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Abstract

Nearly all previous work on neural ma-
chine translation (NMT) has used quite
restricted vocabularies, perhaps with a
subsequent method to patch in unknown
words. This paper presents a novel word-
character solution to achieving open vo-
cabulary NMT. We build hybrid systems
that translate mostly at the word level
and consult the character components for
rare words. Our character-level recur-
rent neural networks compute source word
representations and recover unknown tar-
get words when needed. The twofold
advantage of such a hybrid approach is
that it is much faster and easier to train
than character-based ones; at the same
time, it never produces unknown words
as in the case of word-based models. On
the WMT’15 English to Czech translation
task, this hybrid approach offers an ad-
dition boost of +2.1−11.4 BLEU points
over models that already handle unknown
words. Our best system achieves a new
state-of-the-art result with 20.7 BLEU
score. We demonstrate that our character
models can successfully learn to not only
generate well-formed words for Czech,
a highly-inflected language with a very
complex vocabulary, but also build correct
representations for English source words.

1 Introduction

Neural Machine Translation (NMT) is a simple
new architecture for getting machines to translate.
At its core, NMT is a single deep neural network
that is trained end-to-end with several advantages
such as simplicity and generalization. Despite
being relatively new, NMT has already achieved

Figure 1: Hybrid NMT – example of a word-
character model for translating “a cute cat” into
“un joli chat”. Hybrid NMT translates at the word
level. For rare tokens, the character-level compo-
nents build source representations and recover tar-
get <unk>. “_” marks sequence boundaries.

state-of-the-art translation results for several lan-
guage pairs such as English-French (Luong et al.,
2015b), English-German (Jean et al., 2015a; Lu-
ong et al., 2015a; Luong and Manning, 2015), and
English-Czech (Jean et al., 2015b).

While NMT offers many advantages over tra-
ditional phrase-based approaches, such as small
memory footprint and simple decoder implemen-
tation, nearly all previous work in NMT has used
quite restricted vocabularies, crudely treating all
other words the same with an <unk> symbol.
Sometimes, a post-processing step that patches
in unknown words is introduced to alleviate this
problem. Luong et al. (2015b) propose to annotate
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occurrences of target <unk> with positional infor-
mation to track their alignments, after which sim-
ple word dictionary lookup or identity copy can
be performed to replace <unk> in the translation.
Jean et al. (2015a) approach the problem similarly
but obtain the alignments for unknown words from
the attention mechanism. We refer to these as the
unk replacement technique.

Though simple, these approaches ignore several
important properties of languages. First, monolin-
gually, words are morphologically related; how-
ever, they are currently treated as independent en-
tities. This is problematic as pointed out by Luong
et al. (2013): neural networks can learn good rep-
resentations for frequent words such as “distinct”,
but fail for rare-but-related words like “distinc-
tiveness”. Second, crosslingually, languages have
different alphabets, so one cannot naïvely memo-
rize all possible surface word translations such as
name transliteration between “Christopher” (En-
glish) and “Krys̆tof” (Czech). See more on this
problem in (Sennrich et al., 2016).

To overcome these shortcomings, we propose a
novel hybrid architecture for NMT that translates
mostly at the word level and consults the char-
acter components for rare words when necessary.
As illustrated in Figure 1, our hybrid model con-
sists of a word-based NMT that performs most of
the translation job, except for the two (hypotheti-
cally) rare words, “cute” and “joli”, that are han-
dled separately. On the source side, representa-
tions for rare words, “cute”, are computed on-the-
fly using a deep recurrent neural network that op-
erates at the character level. On the target side,
we have a separate model that recovers the sur-
face forms, “joli”, of <unk> tokens character-by-
character. These components are learned jointly
end-to-end, removing the need for a separate unk
replacement step as in current NMT practice.

