recently, Huang et al. (2015) showed that

building a conditional random field (CRF) layer on
top of bidirectional LSTM-RNNs performs com-
parably to the state-of-the-art methods in the part-
of-speech (POS) tagging, chunking, and NER.

For relation classification, in addition to tra-
ditional feature/kernel-based approaches (Zelenko
et al., 2003; Bunescu and Mooney, 2005), sev-
eral neural models have been proposed in the
SemEval-2010 Task 8 (Hendrickx et al., 2010),
including embedding-based models (Hashimoto
et al., 2015), CNN-based models (dos Santos et
al., 2015), and RNN-based models (Socher et al.,
2012). Recently, Xu et al. (2015a) and Xu et
al. (2015b) showed that the shortest dependency
paths between relation arguments, which were
used in feature/kernel-based systems (Bunescu
and Mooney, 2005), are also useful in NN-based
models. Xu et al. (2015b) also showed that LSTM-
RNNs are useful for relation classification, but the
performance was worse than CNN-based models.
Li et al. (2015) compared separate sequence-based
and tree-structured LSTM-RNNs on relation clas-
sification, using basic RNN model structures.

Research on tree-structured LSTM-RNNs (Tai
et al., 2015) fixes the direction of information
propagation from bottom to top, and also cannot
handle an arbitrary number of typed children as in
a typed dependency tree. Furthermore, no RNN-
based relation classification model simultaneously
uses word sequence and dependency tree informa-
tion. We propose several such novel model struc-
tures and training settings, investigating the simul-
taneous use of bidirectional sequential and bidi-
rectional tree-structured LSTM-RNNs to jointly
capture linear and dependency context for end-to-
end extraction of relations between entities.

As for end-to-end (joint) extraction of relations
between entities, all existing models are feature-
based systems (and no NN-based model has been
proposed). Such models include structured pre-
diction (Li and Ji, 2014; Miwa and Sasaki,
2014), integer linear programming (Roth and Yih,
2007; Yang and Cardie, 2013), card-pyramid pars-
ing (Kate and Mooney, 2010), and global prob-
abilistic graphical models (Yu and Lam, 2010;
Singh et al., 2013). Among these, structured pre-
diction methods are state-of-the-art on several cor-
pora. We present an improved, NN-based alterna-
tive for the end-to-end relation extraction.

1106

In 1909 , Sidney Yates was born in Chicago .

B-PER L-PER

word/POS
embeddings

Bi-LSTM

hidden

softmax

nsubjpass prep pobj

Yates

born

in

Chicago

PHYS

Bi-TreeLSTM

hidden

softmax

Sequence (Entity)

Dependency (Relation)

LSTM unit
dropout

tanh

tanh

dependency embeddings

tanh

label embeddings

embeddings

neural net / softmax

・・・・・・

Fig. 1: Our incrementally-decoded end-to-end relation extraction model, with bidirectional sequential
and bidirectional tree-structured LSTM-RNNs.

3 Model

We design our model with LSTM-RNNs that rep-
resent both word sequences and dependency tree
structures, and perform end-to-end extraction of
relations between entities on top of these RNNs.
Fig. 1 illustrates the overview of the model. The
model mainly consists of three representation lay-
ers: a word embeddings layer (embedding layer),
a word sequence based LSTM-RNN layer (se-
quence layer), and finally a dependency subtree
based LSTM-RNN layer (dependency layer). Dur-
ing decoding, we build greedy, left-to-right entity
detection on the sequence layer and realize rela-
tion classification on the dependency layers, where
each subtree based LSTM-RNN corresponds to
a relation candidate between two detected enti-
ties. After decoding the entire model structure, we
update the parameters simultaneously via back-
propagation through time (BPTT) (Werbos, 1990).
The dependency layers are stacked on the se-
quence layer, so the embedding and sequence lay-
ers are shared by both entity detection and rela-
tion classification, and the shared parameters are
affected by both entity and relation labels.

3.1 Embedding Layer

The embedding layer handles embedding repre-
sentations. nw, np, nd and ne-dimensional vectors
v(w), v(p), v(d) and v(e) are embedded to words,
part-of-speech (POS) tags, dependency types, and
entity labels, respectively.

3.2 Sequence Layer
The sequence layer represents words in a linear se-
quence using the representations from the embed-
ding layer. This layer represents sentential con-
text information and maintains entities, as shown
in bottom-left part of Fig. 1.

We represent the word sequence in a sentence
with bidirectional LSTM-RNNs (Graves et al.,
2013). The LSTM unit at t-th word consists of
a collection of nls-dimensional vectors: an input
gate it, a forget gate ft, an output gate ot, a mem-
ory cell ct, and a hidden state ht. The unit re-
ceives an n-dimensional input vector xt, the previ-
ous hidden state ht−1, and the memory cell ct−1,
and calculates the new vectors using the following
equations:

it = σ
(
W (i)xt + U (i)ht−1 + b(i)

)
, (1)

ft = σ
(
W (f)xt + U (f)ht−1 + b(f)

)
,

ot = σ
(
W (o)xt + U (o)ht−1 + b(o)

)
,

ut = tanh
(
W (u)xt + U (u)ht−1 + b(u)

)
,

ct = it�ut + ft�ct−1,

ht = ot� tanh(ct),

where σ denotes the logistic function, � denotes
element-wise multiplication, W and U are weight
matrices, and b are bias vectors. The LSTM unit
at t-th word receives the concatenation of word
and POS embeddings as its input vector: xt =[
v

(w)
t ; v(p)

t

]
. We also concatenate the hidden state

vectors of the two directions’ LSTM units corre-
sponding to each word (denoted as

−→
ht and

←−
ht) as

1107

its output vector, st =
[−→
ht ;
←−
ht

]
, and pass it to the

subsequent layers.

