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Abstract

Deep Random Walk (DeepWalk) can learn
a latent space representation for describ-
ing the topological structure of a network.
However, for relational network classifi-
cation, DeepWalk can be suboptimal as
it lacks a mechanism to optimize the ob-
jective of the target task. In this paper,
we present Discriminative Deep Random
Walk (DDRW), a novel method for re-
lational network classification. By solv-
ing a joint optimization problem, DDRW
can learn the latent space representations
that well capture the topological struc-
ture and meanwhile are discriminative for
the network classification task. Our ex-
perimental results on several real social
networks demonstrate that DDRW signif-
icantly outperforms DeepWalk on multi-
label network classification tasks, while
retaining the topological structure in the
latent space. DDRW is stable and con-
sistently outperforms the baseline meth-
ods by various percentages of labeled data.
DDRW is also an online method that is
scalable and can be naturally parallelized.

1 Introduction

Categorization is an important task in natural lan-
guage processing, especially with the growing
scale of documents in the Internet. As the doc-
uments are often not isolated, a large amount of
the linguistic materials present a network structure
such as citation, hyperlink and social networks.
The large size of networks calls for scalable ma-
chine learning methods to analyze such data. Re-
cent efforts have been made in developing statis-
tical models for various network analysis tasks,
such as network classification (Neville and Jensen,

2000), content recommendation (Fouss et al.,
2007), link prediction (Adamic and Adar, 2003),
and anomaly detection (Savage et al., 2014). One
common challenge of statistical network models is
to deal with the sparsity of networks, which may
prevent a model from generalizing well.

One effective strategy to deal with network
sparsity is to learn a latent space representation
for the entities in a network (Hoff et al., 2002;
Zhu, 2012; Tang and Liu, 2011; Tang et al., 2015).
Among various approaches, DeepWalk (Perozzi et
al., 2014) is a recent method that embeds all the
entities into a continuous vector space using deep
learning methods. DeepWalk captures entity fea-
tures like neighborhood similarity and represents
them by Euclidean distances (See Figure 1(b)).
Furthermore, since entities that have closer rela-
tionships are more likely to share the same hobbies
or belong to the same groups, such an embedding
by DeepWalk can be useful for network classifica-
tion, where the topological information is explored
to encourage a globally consistent labeling.

Although DeepWalk is effective on learning
embeddings of the topological structure, when
dealing with a network classification task, it lacks
a mechanism to optimize the objective of the tar-
get task and thus often leads to suboptimal embed-
dings. In particular, for our focus of relational net-
work classification, we would like the embeddings
to be both representing the topological structure of
the network actors and discriminative in predicting
the class labels of actors.

To address the above issues, we present Dis-
criminative Deep Random Walk (DDRW) for re-
lational network classification. DDRW extends
DeepWalk by jointly optimizing the classification
objective and the objective of embedding entities
in a latent space that maintains the topological
structure. Under this joint learning framework,
DDRM manages to learn the latent representations
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(c) DDRW Embedding

Figure 1: Different experimental results of embedding a network into a two dimensional real space. We
use Karate Graph (Macskassy and Provost, 1977) for this example. Four different colors stand for the
classes of the vertices. In (b), vertices which have stronger relations in the network are more likely to be
closer in the embedding latent space. While in (c), besides the above-mentioned property, DDRW makes
vertices in different classes more separated.

that are strongly associated with the class labels
(See Figure 1(c)), making it easy to find a separat-
ing boundary between the classes, and the actors
that are connected in the original network are still
close to each other in the latent social space. This
idea of combining task-specific and representation
objectives has been widely explored in other re-
gions such as MedLDA (Zhu et al., 2012) and Su-
pervised Dictionary Learning (Mairal et al., 2009).

Technically, to capture the topological struc-
ture, we follow the similar idea of Deep-
Walk by running truncated random walks on
the original network to extract sequences of ac-
tors, and then building a language model (i.e.,
Word2Vec (Mikolov et al., 2013b)) to project the
actors into a latent space. To incorporate the super-
vising signal in network classification, we build a
classifier based on the latent space representations.
By sharing the same latent social space, the two
objectives are strongly coupled and the latent so-
cial space is guided by both the network topology
and class labels. DDRW optimizes the joint objec-
tive by using stochastic gradient descent, which is
scalable and embarrassingly parallizable.