Our hybrid NMT offers a twofold advantage: it
is much faster and easier to train than character-
based models; at the same time, it never produces
unknown words as in the case of word-based ones.
We demonstrate at scale that on the WMT’15 En-
glish to Czech translation task, such a hybrid ap-
proach provides an additional boost of +2.1−11.4
BLEU points over models that already handle un-
known words. We achieve a new state-of-the-
art result with 20.7 BLEU score. Our analysis
demonstrates that our character models can suc-
cessfully learn to not only generate well-formed

words for Czech, a highly-inflected language with
a very complex vocabulary, but also build correct
representations for English source words.

We provide code, data, and models at http:
//nlp.stanford.edu/projects/nmt.

2 Related Work

There has been a recent line of work on end-to-
end character-based neural models which achieve
good results for part-of-speech tagging (dos San-
tos and Zadrozny, 2014; Ling et al., 2015a), de-
pendency parsing (Ballesteros et al., 2015), text
classification (Zhang et al., 2015), speech recog-
nition (Chan et al., 2016; Bahdanau et al., 2016),
and language modeling (Kim et al., 2016; Joze-
fowicz et al., 2016). However, success has not
been shown for cross-lingual tasks such as ma-
chine translation.1 Sennrich et al. (2016) propose
to segment words into smaller units and translate
just like at the word level, which does not learn to
understand relationships among words.

Our work takes inspiration from (Luong et al.,
2013) and (Li et al., 2015). Similar to the former,
we build representations for rare words on-the-fly
from subword units. However, we utilize recur-
rent neural networks with characters as the basic
units; whereas Luong et al. (2013) use recursive
neural networks with morphemes as units, which
requires existence of a morphological analyzer. In
comparison with (Li et al., 2015), our hybrid archi-
tecture is also a hierarchical sequence-to-sequence
model, but operates at a different granularity level,
word-character. In contrast, Li et al. (2015) build
hierarchical models at the sentence-word level for
paragraphs and documents.

3 Background & Our Models

Neural machine translation aims to directly model
the conditional probability p(y|x) of translating a
source sentence, x1, . . . , xn, to a target sentence,
y1, . . . , ym. It accomplishes this goal through an
encoder-decoder framework (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014; Cho et al.,
2014). The encoder computes a representation s
for each source sentence. Based on that source

1Recently, Ling et al. (2015b) attempt character-level
NMT; however, the experimental evidence is weak. The au-
thors demonstrate only small improvements over word-level
baselines and acknowledge that there are no differences of
significance. Furthermore, only small datasets were used
without comparable results from past NMT work.
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representation, the decoder generates a transla-
tion, one target word at a time, and hence, decom-
poses the log conditional probability as:

log p(y|x) =
∑m

t=1
log p (yt|y<t, s) (1)

A natural model for sequential data is the re-
current neural network (RNN), used by most of
the recent NMT work. Papers, however, differ in
terms of: (a) architecture – from unidirectional,
to bidirectional, and deep multi-layer RNNs; and
(b) RNN type – which are long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
and the gated recurrent unit (Cho et al., 2014). All
our models utilize the deep multi-layer architec-
ture with LSTM as the recurrent unit; detailed for-
mulations are in (Zaremba et al., 2014).

Considering the top recurrent layer in a deep
LSTM, with ht being the current target hidden
state as in Figure 2, one can compute the proba-
bility of decoding each target word yt as:

p (yt|y<t, s) = softmax (ht) (2)

For a parallel corpus D, we train our model by
minimizing the below cross-entropy loss:

J =
∑

(x,y)∈D
− log p(y|x) (3)

Attention Mechanism – The early NMT ap-
proaches (Sutskever et al., 2014; Cho et al., 2014),
which we have described above, use only the last
encoder state to initialize the decoder, i.e., setting
the input representation s in Eq. (1) to [h̄n]. Re-
cently, Bahdanau et al. (2015) propose an atten-
tion mechanism, a form of random access mem-
ory for NMT to cope with long input sequences.
Luong et al. (2015a) further extend the attention
mechanism to different scoring functions, used to
compare source and target hidden states, as well
as different strategies to place the attention. In all
our models, we utilize the global attention mech-
anism and the bilinear form for the attention scor-
ing function similar to (Luong et al., 2015a).