3.3 Entity Detection
We treat entity detection as a sequence labeling
task. We assign an entity tag to each word us-
ing a commonly used encoding scheme BILOU
(Begin, Inside, Last, Outside, Unit) (Ratinov and
Roth, 2009), where each entity tag represents the
entity type and the position of a word in the entity.
For example, in Fig. 1, we assign B-PER and L-
PER (which denote the beginning and last words
of a person entity type, respectively) to each word
in Sidney Yates to represent this phrase as a PER
(person) entity type.

We perform entity detection on top of the se-
quence layer. We employ a two-layered NN with
an nhe-dimensional hidden layer h(e) and a soft-
max output layer for entity detection.

h
(e)
t = tanh

(
W (eh)[st; v

(e)
t−1] + b(eh)

)
(2)

yt = softmax
(
W (ey)h

(e)
t + b(ey)

)
(3)

Here, W are weight matrices and b are bias vec-
tors.

We assign entity labels to words in a greedy,
left-to-right manner.1 During this decoding, we
use the predicted label of a word to predict the
label of the next word so as to take label depen-
dencies into account. The NN above receives the
concatenation of its corresponding outputs in the
sequence layer and the label embedding for its pre-
vious word (Fig. 1).

3.4 Dependency Layer
The dependency layer represents a relation be-
tween a pair of two target words (corresponding
to a relation candidate in relation classification) in
the dependency tree, and is in charge of relation-
specific representations, as is shown in top-right
part of Fig. 1. This layer mainly focuses on the
shortest path between a pair of target words in the
dependency tree (i.e., the path between the least
common node and the two target words) since
these paths are shown to be effective in relation
classification (Xu et al., 2015a). For example, we
show the shortest path between Yates and Chicago
in the bottom of Fig. 1, and this path well captures
the key phrase of their relation, i.e., born in.

1We also tried beam search but this did not show improve-
ments in initial experiments.

We employ bidirectional tree-structured LSTM-
RNNs (i.e., bottom-up and top-down) to represent
a relation candidate by capturing the dependency
structure around the target word pair. This bidirec-
tional structure propagates to each node not only
the information from the leaves but also informa-
tion from the root. This is especially important
for relation classification, which makes use of ar-
gument nodes near the bottom of the tree, and our
top-down LSTM-RNN sends information from the
top of the tree to such near-leaf nodes (unlike in
standard bottom-up LSTM-RNNs).2 Note that the
two variants of tree-structured LSTM-RNNs by
Tai et al. (2015) are not able to represent our tar-
get structures which have a variable number of
typed children: the Child-Sum Tree-LSTM does
not deal with types and the N -ary Tree assumes
a fixed number of children. We thus propose a
new variant of tree-structured LSTM-RNN that
shares weight matrices Us for same-type children
and also allows variable number of children. For
this variant, we calculate nlt-dimensional vectors
in the LSTM unit at t-th node with C(t) children
using following equations:

it = σ

W (i)xt +
∑

l∈C(t)

U
(i)
m(l)htl + b(i)

 , (4)

ftk = σ

W (f)xt +
∑

l∈C(t)

U
(f)
m(k)m(l)htl + b(f)

 ,
ot = σ

W (o)xt +
∑

l∈C(t)

U
(o)
m(l)htl + b(o)

 ,
ut = tanh

W (u)xt +
∑

l∈C(t)

U
(u)
m(l)htl + b(u)

 ,
ct = it�ut +

∑
l∈C(t)

ftl�ctl,

ht = ot� tanh(ct),

where m(·) is a type mapping function.
To investigate appropriate structures to repre-

sent relations between two target word pairs, we
experiment with three structure options. We pri-
marily employ the shortest path structure (SP-
Tree), which captures the core dependency path
between a target word pair and is widely used in
relation classification models, e.g., (Bunescu and

2We also tried to use one LSTM-RNN by connecting the
root (Paulus et al., 2014), but preparing two LSTM-RNNs
showed slightly better performance in our initial experiments.

1108

Mooney, 2005; Xu et al., 2015a). We also try two
other dependency structures: SubTree and Full-
Tree. SubTree is the subtree under the lowest
common ancestor of the target word pair. This pro-
vides additional modifier information to the path
and the word pair in SPTree. FullTree is the full
dependency tree. This captures context from the
entire sentence. While we use one node type for
SPTree, we define two node types for SubTree and
FullTree, i.e., one for nodes on shortest paths and
one for all other nodes. We use the type mapping
functionm(·) to distinguish these two nodes types.