We evaluate the performance on several real-
world social networks, including BlogCatalog,
Flickr and YouTube. Our results demonstrate that
DDRW significantly boosts the classification ac-
curacy of DeepWalk in multi-label network clas-
sification tasks, while still retaining the topolog-
ical structure in the learnt latent social space.
We also show that DDRW is stable and consis-
tently outperforms the baseline methods by var-
ious percentages of labeled data. Although the
networks we use only bring topological informa-

tion for clarity, DDRW is flexible to consider addi-
tional attributes (if any) of vertices. For example,
DDRW can be naturally extended to classify docu-
ments/webpages, which are often represented as a
network (e.g., citation/hyperlink network), by con-
joining with a word2vec component to embed the
documents/webpages into the same latent space,
similar as previous work on extending DeepWalk
to incorporate attributes (Yang et al., 2015).

2 Problem Definition

We consider the network classification problem,
which classifies entities from a given network into
one or more categories from a set Y . Let G =
(V,E, Y ) denote a network, where V is the set of
vertices, representing the entities of the network;
E ⊆ (V × V ) is the set of edges, representing the
relations between the entities; and Y ⊆ R|V |×|Y|
denotes the labels of entities. We also consider YU
as a set of unknown labels in the same graph G.
The target of the classification task is to learn a
model from labeled data and generate a label set
YP to be the prediction of YU . The difference be-
tween YP and YU indicates the classification qual-
ity.

When classifying elements X ∈ Rn, traditional
machine learning methods learn a weight matrix
H to minimize the difference between YP =
F(X,H) and YU , where F is any known fixed
function. In network aspect, we will be able
to utilize well-developed machine learning meth-
ods if adequate information of G is embedded
into a corresponding form as X . By this mo-
tivation, relational learning (Getoor and Taskar,
2007; Neville and Jensen, 2000) methods are pop-
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ularly employed. In network classification, the
internal structure of a network is resolved to ex-
tract the neighboring features of the entities (Mac-
skassy and Provost, 2007; Wang and Sukthankar,
2013). Accordingly, the core problem is how to
describe the irregular networks within formal fea-
ture spaces. A variety of approaches have been
proposed with the purpose of finding effective
statistical information through the network (Gal-
lagher and Eliassi-Rad, 2008; Henderson et al.,
2011; Tang and Liu, 2011).

DeepWalk (Perozzi et al., 2014) is an outstand-
ing method for network embedding, which uses
truncated random walks to capture the explicit
structure of the network and applies language
models to learn the latent relationships between
the actors. When applied to the network classifica-
tion task, DeepWalk first learnsX which describes
the topological structure of G and then learns a
subsequent classifier H . One obvious shortcom-
ing of this two-step procedure is that the embed-
ding step is unaware of the target class label in-
formation and likely to learn embeddings that are
suboptimal for classification.

We present Discriminative Deep Random Walk
(DDRW) to enhance the effect of DeepWalk by
learning X ∈ R|V |×d and H ∈ Rd×|Y| jointly.
By using topological and label information of
a certain network simultaneously, we will show
that DDRW improves the classification accuracy
significantly compared with most recent related
methods. Furthermore, we will also show that the
embedded result X produced by DDRW is able to
retain the structure of G well.

3 Discriminative Deep Random Walk

In this section, we present the details of Discrimi-
native Deep Random Walk (DDRW). DDRW has
both embedding and classification objectives. We
optimize the two objectives jointly to learn latent
representations that are strongly associated with
the class labels in the latent space. We use stochas-
tic gradient descent (Mikolov et al., 1991) as our
optimization method.