Specifically, we set s in Eq. (1) to the set of
source hidden states at the top layer, [h̄1, . . . , h̄n].
As illustrated in Figure 2, the attention mechanism
consists of two stages: (a) context vector – the
current hidden state ht is compared with individ-
ual source hidden states in s to learn an alignment
vector, which is then used to compute the context
vector ct as a weighted average of s; and (b) atten-
tional hidden state – the context vector ct is then

yt

ct

h̄1 h̄n ht

h̃t

Figure 2: Attention mechanism.

used to derive a new attentional hidden state:

h̃t = tanh(W[ct;ht]) (4)

The attentional vector h̃t then replaces ht in
Eq. (2) in predicting the next word.

4 Hybrid Neural Machine Translation

Our hybrid architecture, illustrated in Figure 1,
leverages the power of both words and characters
to achieve the goal of open vocabulary NMT. The
core of the design is a word-level NMT with the
advantage of being fast and easy to train. The
character components empower the word-level
system with the abilities to compute any source
word representation on the fly from characters and
to recover character-by-character unknown target
words originally produced as <unk>.

4.1 Word-based Translation as a Backbone

The core of our hybrid NMT is a deep LSTM
encoder-decoder that translates at the word level as
described in Section 3. We maintain a vocabulary
of |V | frequent words for each language. Other
words not inside these lists are represented by a
universal symbol <unk>, one per language. We
translate just like a word-based NMT system with
respect to these source and target vocabularies, ex-
cept for cases that involve <unk> in the source in-
put or the target output. These correspond to the
character-level components illustrated in Figure 1.

A nice property of our hybrid approach is that
by varying the vocabulary size, one can control
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how much to blend the word- and character-based
models; hence, taking the best of both worlds.

4.2 Source Character-based Representation

In regular word-based NMT, for all rare words out-
side the source vocabulary, one feeds the univer-
sal embedding representing <unk> as input to the
encoder. This is problematic because it discards
valuable information about the source word. To
fix that, we learn a deep LSTM model over char-
acters of source words. For example, in Figure 1,
we run our deep character-based LSTM over ‘c’,
‘u’, ‘t’, ‘e’, and ‘_’ (the boundary symbol). The fi-
nal hidden state at the top layer will be used as the
on-the-fly representation for the current rare word.

The layers of the deep character-based LSTM
are always initialized with zero states. One might
propose to connect hidden states of the word-
based LSTM to the character-based model; how-
ever, we chose this design for various reasons.
First, it simplifies the architecture. Second, it al-
lows for efficiency through precomputation: be-
fore each mini-batch, we can compute represen-
tations for rare source words all at once. All in-
stances of the same word share the same embed-
ding, so the computation is per type.2

4.3 Target Character-level Generation

General word-based NMT allows generation of
<unk> in the target output. Afterwards, there is
usually a post-processing step that handles these
unknown tokens by utilizing the alignment infor-
mation derived from the attention mechanism and
then performing simple word dictionary lookup
or identity copy (Luong et al., 2015a; Jean et
al., 2015a). While this approach works, it suf-
fers from various problems such as alphabet mis-
matches between the source and target vocabular-
ies and multi-word alignments. Our goal is to ad-
dress all these issues and create a coherent frame-
work that handles an unlimited output vocabulary.

Our solution is to have a separate deep LSTM
that “translates” at the character level given the
current word-level state. We train our system such
that whenever the word-level NMT produces an
<unk>, we can consult this character-level de-
coder to recover the correct surface form of the un-
known target word. This is illustrated in Figure 1.

2While Ling et al. (2015b) found that it is slow and diffi-
cult to train source character-level models and had to resort to
pretraining, we demonstrate later that we can train our deep
character-level LSTM perfectly fine in an end-to-end fashion.