3.5 Stacking Sequence and Dependency
Layers

We stack the dependency layers (corresponding to
relation candidates) on top of the sequence layer to
incorporate both word sequence and dependency
tree structure information into the output. The
dependency-layer LSTM unit at the t-th word re-
ceives as input xt =

[
st; v

(d)
t ; v(e)

t

]
, i.e., the con-

catenation of its corresponding hidden state vec-
tors st in the sequence layer, dependency type
embedding v(d)

t (denotes the type of dependency
to the parent3), and label embedding v(e)

t (corre-
sponds to the predicted entity label).

3.6 Relation Classification

We incrementally build relation candidates using
all possible combinations of the last words of de-
tected entities, i.e., words with L or U labels in
the BILOU scheme, during decoding. For in-
stance, in Fig. 1, we build a relation candidate us-
ing Yates with an L-PER label and Chicago with
an U-LOC label. For each relation candidate, we
realize the dependency layer dp (described above)
corresponding to the path between the word pair
p in the relation candidate, and the NN receives a
relation candidate vector constructed from the out-
put of the dependency tree layer, and predicts its
relation label. We treat a pair as a negative relation
when the detected entities are wrong or when the
pair has no relation. We represent relation labels
by type and direction, except for negative relations
that have no direction.

The relation candidate vector is constructed as
the concatenation dp = [↑hpA ; ↓hp1 ; ↓hp2], where
↑hpA is the hidden state vector of the top LSTM

3We use the dependency to the parent since the number of
children varies. Dependency types can also be incorporated
into m(·), but this did not help in initial experiments.

unit in the bottom-up LSTM-RNN (representing
the lowest common ancestor of the target word
pair p), and ↓hp1 , ↓hp2 are the hidden state vec-
tors of the two LSTM units representing the first
and second target words in the top-down LSTM-
RNN.4 All the corresponding arrows are shown in
Fig. 1.

Similarly to the entity detection, we employ a
two-layered NN with an nhr -dimensional hidden
layer h(r) and a softmax output layer (with weight
matrices W , bias vectors b).

h(r)
p = tanh

(
W (rh)dp + b(rh)

)
(5)

yp = softmax
(
W (ry)h

(r)
t + b(ry)

)
(6)

We construct the input dp for relation classifi-
cation from tree-structured LSTM-RNNs stacked
on sequential LSTM-RNNs, so the contribution
of sequence layer to the input is indirect. Fur-
thermore, our model uses words for represent-
ing entities, so it cannot fully use the entity in-
formation. To alleviate these problems, we di-
rectly concatenate the average of hidden state vec-
tors for each entity from the sequence layer to
the input dp to relation classification, i.e., d′p =[
dp; 1
|Ip1 |

∑
i∈Ip1

si; 1
|Ip2 |

∑
i∈Ip2

si

]
(Pair), where

Ip1 and Ip2 represent sets of word indices in the
first and second entities.5

Also, we assign two labels to each word pair in
prediction since we consider both left-to-right and
right-to-left directions. When the predicted labels
are inconsistent, we select the positive and more
confident label, similar to Xu et al. (2015a).

3.7 Training
We update the model parameters including
weights, biases, and embeddings by BPTT and
Adam (Kingma and Ba, 2015) with gradient clip-
ping, parameter averaging, and L2-regularization
(we regularize weights W and U , not the bias
terms b). We also apply dropout (Srivastava et al.,
2014) to the embedding layer and to the final hid-
den layers for entity detection and relation classi-
fication.

We employ two enhancements, scheduled sam-
pling (Bengio et al., 2015) and entity pretrain-
ing, to alleviate the problem of unreliable pre-
diction of entities in the early stage of training,

4Note that the order of the target words corresponds to the
direction of the relation, not the positions in the sentence.

5Note that we do not show this Pair in Fig.1 for simplic-
ity.

1109

and to encourage building positive relation in-
stances from the detected entities. In scheduled
sampling, we use gold labels as prediction in the
probability of εi that depends on the number of
epochs i during training if the gold labels are le-
gal. As for εi, we choose the inverse sigmoid de-
cay εi = k/(k + exp(i/k)), where k(≥ 1) is a
hyper-parameter that adjusts how often we use the
gold labels as prediction. Entity pretraining is in-
spired by (Pentina et al., 2015), and we pretrain
the entity detection model using the training data
before training the entire model parameters.

4 Results and Discussion

4.1 Data and Task Settings

We evaluate on three datasets: ACE05 and ACE04
for end-to-end relation extraction, and SemEval-
2010 Task 8 for relation classification. We use the
first two datasets as our primary target, and use
the last one to thoroughly analyze and ablate the
relation classification part of our model.

ACE05 defines 7 coarse-grained entity types
and 6 coarse-grained relation types between enti-
ties. We use the same data splits, preprocessing,
and task settings as Li and Ji (2014). We report
the primary micro F1-scores as well as micro pre-
cision and recall on both entity and relation extrac-
tion to better explain model performance. We treat
an entity as correct when its type and the region of
its head are correct. We treat a relation as correct
when its type and argument entities are correct; we
thus treat all non-negative relations on wrong en-
tities as false positives.