3.1 Embedding Objective

Let θ = (θ1,θ2, . . . ,θ|V |) denote the embedded
vectors in the latent space, and α denote the topo-
logical structure of the graph. The embedding ob-
jective can be described as an optimization prob-
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Figure 2: A part of Random Walk process in an
undirected graph. Every time an adjacent vertex
is chosen randomly (no matter visited or not) as
the arrows indicate, until reaching the maximum
length s.

lem as follows:

min
θ
Lr(θ,α), (1)

where Lr indicates the difference between the em-
bedded representations θ and original topologi-
cal structure α. For this objective, we use trun-
cated random walks to capture the topological
structure of the graph and the language model
Word2Vec (Mikolov et al., 2013b) to learn the la-
tent representations. Below, we explain each in
turn.

3.1.1 Random Walk
Random Walk has been used in different regions
in network analysis to capture the topological
structure of graphs (Fouss et al., 2007; Ander-
sen et al., 2006). As the name suggests, Random
Walk chooses a certain vertex in the graph for the
first step and then randomly migrates through the
edges. Truncated random walk defines a maxi-
mum length s for all walk streams.

In our implementation, we shuffle the whole
vertices V in the graph for τ times to build the
sample set W . After each time of shuffling, we
take the permutation list of vertices as the starting
points of walks. Every time a walk stream starts
at one element in order, randomly chooses an ad-
jacent vertex to move, and ends when this stream
reaches s vertices. By this procedure we get totally
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τ |V | samples (i.e. walk streams) from the graph.
Thus our sample set W ∈ Rτ |V |×s is obtained as
the training materials.

3.1.2 Word2Vec
Existing work has shown that both the vertices in
truncated random walks and the words in text arti-
cles follow similar power-law distributions in fre-
quency, and then the idea of reshaping a social
network into a form of corpus is very straight-
forward (Perozzi et al., 2014). Corresponding to
linguistic analysis region, the objective is to find
an embedding for a corpus to show the latent sig-
nificances between the words. Words which have
closer meanings are more likely to be embedded
into near positions. Word2Vec (Mikolov et al.,
2013b) is an appropriate tool for this problem. We
use the Skip-gram (Mikolov et al., 2013a) strat-
egy in Word2Vec, which uses the central word in
a sliding window with radius R to predict other
words in the window and make local optimiza-
tions. Specifically, let ω = rw(α) denote the
full walk streams obtained from truncated random
walks in Section 3.1.1. Then by Skip-gram we can
get the objective function

Lr(θ,α) =−
τ∑
i=1

1
s

s∑
t=1∑

−R≤j≤R,j 6=0

log p(ωi,t+j |ωi,j).
(2)

The standard Skip-gram method defines
p(ωi,t+j |ωi,j) in Eq.(2) as follows:

p(ωO|ωI) =
exp(θTωO

θ̂ωI )∑|V |
i=1 exp(θTi θ̂ωI )

, (3)

where θ̂i and θi are the input and output represen-
tations of the ith vertex, respectively.

One shortcoming of the standard form is that
the summation in Eq.(3) is very inefficient. To
reduce the time consumption, we use the Hierar-
chical Softmax (Mnih and Hinton, 2009; Morin
and Bengio, 2005) which is included in Word2Vec
packages∗. In Hierarchical Softmax, the Huffman
binary tree is employed as an alternative represen-
tation for the vocabulary. The gradient descent
step will be faster thanks to the Huffman tree struc-
ture which allows a reduction of output units nec-
essarily evaluated.
∗https://code.google.com/archive/p/word2vec/

3.2 Classification Objective
Let y = (y1,y2, . . . ,y|V |) denote the labels, and
β denote the subsequent classifier. The classifica-
tion objective can be described as an optimization
problem:

min
θ,β

Lc(θ,β,y). (4)

In DDRW, we use existing classifiers and
do not attempt to extend them. Although
SVMmulticalss (Crammer and Singer, 2002) often
shows good performance in multi-class tasks em-
pirically, we choose the classifier being referred
to as L2-regularized and L2-loss Support Vector
Classification (Fan et al., 2008) to keep pace with
the baseline methods to be mentioned in Section
4.