The training objective in Eq. (3) now becomes:

J = Jw + αJc (5)

Here, Jw refers to the usual loss of the word-
level NMT; in our example, it is the sum
of the negative log likelihood of generating
{“un”, “<unk>”, “chat”, “_”}. The remaining
component Jc corresponds to the loss incurred by
the character-level decoder when predicting char-
acters, e.g., {‘j’, ‘o’, ‘l’, ‘i’, ‘_’}, of those rare
words not in the target vocabulary.

Hidden-state Initialization Unlike the source
character-based representations, which are
context-independent, the target character-level
generation requires the current word-level context
to produce meaningful translation. This brings
up an important question about what can best
represent the current context so as to initialize the
character-level decoder. We answer this question
in the context of the attention mechanism (§3).

The final vector h̃t, just before the softmax as
shown in Figure 2, seems to be a good candidate
to initialize the character-level decoder. The rea-
son is that h̃t combines information from both the
context vector ct and the top-level recurrent state
ht. We refer to it later in our experiments as the
same-path target generation approach.

On the other hand, the same-path approach wor-
ries us because all vectors h̃t used to seed the
character-level decoder might have similar values,
leading to the same character sequence being pro-
duced. The reason is because h̃t is directly used in
the softmax, Eq. (2), to predict the same <unk>.
That might pose some challenges for the model to
learn useful representations that can be used to ac-
complish two tasks at the same time, that is to pre-
dict <unk> and to generate character sequences.
To address that concern, we propose another ap-
proach called the separate-path target generation.

Our separate-path target generation approach
works as follows. We mimic the process described
in Eq. (4) to create a counterpart vector h̆t that will
be used to seed the character-level decoder:

h̆t = tanh(W̆ [ct;ht]) (6)

Here, W̆ is a new learnable parameter matrix,
with which we hope to release W from the pres-
sure of having to extract information relevant
to both the word- and character-generation pro-
cesses. Only the hidden state of the first layer
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is initialized as discussed above. The other com-
ponents in the character-level decoder such as the
LSTM cells of all layers and the hidden states of
higher layers, all start with zero values.

Implementation-wise, the computation in the
character-level decoder is done per word token in-
stead of per type as in the source character com-
ponent (§4.2). This is because of the context-
dependent nature of the decoder.

Word-Character Generation Strategy With
the character-level decoder, we can view the fi-
nal hidden states as representations for the surface
forms of unknown tokens and could have fed these
to the next time step. However, we chose not to
do so for the efficiency reason explained next; in-
stead, <unk> is fed to the word-level decoder “as
is” using its corresponding word embedding.

During training, this design choice decou-
ples all executions over <unk> instances of the
character-level decoder as soon the word-level
NMT completes. As such, the forward and back-
ward passes of the character-level decoder over
rare words can be invoked in batch mode. At test
time, our strategy is to first run a beam search de-
coder at the word level to find the best transla-
tions given by the word-level NMT. Such trans-
lations contains <unk> tokens, so we utilize our
character-level decoder with beam search to gen-
erate actual words for these <unk>.

5 Experiments

We evaluate the effectiveness of our models on the
publicly available WMT’15 translation task from
English into Czech with newstest2013 (3000 sen-
tences) as a development set and newstest2015
(2656 sentences) as a test set. Two metrics are
used: case-sensitive NIST BLEU (Papineni et al.,
2002) and chrF3 (Popović, 2015).3 The latter
measures the amounts of overlapping character n-
grams and has been argued to be a better metric
for translation tasks out of English.

5.1 Data

Among the available language pairs in WMT’15,
all involving English, we choose Czech as a target
language for several reasons. First and foremost,
Czech is a Slavic language with not only rich and

3For NIST BLEU, we first run detokenizer.pl and
then use mteval-v13a to compute the scores as per WMT
guideline. For chrF3, we utilize the implementation here
https://github.com/rsennrich/subword-nmt.