ACE04 defines the same 7 coarse-grained en-
tity types as ACE05 (Doddington et al., 2004), but
defines 7 coarse-grained relation types. We fol-
low the cross-validation setting of Chan and Roth
(2011) and Li and Ji (2014), and the preprocessing
and evaluation metrics of ACE05.

SemEval-2010 Task 8 defines 9 relation types
between nominals and a tenth type Other when
two nouns have none of these relations (Hendrickx
et al., 2010). We treat this Other type as a nega-
tive relation type, and no direction is considered.
The dataset consists of 8,000 training and 2,717
test sentences, and each sentence is annotated with
a relation between two given nominals. We ran-
domly selected 800 sentences from the training set
as our development set. We followed the official
task setting, and report the official macro-averaged
F1-score (Macro-F1) on the 9 relation types.

For more details of the data and task settings,
please refer to the supplementary material.

4.2 Experimental Settings
We implemented our model using the cnn library.6

We parsed the texts using the Stanford neural de-
pendency parser7 (Chen and Manning, 2014) with
the original Stanford Dependencies. Based on pre-
liminary tuning, we fixed embedding dimensions
nw to 200, np, nd, ne to 25, and dimensions of
intermediate layers (nls , nlt of LSTM-RNNs and
nhe , nhr of hidden layers) to 100. We initialized
word vectors via word2vec (Mikolov et al., 2013)
trained on Wikipedia8 and randomly initialized all
other parameters. We tuned hyper-parameters us-
ing development sets for ACE05 and SemEval-
2010 Task 8 to achieve high primary (Micro- and
Macro-) F1-scores.9 For ACE04, we directly em-
ployed the best parameters for ACE05. The hyper-
parameter settings are shown in the supplementary
material. For SemEval-2010 Task 8, we also omit-
ted the entity detection and label embeddings since
only target nominals are annotated and the task de-
fines no entity types. Our statistical significance
results are based on the Approximate Randomiza-
tion (AR) test (Noreen, 1989).

4.3 End-to-end Relation Extraction Results
Table 1 compares our model with the state-of-the-
art feature-based model of Li and Ji (2014)10 on
final test sets, and shows that our model performs
better than the state-of-the-art model.

To analyze the contributions and effects of the
various components of our end-to-end relation ex-
traction model, we perform ablation tests on the
ACE05 development set (Table 2). The perfor-
mance slightly degraded without scheduled sam-
pling, and the performance significantly degraded
when we removed entity pretraining or removed
both (p<0.05). This is reasonable because the
model can only create relation instances when
both of the entities are found and, without these
enhancements, it may get too late to find some re-
lations. Removing label embeddings did not affect

6https://github.com/clab/cnn
7http://nlp.stanford.edu/software/

stanford-corenlp-full-2015-04-20.zip
8https://dumps.wikimedia.org/enwiki/

20150901/
9We did not tune the precision-recall trade-offs, but doing

so can specifically improve precision further.
10Other work on ACE is not comparable or performs worse

than the model by Li and Ji (2014).

1110

Corpus Settings Entity Relation
P R F1 P R F1

ACE05 Our Model (SPTree) 0.829 0.839 0.834 0.572 0.540 0.556
Li and Ji (2014) 0.852 0.769 0.808 0.654 0.398 0.495

ACE04 Our Model (SPTree) 0.808 0.829 0.818 0.487 0.481 0.484
Li and Ji (2014) 0.835 0.762 0.797 0.608 0.361 0.453

Table 1: Comparison with the state-of-the-art on the ACE05 test set and ACE04 dataset.

Settings Entity Relation
P R F1 P R F1

Our Model (SPTree) 0.815 0.821 0.818 0.506 0.529 0.518
−Entity pretraining (EP) 0.793 0.798 0.796 0.494 0.491 0.492*
−Scheduled sampling (SS) 0.812 0.818 0.815 0.522 0.490 0.505
−Label embeddings (LE) 0.811 0.821 0.816 0.512 0.499 0.505
−Shared parameters (Shared) 0.796 0.820 0.808 0.541 0.482 0.510
−EP, SS 0.781 0.804 0.792 0.509 0.479 0.494*
−EP, SS, LE, Shared 0.800 0.815 0.807 0.520 0.452 0.484**

Table 2: Ablation tests on the ACE05 development dataset. * denotes significance at p<0.05, ** denotes
p<0.01.

Settings Entity Relation
P R F1 P R F1

SPTree 0.815 0.821 0.818 0.506 0.529 0.518
SubTree 0.812 0.818 0.815 0.525 0.506 0.515
FullTree 0.806 0.816 0.811 0.536 0.507 0.521
SubTree (-SP) 0.803 0.816 0.810 0.533 0.495 0.514
FullTree (-SP) 0.804 0.817 0.811 0.517 0.470 0.492*
Child-Sum 0.806 0.819 0.8122 0.514 0.499 0.506
SPSeq 0.801 0.813 0.807 0.500 0.523 0.511
SPXu 0.809 0.818 0.813 0.494 0.522 0.508

Table 3: Comparison of LSTM-RNN structures on the ACE05 development dataset.

the entity detection performance, but this degraded
the recall in relation classification. This indicates
that entity label information is helpful in detecting
relations.