In L2-regularized and L2-loss SVC, the loss
function is

Lc(θ,β,y)

=C
|V |∑
i=1

(σ(1− yiβTθi))2 +
1
2
βTβ,

(5)

where C is the regularization parameter, σ(x) =
x if x > 0 and σ(x) = 0 otherwise. Eq.(5) is
for binary classification problems, and is extended
to multi-class problems following the one-against-
rest strategy (Fan et al., 2008).

3.3 Joint Learning
The main target of our method is to classify the
unlabeled vertices in the given network. We
achieve this target with the help of intermediate
embeddings which latently represent the network
structure. We simultaneously optimize two ob-
jectives in Section 3.1 and 3.2. Specifically, let
L(θ,β,α,y) = ηLr(θ,α) + Lc(θ,β,y), where
η is a key parameter that balances the weights of
the two objectives. We solve the joint optimization
problem:

min
θ,β

L(θ,β,α,y). (6)

We use stochastic gradient descent (Mikolov et
al., 1991) to solve the optimization problem in
Eq.(6). In each gradient descent step, we have

θ ← θ − δ ∂L
∂θ

= θ − δ(η∂Lr
∂θ

+
∂Lc
∂θ

),

β ← β − δ ∂L
∂β

= β − δ ∂Lc
∂β

,
(7)

where δ is the learning rate for stochastic gradient
descent. In our implementation, δ is initially set to
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0.025 and linearly decreased with the steps, same
as the default setting of Word2Vec. The deriva-
tives in Eq.(7) are estimated by local slopes.

In Eq.(7), the latent representations adjust them-
selves according to both topological information
(∂Lr/∂θ) and label information (∂Lc/∂θ). This
process intuitively makes vertices in the same
class closer and those in different classes farther,
and this is also proved by experiments (See Fig-
ure 1). Thus by joint learning, DDRW can learn
the latent space representations that well capture
the topological structure and meanwhile are dis-
criminative for the network classification task.

We take each sample Wi from walk streams W
to estimate the local derivatives of the loss func-
tion for a descent step. Stochastic gradient descent
enables DDRW to be an online algorithm, and thus
our method is easy to be parallelized. Besides, a
vertex may repeatedly appear for numerous times
in W produced by random walks. This repeat is
superfluous for classifiers and there is a consider-
able possibility to arise overfitting. Inspired from
DropOut (Hinton et al., 2012) ideas, we randomly
ignore the label information to control the opti-
mization process in an equilibrium state.

4 Experimental Setup

In this section we present an overview of the
datasets and baseline methods which we will com-
pare with in the experiments.

4.1 Datasets

We use three popular social networks, which are
exactly same with those used in some of the base-
line methods. Table 1 summarizes the statistics of
the data.

• BlogCatalog: a network of social relation-
ships provided by blog authors. The labels
of this graph are the topics specified by the
uploading users.

• Flickr: a network of the contacts between
users of the Flickr photo sharing website.
The labels of this graph represent the interests
of users towards certain categories of photos.

• YouTube: a network between users of the
Youtube video sharing website. The labels
stand for the groups of the users interested in
different types of videos.

Dataset BlogCatalog Flickr YouTube
Actors |V | 10,312 80,513 1,138,499
Links |E| 333,983 5,899,882 2,990,443
Labels |Y| 29 195 47
Sparsity 6.3× 10-3 1.8× 10-3 4.6× 10-6

Max Degree 3,992 5,706 28,754
Average Degree 65 146 5

Table 1: Statistics of the three networks. Sparsity
indicates the ratio of the actual links and links in a
complete graph.

4.2 Baseline Methods
We evaluate our proposed method by comparing it
with some significantly related methods.

• LINE (Tang et al., 2015)†: This method
takes the edges of a graph as samples to
train the first-order and second-order prox-
imity seprately and integrate the results as
an embedding of the graph. This method
can handle both graphs with unweighted and
weighted and is especially efficient in large
networks.

• DeepWalk (Perozzi et al., 2014): This
method employs language models to learn
latent relations between the vertices in the
graph. The basic assumption is that the closer
two vertices are in the embedding space, the
deeper relationships they have and there is
higher possibility that they are in the same
categories.