English Czech
word char word char

# Sents 15.8M
# Tokens 254M 1,269M 224M 1,347M
# Types 1,172K 2003 1,760K 2053
200-char 98.1% 98.8%

Table 1: WMT’15 English-Czech data – shown
are various statistics of our training data such as
sentence, token (word and character counts), as
well as type (sizes of the word and character vo-
cabularies). We show in addition the amount of
words in a vocabulary expressed by a list of 200
characters found in frequent words.

complex inflection, but also fusional morphology
in which a single morpheme can encode multiple
grammatical, syntactic, or semantic meanings. As
a result, Czech possesses an enormously large vo-
cabulary (about 1.5 to 2 times bigger than that of
English according to statistics in Table 1) and is
a challenging language to translate into. Further-
more, this language pair has a large amount of
training data, so we can evaluate at scale. Lastly,
though our techniques are language independent,
it is easier for us to work with Czech since Czech
uses the Latin alphabet with some diacritics.

In terms of preprocessing, we apply only the
standard tokenization practice.4 We choose for
each language a list of 200 characters found in
frequent words, which, as shown in Table 1, can
represent more than 98% of the vocabulary.

5.2 Training Details

We train three types of systems, purely word-
based, purely character-based, and hybrid. Com-
mon to these architectures is a word-based NMT
since the character-based systems are essentially
word-based ones with longer sequences and the
core of hybrid models is also a word-based NMT.

In training word-based NMT, we follow Lu-
ong et al. (2015a) to use the global attention
mechanism together with similar hyperparame-
ters: (a) deep LSTM models, 4 layers, 1024 cells,
and 1024-dimensional embeddings, (b) uniform
initialization of parameters in [−0.1, 0.1], (c) 6-
epoch training with plain SGD and a simple learn-
ing rate schedule – start with a learning rate of 1.0;
after 4 epochs, halve the learning rate every 0.5
epoch, (d) mini-batches are of size 128 and shuf-

4Use tokenizer.perl in Moses with default settings.
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System Vocab Perplexity BLEU chrF3w c
(a) Best WMT’15, big data (Bojar and Tamchyna, 2015) - - - 18.8 -

Existing NMT
(b) RNNsearch + unk replace (Jean et al., 2015b) 200K - - 15.7 -
(c) Ensemble 4 models + unk replace (Jean et al., 2015b) 200K - - 18.3 -

Our word-based NMT
(d) Base + attention + unk replace 50K 5.9 - 17.5 42.4
(e) Ensemble 4 models + unk replace 50K - - 18.4 43.9

Our character-based NMT
(f) Base-512 (600-step backprop) 200 - 2.4 3.8 25.9
(g) Base-512 + attention (600-step backprop) 200 - 1.6 17.5 46.6
(h) Base-1024 + attention (300-step backprop) 200 - 1.9 15.7 41.1

Our hybrid NMT
(i) Base + attention + same-path 10K 4.9 1.7 14.1 37.2
(j) Base + attention + separate-path 10K 4.9 1.7 15.6 39.6
(k) Base + attention + separate-path + 2-layer char 10K 4.7 1.6 17.7 44.1
(l) Base + attention + separate-path + 2-layer char 50K 5.7 1.6 19.6 46.5

(m) Ensemble 4 models 50K - - 20.7 47.5

Table 2: WMT’15 English-Czech results – shown are the vocabulary sizes, perplexities, BLEU, and
chrF3 scores of various systems on newstest2015. Perplexities are listed under two categories, word (w)
and character (c). Best and important results per metric are highlighed.

fled, (e) the gradient is rescaled whenever its norm
exceeds 5, and (f) dropout is used with probabil-
ity 0.2 according to (Pham et al., 2014). We now
detail differences across the three architectures.

Word-based NMT – We constrain our source
and target sequences to have a maximum length
of 50 each; words that go past the boundary
are ignored. The vocabularies are limited to the
top |V | most frequent words in both languages.
Words not in these vocabularies are converted into
<unk>. After translating, we will perform dictio-
nary5 lookup or identity copy for <unk> using the
alignment information from the attention models.
Such procedure is referred as the unk replace tech-
nique (Luong et al., 2015b; Jean et al., 2015a).