We also show the performance without shar-
ing parameters, i.e., embedding and sequence lay-
ers, for detecting entities and relations (−Shared
parameters); we first train the entity detection
model, detect entities with the model, and build
a separate relation extraction model using the
detected entities, i.e., without entity detection.
This setting can be regarded as a pipeline model
since two separate models are trained sequentially.
Without the shared parameters, both the perfor-
mance in entity detection and relation classifica-
tion drops slightly, although the differences are

not significant. When we removed all the en-
hancements, i.e., scheduled sampling, entity pre-
training, label embedding, and shared parameters,
the performance is significantly worse than SP-
Tree (p<0.01), showing that these enhancements
provide complementary benefits to end-to-end re-
lation extraction.

Next, we show the performance with differ-
ent LSTM-RNN structures in Table 3. We first
compare the three input dependency structures
(SPTree, SubTree, FullTree) for tree-structured
LSTM-RNNs. Performances on these three struc-
tures are almost same when we distinguish the
nodes in the shortest paths from other nodes,
but when we do not distinguish them (-SP), the
information outside of the shortest path, i.e.,

1111

FullTree (-SP), significantly hurts performance
(p<0.05). We then compare our tree-structured
LSTM-RNN (SPTree) with the Child-Sum tree-
structured LSTM-RNN on the shortest path of Tai
et al. (2015). Child-Sum performs worse than our
SPTree model, but not with as big of a decrease
as above. This may be because the difference in
the models appears only on nodes that have multi-
ple children and all the nodes except for the least
common node have one child.

We finally show results with two counterparts
of sequence-based LSTM-RNNs using the short-
est path (last two rows in Table 3). SPSeq is a bidi-
rectional LSTM-RNN on the shortest path. The
LSTM unit receives input from the sequence layer
concatenated with embeddings for the surround-
ing dependency types and directions. We concate-
nate the outputs of the two RNNs for the relation
candidate. SPXu is our adaptation of the shortest
path LSTM-RNN proposed by Xu et al. (2015b)
to match our sequence-layer based model.11 This
has two LSTM-RNNs for the left and right sub-
paths of the shortest path. We first calculate the
max pooling of the LSTM units for each of these
two RNNs, and then concatenate the outputs of the
pooling for the relation candidate. The compar-
ison with these sequence-based LSTM-RNNs in-
dicates that a tree-structured LSTM-RNN is com-
parable to sequence-based ones in representing
shortest paths.

Overall, the performance comparison of the
LSTM-RNN structures in Table 3 show that for
end-to-end relation extraction, selecting the ap-
propriate tree structure representation of the input
(i.e., the shortest path) is more important than the
choice of the LSTM-RNN structure on that input
(i.e., sequential versus tree-based).

4.4 Relation Classification Analysis Results
To thoroughly analyze the relation classification
part alone, e.g., comparing different LSTM struc-
tures, architecture components such as hidden lay-
ers and input information, and classification task
settings, we use the SemEval-2010 Task 8. This
dataset, often used to evaluate NN models for rela-
tion classification, annotates only relation-related
nominals (unlike ACE datasets), so we can focus
cleanly on the relation classification part.

11This is different from the original one in that we use the
sequence layer and we concatenate the embeddings for the in-
put, while the original one prepared individual LSTM-RNNs
for different inputs and concatenated their outputs.

Settings Macro-F1
No External Knowledge Resources

Our Model (SPTree) 0.844
dos Santos et al. (2015) 0.841
Xu et al. (2015a) 0.840

+WordNet
Our Model (SPTree + WordNet) 0.855
Xu et al. (2015a) 0.856
Xu et al. (2015b) 0.837

Table 4: Comparison with state-of-the-art models
on SemEval-2010 Task 8 test-set.

Settings Macro-F1
SPTree 0.851
SubTree 0.839
FullTree 0.829∗
SubTree (-SP) 0.840
FullTree (-SP) 0.828∗
Child-Sum 0.838
SPSeq 0.844
SPXu 0.847

Table 5: Comparison of LSTM-RNN structures on
SemEval-2010 Task 8 development set.

We first report official test set results in Ta-
ble 4. Our novel LSTM-RNN model is compara-
ble to both the state-of-the-art CNN-based models
on this task with or without external sources, i.e.,
WordNet, unlike the previous best LSTM-RNN
model (Xu et al., 2015b).12

Next, we compare different LSTM-RNN struc-
tures in Table 5. As for the three input de-
pendency structures (SPTree, SubTree, FullTree),
FullTree performs significantly worse than other
structures regardless of whether or not we dis-
tinguish the nodes in the shortest paths from the
other nodes, which hints that the information out-
side of the shortest path significantly hurts the per-
formance (p<0.05). We also compare our tree-
structured LSTM-RNN (SPTree) with sequence-
based LSTM-RNNs (SPSeq and SPXu) and tree-
structured LSTM-RNNs (Child-Sum). All these
LSTM-RNNs perform slightly worse than our SP-

12When incorporating WordNet information into our
model, we prepared embeddings for WordNet hypernyms ex-
tracted by SuperSenseTagger (Ciaramita and Altun, 2006)
and concatenated the embeddings to the input vector (the con-
catenation of word and POS embeddings) of the sequence
LSTM. We tuned the dimension of the WordNet embeddings
and set it to 15 using the development dataset.