• SpectralClustering (Tang and Liu, 2011):
This method finds out that graph cuts are use-
ful for the classification task. This idea is
implemented by finding the eigenvectors of
a normalized graph Laplacian of the original
graph.

• EdgeCluster (Tang and Liu, 2009b): This
method uses k-means clustering algorithm to
segment the edges of the graph into pieces.
Then it runs iterations on the small clusters to
find the internal relationships separately. The
core idea is to scale time-consuming work
into tractable sizes.

• Majority: This baseline method simply
chooses the most frequent labels. It does not
use any structural information of the graph.

†Although LINE also uses networks from Flickr and
YouTube in its experiments, the networks are different from
this paper.
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As the datasets are not only multi-class but
also multi-label, we usually need a thresholding
method to test the results. But literature gives a
negative opinion of arbitrarily choosing threshold-
ing methods because of the considerably different
performances. To avoid this, we assume that the
number of the labels is already known in all the
test processes.

5 Experiments

In this section, we present the experimental results
and analysis on both network classification and la-
tent space learning. We thoroughly evaluate the
performance on the three networks and analyze the
sensitivity to key parameters.

5.1 Classification Task
We first represent the results on multi-class clas-
sification and compare with the baseline methods.
To have a direct and fair comparison, we use the
same data sets, experiment procedures and test-
ing points as in the reports of our relevant base-
lines (Perozzi et al., 2014; Tang and Liu, 2011;
Tang and Liu, 2009b). The training set of a spec-
ified graph consists of the vertices, the edges and
the labels of a certain percentage of labeled ver-
tices. The testing set consists of the rest of the la-
bels. We employ Macro-F1 and Micro-F1 (Yang,
1999) as our measurements. Micro-F1 computes
F1 score globally while Macro-F1 caculates F1

score locally and then average them globally. All
the results reported are averaged from 10 repeated
processes.

5.1.1 BlogCatalog
BlogCatalog is the smallest dataset among the
three. In BlogCatalog we vary the percentage of
labeled data from 10% to 90%. Our results are
presented in Table 2. We can see that DDRW
performs consistently better than all the baselines
on both Macro-F1 and Micro-F1 with the increas-
ing percentage of labeled data. When compared
with DeepWalk, DDRW obtains larger improve-
ment when the percentage of labeled nodes is high.
This improvement demonstrates the significance
of DDRW on learning discriminative latent em-
beddings that are good for classification tasks.

5.1.2 Flickr
Flickr is a larger dataset with quite a number of
classes. In this experiment we vary the percentage
of labeled data from 1% to 10%. Our results are

presented in Table 3. We can see that DDRW still
performs better than the baselines significantly on
both Macro-F1 and Micro-F1, and the results are
consistent with what in BlogCatalog.

5.1.3 YouTube

YouTube is an even larger dataset with fewer
classes than Flickr. In YouTube we vary the per-
centage of labeled data from 1% to 10%. Our re-
sults are presented in Table 4. In YouTube, LINE
shows its strength in large sparse networks, proba-
bly because the larger scale of samples reduces the
discrepancy from actual distributions. But from a
general view, DDRW still performs better at most
of the test points thanks to the latent representa-
tions when links are not sufficient.

5.2 Parameter Sensitivity

We now present an analysis of the sensitivity with
respect to several important parameters. We mea-
sure our method with changing parameters to eval-
uate its stability. Despite the parameters which are
unilateral to classification performance, the two
main bidirectional parameters are η and the di-
mension d of embedding space in different per-
centages of labeled data. We use BlogCatalog and
Flickr networks for the experiments, and fix pa-
rameters of random walks (τ = 30, s = 40, R =
10). We do not represent the effects of changing
parameters of random walks because results usu-
ally show unilateral relationships with them.

5.2.1 Effect of η

The key parameter η in our algorithm adjusts the
weights of two objectives (Section 3.3). We rep-
resent the effect of changing η in Figure 3(a) and
3(b). We fix d = 128 in these experiments. Al-
though rapid gliding can be observed on either
sides, there are still sufficient value range where
DDRW keeps the good performance. These ex-
periments also show that η is not very sensitive
towards the percentage of labeled data.