Character-based NMT – The source and target
sequences at the character level are often about 5
times longer than their counterparts in the word-
based models as we can infer from the statistics in
Table 1. Due to memory constraint in GPUs, we
limit our source and target sequences to a maxi-
mum length of 150 each, i.e., we backpropagate
through at most 300 timesteps from the decoder to
the encoder. With smaller 512-dimensional mod-
els, we can afford to have longer sequences with

5Obtained from the alignment links produced by the
Berkeley aligner (Liang et al., 2006) over the training corpus.

up to 600-step backpropagation.
Hybrid NMT – The word-level component

uses the same settings as the purely word-based
NMT. For the character-level source and target
components, we experiment with both shallow and
deep 1024-dimensional models of 1 and 2 LSTM
layers. We set the weight α in Eq. (5) for our
character-level loss to 1.0.

Training Time – It takes about 3 weeks to train
a word-based model with |V | = 50K and about
3 months to train a character-based model. Train-
ing and testing for the hybrid models are about 10-
20% slower than those of the word-based models
with the same vocabulary size.

5.3 Results
We compare our models with several strong
systems. These include the winning entry in
WMT’15, which was trained on a much larger
amount of data, 52.6M parallel and 393.0M mono-
lingual sentences (Bojar and Tamchyna, 2015).6

In contrast, we merely use the provided parallel
corpus of 15.8M sentences. For NMT, to the best

6This entry combines two independent systems, a phrase-
based Moses model and a deep-syntactic transfer-based
model. Additionally, there is an automatic post-editing sys-
tem with hand-crafted rules to correct errors in morphological
agreement and semantic meanings, e.g., loss of negation.
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of our knowledge, (Jean et al., 2015b) has the best
published performance on English-Czech.

As shown in Table 2, for a purely word-based
approach, our single NMT model outperforms the
best single model in (Jean et al., 2015b) by +1.8
points despite using a smaller vocabulary of only
50K words versus 200K words. Our ensemble
system (e) slightly outperforms the best previous
NMT system with 18.4 BLEU.

To our surprise, purely character-based models,
though extremely slow to train and test, perform
quite well. The 512-dimensional attention-based
model (g) is best, surpassing the single word-
based model in (Jean et al., 2015b) despite hav-
ing much fewer parameters. It even outperforms
most NMT systems on chrF3 with 46.6 points.
This indicates that this model translate words that
closely but not exactly match the reference ones
as evidenced in Section 6.3. We notice two in-
teresting observations. First, attention is critical
for character-based models to work as is obvious
from the poor performance of the non-attentional
model; this has also been shown in speech recog-
nition (Chan et al., 2016). Second, long time-step
backpropagation is more important as reflected by
the fact that the larger 1024-dimensional model (h)
with shorter backprogration is inferior to (g).

Our hybrid models achieve the best results. At
10K words, we demonstrate that our separate-
path strategy for the character-level target gener-
ation (§4.3) is effective, yielding an improvement
of +1.5 BLEU points when comparing systems (j)
vs. (i). A deeper character-level architecture of 2
LSTM layers provides another significant boost of
+2.1 BLEU. With 17.7 BLEU points, our hybrid
system (k) has surpassed word-level NMT models.

When extending to 50K words, we further im-
prove the translation quality. Our best single
model, system (l) with 19.6 BLEU, is already
better than all existing systems. Our ensemble
model (m) further advances the SOTA result to
20.7 BLEU, outperforming the winning entry in
the WMT’15 English-Czech translation task by a
large margin of +1.9 points. Our ensemble model
is also best in terms of chrF3 with 47.5 points.

6 Analysis

This section first studies the effects of vocabulary
sizes towards translation quality. We then analyze
more carefully our character-level components by
visualizing and evaluating rare word embeddings
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Figure 3: Vocabulary size effect – shown are the
performances of different systems as we vary their
vocabulary sizes. We highlight the improvements
obtained by our hybrid models over word-based
systems which already handle unknown words.

as well as examining sample translations.