1112

Settings Macro-F1
SPTree 0.851
−Hidden layer 0.839
−Sequence layer 0.840
−Pair 0.844
−Pair, Sequence layer 0.827∗
Stanford PCFG 0.844
+WordNet 0.854
Left-to-right candidates 0.843
Neg. sampling (Xu et al., 2015a) 0.848

Table 6: Model setting ablations on SemEval-
2010 development set.

Tree model, but the differences are small.
Overall, for relation classification, although

the performance comparison of the LSTM-RNN
structures in Table 5 produces different results on
FullTree as compared to the results on ACE05 in
Table 3, the trend still holds that selecting the ap-
propriate tree structure representation of the input
is more important than the choice of the LSTM-
RNN structure on that input.

Finally, Table 6 summarizes the contribution
of several model components and training set-
tings on SemEval relation classification. We first
remove the hidden layer by directly connecting
the LSTM-RNN layers to the softmax layers, and
found that this slightly degraded performance, but
the difference was small. We then skip the se-
quence layer and directly use the word and POS
embeddings for the dependency layer. Removing
the sequence layer13 or entity-related information
from the sequence layer (−Pair) slightly degraded
performance, and, on removing both, the perfor-
mance dropped significantly (p<0.05). This indi-
cates that the sequence layer is necessary but the
last words of nominals are almost enough for ex-
pressing the relations in this task.

When we replace the Stanford neural depen-
dency parser with the Stanford lexicalized PCFG
parser (Stanford PCFG), the performance slightly
dropped, but the difference was small. This in-
dicates that the selection of parsing models is
not critical. We also included WordNet, and this
slightly improved the performance (+WordNet),
but the difference was small. Lastly, for the gener-
ation of relation candidates, generating only left-
to-right candidates slightly degraded the perfor-

13Note that this setting still uses some sequence layer in-
formation since it uses the entity-related information (Pair).

mance, but the difference was small and hence the
creation of right-to-left candidates was not critical.
Treating the inverse relation candidate as a nega-
tive instance (Negative sampling) also performed
comparably to other generation methods in our
model (unlike Xu et al. (2015a), which showed
a significance improvement over generating only
left-to-right candidates).

5 Conclusion

We presented a novel end-to-end relation extrac-
tion model that represents both word sequence
and dependency tree structures by using bidirec-
tional sequential and bidirectional tree-structured
LSTM-RNNs. This allowed us to represent both
entities and relations in a single model, achiev-
ing gains over the state-of-the-art, feature-based
system on end-to-end relation extraction (ACE04
and ACE05), and showing favorably compara-
ble performance to recent state-of-the-art CNN-
based models on nominal relation classification
(SemEval-2010 Task 8).

Our evaluation and ablation led to three key
findings. First, the use of both word sequence
and dependency tree structures is effective. Sec-
ond, training with the shared parameters improves
relation extraction accuracy, especially when em-
ployed with entity pretraining, scheduled sam-
pling, and label embeddings. Finally, the shortest
path, which has been widely used in relation clas-
sification, is also appropriate for representing tree
structures in neural LSTM models.

Acknowledgments

We thank Qi Li, Kevin Gimpel, and the anony-
mous reviewers for dataset details and helpful dis-
cussions.

References

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. 2015. Scheduled sampling for
sequence prediction with recurrent neural net-
works. arXiv preprint arXiv:1506.03099.

Razvan C Bunescu and Raymond Mooney. 2005.
A shortest path dependency kernel for relation
extraction. In Proceedings of the conference
on Human Language Technology and Empiri-
cal Methods in Natural Language Processing,
pages 724–731. ACL.

1113

Yee Seng Chan and Dan Roth. 2011. Exploit-
ing syntactico-semantic structures for relation
extraction. In Proceedings of the 49th An-
nual Meeting of the Association for Computa-
tional Linguistics: Human Language Technolo-
gies, pages 551–560, Portland, Oregon, USA,
June. ACL.

Danqi Chen and Christopher Manning. 2014. A
fast and accurate dependency parser using neu-
ral networks. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 740–750,
Doha, Qatar, October. ACL.

Massimiliano Ciaramita and Yasemin Altun.
2006. Broad-coverage sense disambiguation
and information extraction with a supersense
sequence tagger. In Proceedings of the 2006
Conference on Empirical Methods in Natural
Language Processing, pages 594–602, Sydney,
Australia, July. ACL.

George Doddington, Alexis Mitchell, Mark Przy-
bocki, Lance Ramshaw, Stephanie Strassel, and
Ralph Weischedel. 2004. The automatic con-
tent extraction (ace) program – tasks, data, and
evaluation. In Proceedings of the Fourth In-
ternational Conference on Language Resources
and Evaluation (LREC-2004), Lisbon, Portu-
gal, May. European Language Resources Asso-
ciation (ELRA).

Cicero dos Santos, Bing Xiang, and Bowen Zhou.
2015. Classifying relations by ranking with
convolutional neural networks. In Proceedings
of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers),
pages 626–634, Beijing, China, July. ACL.

Alex Graves and Jürgen Schmidhuber. 2005.
Framewise phoneme classification with bidirec-
tional lstm and other neural network architec-
tures. Neural Networks, 18(5):602–610.

Alan Graves, Abdel-rahman Mohamed, and Ge-
offrey Hinton. 2013. Speech recognition with
deep recurrent neural networks. In Acoustics,
Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on, pages 6645–
6649. IEEE.

James Hammerton. 2001. Clause identification
with long short-term memory. In Proceedings
of the 2001 workshop on Computational Nat-
ural Language Learning-Volume 7, page 22.
ACL.

James Hammerton. 2003. Named entity recog-
nition with long short-term memory. In Wal-
ter Daelemans and Miles Osborne, editors, Pro-
ceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003,
pages 172–175. ACL.

Kazuma Hashimoto, Pontus Stenetorp, Makoto
Miwa, and Yoshimasa Tsuruoka. 2015. Task-
oriented learning of word embeddings for se-
mantic relation classification. In Proceedings
of the Nineteenth Conference on Computational
Natural Language Learning, pages 268–278,
Beijing, China, July. ACL.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,
Preslav Nakov, Diarmuid Ó Séaghdha, Sebas-
tian Padó, Marco Pennacchiotti, Lorenza Ro-
mano, and Stan Szpakowicz. 2010. Semeval-
2010 task 8: Multi-way classification of se-
mantic relations between pairs of nominals. In
Proceedings of the 5th International Workshop
on Semantic Evaluation, pages 33–38, Uppsala,
Sweden, July. ACL.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional lstm-crf models for sequence tagging.
arXiv preprint arXiv:1508.01991.

Rohit J. Kate and Raymond Mooney. 2010.
Joint entity and relation extraction using card-
pyramid parsing. In Proceedings of the Four-
teenth Conference on Computational Natural
Language Learning, pages 203–212, Uppsala,
Sweden, July. ACL.

Diederik Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. In ICLR
2015, San Diego, CA, May.

Qi Li and Heng Ji. 2014. Incremental joint ex-
traction of entity mentions and relations. In
Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 402–412, Balti-
more, Maryland, June. ACL.

1114

Jiwei Li, Thang Luong, Dan Jurafsky, and Eduard
Hovy. 2015. When are tree structures neces-
sary for deep learning of representations? In
Proceedings of the 2015 Conference on Empir-
ical Methods in Natural Language Processing,
pages 2304–2314, Lisbon, Portugal, September.
ACL.

Wei Lu and Dan Roth. 2015. Joint mention
extraction and classification with mention hy-
pergraphs. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Lan-
guage Processing, pages 857–867, Lisbon, Por-
tugal, September. ACL.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. 2013. Distributed
representations of words and phrases and their
compositionality. In Advances in neural infor-
mation processing systems, pages 3111–3119.

Makoto Miwa and Yutaka Sasaki. 2014. Model-
ing joint entity and relation extraction with ta-
ble representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1858–
1869, Doha, Qatar, October. ACL.

David Nadeau and Satoshi Sekine. 2007. A sur-
vey of named entity recognition and classifica-
tion. Lingvisticae Investigationes, 30(1):3–26.

Eric W. Noreen. 1989. Computer-Intensive Meth-
ods for Testing Hypotheses : An Introduction.
Wiley-Interscience, April.

Romain Paulus, Richard Socher, and Christo-
pher D Manning. 2014. Global belief re-
cursive neural networks. In Z. Ghahramani,
M. Welling, C. Cortes, N.D. Lawrence, and
K.Q. Weinberger, editors, Advances in Neu-
ral Information Processing Systems 27, pages
2888–2896. Curran Associates, Inc.

Anastasia Pentina, Viktoriia Sharmanska, and
Christoph H. Lampert. 2015. Curriculum
learning of multiple tasks. In IEEE Confer-
ence on Computer Vision and Pattern Recog-
nition CVPR, pages 5492–5500, Boston, MA,
USA, June.

Lev Ratinov and Dan Roth. 2009. Design
challenges and misconceptions in named en-
tity recognition. In Proceedings of the Thir-
teenth Conference on Computational Natural

Language Learning (CoNLL-2009), pages 147–
155, Boulder, Colorado, June. ACL.

Dan Roth and Wen-Tau Yih, 2007. Global Infer-
ence for Entity and Relation Identification via a
Linear Programming Formulation. MIT Press.

Sameer Singh, Sebastian Riedel, Brian Martin, Ji-
aping Zheng, and Andrew McCallum. 2013.
Joint inference of entities, relations, and coref-
erence. In Proceedings of the 2013 work-
shop on Automated knowledge base construc-
tion, pages 1–6. ACM.