6.1 Effects of Vocabulary Sizes
As shown in Figure 3, our hybrid models of-
fer large gains of +2.1-11.4 BLEU points over
strong word-based systems which already handle
unknown words. With only a small vocabulary,
e.g., 1000 words, our hybrid approach can pro-
duce systems that are better than word-based mod-
els that possess much larger vocabularies. While
it appears from the plot that gains diminish as we
increase the vocabulary size, we argue that our hy-
brid models are still preferable since they under-
stand word structures and can handle new complex
words at test time as illustrated in Section 6.3.

6.2 Rare Word Embeddings
We evaluate the source character-level model by
building representations for rare words and mea-
suring how good these embeddings are.

Quantitatively, we follow Luong et al. (2013) in
using the word similarity task, specifically on the
Rare Word dataset, to judge the learned represen-
tations for complex words. The evaluation met-
ric is the Spearman’s correlation ρ between sim-
ilarity scores assigned by a model and by human
annotators. From the results in Table 3, we can
see that source representations produced by our
hybrid7 models are significantly better than those
of the word-based one. It is noteworthy that our
deep recurrent character-level models can outper-
form the model of (Luong et al., 2013), which uses
recursive neural networks and requires a complex
morphological analyzer, by a large margin. Our
performance is also competitive to the best Glove

7We look up the encoder embeddings for frequent words
and build representations for rare word from characters.
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Figure 4: Barnes-Hut-SNE visualization of source word representations – shown are sample words
from the Rare Word dataset. We differentiate two types of embeddings: frequent words in which encoder
embeddings are looked up directly and rare words where we build representations from characters. Boxes
highlight examples that we will discuss in the text. We use the hybrid model (l) in this visualization.

embeddings (Pennington et al., 2014) which were
trained on a much larger dataset.

System Size |V | ρ

(Luong et al., 2013) 1B 138K 34.4

Glove (Pennington et al., 2014)
6B 400K 38.1

42B 400K 47.8
Our NMT models

(d) Word-based 0.3B 50K 20.4
(k) Hybrid 0.3B 10K 42.4
(l) Hybrid 0.3B 50K 47.1

Table 3: Word similarity task – shown are Spear-
man’s correlation ρ on the Rare Word dataset of
various models (with different vocab sizes |V |).

Qualitatively, we visualize embeddings pro-
duced by the hybrid model (l) for selected words
in the Rare Word dataset. Figure 4 shows the
two-dimensional representations of words com-
puted by the Barnes-Hut-SNE algorithm (van der
Maaten, 2013).8 It is extremely interesting to ob-
serve that words are clustered together not only
by the word structures but also by the meanings.
For example, in the top-left box, the character-
based representations for “loveless”, “spiritless”,
“heartlessly”, and “heartlessness” are nearby, but
clearly separated into two groups. Similarly, in the

8We run Barnes-Hut-SNE algorithm over a set of 91
words, but filter out 27 words for displaying clarity.

center boxes, word-based embeddings of “accept-
able”, “satisfactory”, “unacceptable”, and “unsat-
isfactory”, are close by but separated by mean-
ings. Lastly, the remaining boxes demonstrate that
our character-level models are able to build rep-
resentations comparable to the word-based ones,
e.g., “impossibilities” vs. “impossible” and “an-
tagonize” vs. “antagonist”. All of this evidence
strongly supports that the source character-level
models are useful and effective.

6.3 Sample Translations
We show in Table 4 sample translations between
various systems. In the first example, our hybrid
model translates perfectly. The word-based model
fails to translate “diagnosis” because the second
<unk> was incorrectly aligned to the word “af-
ter”. The character-based model, on the other
hand, makes a mistake in translating names.

For the second example, the hybrid model sur-
prises us when it can capture the long-distance re-
ordering of “fifty years ago” and “pr̆ed padesáti
lety” while the other two models do not. The
word-based model translates “Jr.” inaccurately
due to the incorrect alignment between the sec-
ond <unk> and the word “said”. The character-
based model literally translates the name “King”
into “král” which means “king”.