Richard Socher, Brody Huval, Christopher D.
Manning, and Andrew Y. Ng. 2012. Seman-
tic compositionality through recursive matrix-
vector spaces. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural
Language Processing and Computational Natu-
ral Language Learning, pages 1201–1211, Jeju
Island, Korea, July. ACL.

Nitish Srivastava, Geoffrey Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A simple way
to prevent neural networks from overfitting.
The Journal of Machine Learning Research,
15(1):1929–1958.

Kai Sheng Tai, Richard Socher, and Christo-
pher D. Manning. 2015. Improved semantic
representations from tree-structured long short-
term memory networks. In Proceedings of the
53rd Annual Meeting of the Association for
Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages
1556–1566, Beijing, China, July. ACL.

Paul J Werbos. 1990. Backpropagation through
time: what it does and how to do it. Proceed-
ings of the IEEE, 78(10):1550–1560.

Kun Xu, Yansong Feng, Songfang Huang, and
Dongyan Zhao. 2015a. Semantic relation
classification via convolutional neural networks
with simple negative sampling. In Proceedings
of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 536–
540, Lisbon, Portugal, September. ACL.

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao
Peng, and Zhi Jin. 2015b. Classifying re-
lations via long short term memory networks

1115

along shortest dependency paths. In Proceed-
ings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages
1785–1794, Lisbon, Portugal, September. ACL.

Bishan Yang and Claire Cardie. 2013. Joint in-
ference for fine-grained opinion extraction. In
Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1640–1649, Sofia,
Bulgaria, August. ACL.

Xiaofeng Yu and Wai Lam. 2010. Jointly iden-
tifying entities and extracting relations in ency-
clopedia text via a graphical model approach.
In Coling 2010: Posters, pages 1399–1407,
Beijing, China, August. Coling 2010 Organiz-
ing Committee.

Dmitry Zelenko, Chinatsu Aone, and Anthony
Richardella. 2003. Kernel methods for relation
extraction. The Journal of Machine Learning
Research, 3:1083–1106.

GuoDong Zhou, Jian Su, Jie Zhang, and Min
Zhang. 2005. Exploring various knowledge in
relation extraction. In Proceedings of the 43rd
Annual Meeting of the Association for Compu-
tational Linguistics (ACL’05), pages 427–434,
Ann Arbor, Michigan, June. ACL.

A Supplemental Material

A.1 Data and Task Settings

ACE05 defines 7 coarse-grained entity types:
Facility (FAC), Geo-Political Entities (GPE),
Location (LOC), Organization (ORG), Person
(PER), Vehicle (VEH) and Weapon (WEA), and
6 coarse-grained relation types between enti-
ties: Artifact (ART), Gen-Affiliation (GEN-AFF),
Org-Affiliation (ORG-AFF), Part-Whole (PART-
WHOLE), Person-Social (PER-SOC) and Physical
(PHYS). We removed the cts, un subsets, and used
a 351/80/80 train/dev/test split. We removed du-
plicated entities and relations, and resolved nested
entities. We used head spans for entities. We fol-
low the settings by (Li and Ji, 2014), and we did
not use the full mention boundary unlike Lu and
Roth (2015). We use entities and relations to refer
to entity mentions and relation mentions in ACE
for brevity.

ACE04 defines the same 7 coarse-grained entity
types as ACE05 (Doddington et al., 2004), but de-

fines 7 coarse-grained relation types: PYS, PER-
SOC, Employment / Membership / Subsidiary
(EMP-ORG), ART, PER/ORG affiliation (Other-
AFF), GPE affiliation (GPE-AFF), and Discourse
(DISC). We follow the cross-validation setting of
Chan and Roth (2011) and Li and Ji (2014). We
removed DISC and did 5-fold CV on bnews and
nwire subsets (348 documents). We use the same
preprocessing and evaluation metrics of ACE05.

SemEval-2010 Task 8 defines 9 relation types
between nominals (Cause-Effect, Instrument-
Agency, Product-Producer, Content-Container,
Entity-Origin, Entity-Destination, Component-
Whole, Member-Collection and Message-Topic),
and a tenth type Other when two nouns have none
of these relations (Hendrickx et al., 2010). We
treat this Other type as a negative relation type,
and no direction is considered. The dataset con-
sists of 8,000 training and 2,717 test sentences,
and each sentence is annotated with a relation be-
tween two given nominals. We randomly selected
800 sentences from the training set as our devel-
opment set. We followed the official task setting,
and report the official macro-averaged F1-score
(Macro-F1) on the 9 relation types.

A.2 Hyper-parameter Settings
Here we show the hyper-parameters and the range
tried for the hyper-parameters in parentheses.
Hyper-parameters include the initial learning rate
(5e-3, 2e-3, 1e-3, 5e-4, 2e-4, 1e-4), the regular-
ization parameter (1e-4, 1e-5, 1e-6, 1e-7), dropout
probabilities (0.0, 0.1, 0.2, 0.3, 0.4, 0.5), the size
of gradient clipping (1, 5, 10, 50, 100), scheduled
sampling parameter k (1, 5, 10, 50, 100), the num-
ber of epochs for training and entity pretraining (≤
100), and the embedding dimension of WordNet
hypernym (5, 10, 15, 20, 25, 30).

1116