Lastly, both the character-based and hybrid
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1

source The author Stephen Jay Gould died 20 years after diagnosis .
human Autor Stephen Jay Gould zemr̆el 20 let po diagnóze .

word
Autor Stephen Jay <unk> zemr̆el 20 let po <unk> .
Autor Stephen Jay Gould zemr̆el 20 let po po .

char Autor Stepher Stepher zemr̆el 20 let po diagnóze .

hybrid
Autor <unk> <unk> <unk> zemr̆el 20 let po <unk>.
Autor Stephen Jay Gould zemr̆el 20 let po diagnóze .

2

source As the Reverend Martin Luther King Jr. said fifty years ago :
human Jak pr̆ed padesáti lety r̆ekl reverend Martin Luther King Jr . :

word
Jak r̆ekl reverend Martin <unk> King <unk> pr̆ed padesáti lety :
Jak r̆ekl reverend Martin Luther King r̆ekl pr̆ed padesáti lety :

char Jako reverend Martin Luther král r̆íkal pr̆ed padesáti lety :

hybrid
Jak pr̆ed <unk> lety r̆ekl <unk> Martin <unk> <unk> <unk> :
Jak pr̆ed padesáti lety r̆ekl reverend Martin Luther King Jr. :

3

source Her 11-year-old daughter , Shani Bart , said it felt a " little bit weird " [..] back to school .
human Její jedenáctiletá dcera Shani Bartová prozradila , z̆e " je to trochu zvlás̆tní " [..] znova do s̆koly .

word
Její <unk> dcera <unk> <unk> r̆ekla , z̆e je to " trochu divné " , [..] vrací do s̆koly .
Její 11-year-old dcera Shani , r̆ekla , z̆e je to " trochu divné " , [..] vrací do s̆koly .

char Její jedenáctiletá dcera , Shani Bartová , r̆íkala , z̆e cítí trochu divnĕ , [..] vrátila do s̆koly .

hybrid
Její <unk> dcera , <unk> <unk> , r̆ekla , z̆e cítí " trochu <unk> " , [..] vrátila do s̆koly .
Její jedenáctiletá dcera , Graham Bart , r̆ekla , z̆e cítí " trochu divný " , [..] vrátila do s̆koly .

Table 4: Sample translations on newstest2015 – for each example, we show the source, human transla-
tion, and translations of the following NMT systems: word model (d), char model (g), and hybrid model
(k). We show the translations before replacing <unk> tokens (if any) for the word-based and hybrid
models. The following formats are used to highlight correct, wrong, and close translation segments.

models impress us by their ability to translate
compound words exactly, e.g., “11-year-old” and
“jedenáctiletá”; whereas the identity copy strategy
of the word-based model fails. Of course, our hy-
brid model does make mistakes, e.g., it fails to
translate the name “Shani Bart”. Overall, these ex-
amples highlight how challenging translating into
Czech is and that being able to translate at the
character level helps improve the quality.

7 Conclusion

We have proposed a novel hybrid architecture
that combines the strength of both word- and
character-based models. Word-level models are
fast to train and offer high-quality translation;
whereas, character-level models help achieve the
goal of open vocabulary NMT. We have demon-
strated these two aspects through our experimental
results and translation examples.

Our best hybrid model has surpassed the perfor-
mance of both the best word-based NMT system
and the best non-neural model to establish a new
state-of-the-art result for English-Czech transla-
tion in WMT’15 with 20.7 BLEU. Moreover, we
have succeeded in replacing the standard unk re-
placement technique in NMT with our character-
level components, yielding an improvement of

+2.1−11.4 BLEU points. Our analysis has shown
that our model has the ability to not only generate
well-formed words for Czech, a highly inflected
language with an enormous and complex vocab-
ulary, but also build accurate representations for
English source words.

Additionally, we have demonstrated the poten-
tial of purely character-based models in produc-
ing good translations; they have outperformed past
word-level NMT models. For future work, we
hope to be able to improve the memory usage and
speed of purely character-based models.
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