5.2.2 Effect of Dimensionality

We represent the effect of changing dimension d
of the embedding space in Figure 3(c) and 3(d).
We fix η = 1.0 in these experiments. There is de-
cline when the dimension is high, but this decrease
is not very sharp. Besides, when the dimension is
high, the percentage of labeled data has more ef-
fect on the performance.
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Labeled Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1(%)

DDRW 37.13 39.31 41.08 41.76 42.64 43.17 43.80 44.11 44.79
LINE 35.42 37.89 39.71 40.62 41.46 42.09 42.55 43.26 43.68

DeepWalk 36.00 38.20 39.60 40.30 41.00 41.30 41.50 41.50 42.00
SpecClust 31.06 34.95 37.27 38.93 39.97 40.99 41.66 42.42 42.62
EdgeClust 27.94 30.76 31.85 32.99 34.12 35.00 34.63 35.99 36.29
Majority 16.51 16.66 16.61 16.70 16.91 16.99 16.92 16.49 17.26

Macro-F1(%)

DDRW 21.69 24.33 26.28 27.78 28.76 29.53 30.47 31.40 32.04
LINE 20.98 23.44 24.91 26.06 27.19 27.89 28.43 29.10 29.45

DeepWalk 21.30 23.80 25.30 26.30 27.30 27.60 27.90 28.20 28.90
SpecClust 19.14 23.57 25.97 27.46 28.31 29.46 30.13 31.38 31.78
EdgeClust 16.16 19.16 20.48 22.00 23.00 23.64 23.82 24.61 24.92
Majority 2.52 2.55 2.52 2.58 2.58 2.63 2.61 2.48 2.62

Table 2: Multi-class classification results in BlogCatalog.

Labeled Nodes 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Micro-F1(%)

DDRW 33.61 35.20 36.72 37.43 38.31 38.89 39.33 39.64 39.85 40.02
LINE 31.65 33.98 35.46 36.63 37.53 38.20 38.47 38.74 39.07 39.25

DeepWalk 32.40 34.60 35.90 36.70 37.20 37.70 38.10 38.30 38.50 38.70
SpecClust 27.43 30.11 31.63 32.69 33.31 33.95 34.46 34.81 35.14 35.41
EdgeClust 25.75 28.53 29.14 30.31 30.85 31.53 31.75 31.76 32.19 32.84
Majority 16.34 16.31 16.34 16.46 16.65 16.44 16.38 16.62 16.67 16.71

Macro-F1(%)

DDRW 14.49 17.81 20.05 21.40 22.91 23.84 25.12 25.79 26.28 26.43
LINE 13.69 17.77 19.88 21.07 22.36 23.62 24.78 25.11 25.69 25.90

DeepWalk 14.00 17.30 19.60 21.10 22.10 22.90 23.60 24.10 24.60 25.00
SpecClust 13.84 17.49 19.44 20.75 21.60 22.36 23.01 23.36 23.82 24.05
EdgeClust 10.52 14.10 15.91 16.72 18.01 18.54 19.54 20.18 20.78 20.85
Majority 0.45 0.44 0.45 0.46 0.47 0.44 0.45 0.47 0.47 0.47

Table 3: Multi-class classification results in Flickr.

Labeled Nodes 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Micro-F1(%)

DDRW 38.18 39.46 40.17 41.09 41.76 42.31 42.80 43.29 43.81 44.12
LINE 38.06 39.36 40.30 41.14 41.58 41.93 42.22 42.67 43.09 43.55

DeepWalk 37.95 39.28 40.08 40.78 41.32 41.72 42.12 42.48 42.78 43.05
SpecClust 26.61 35.16 37.28 38.35 38.90 39.51 40.02 40.49 40.86 41.13
EdgeClust 23.90 31.68 35.53 36.76 37.81 38.63 38.94 39.46 39.92 40.07
Majority 24.90 24.84 25.25 25.23 25.22 25.33 25.31 25.34 25.38 25.38

Macro-F1(%)

DDRW 29.35 32.07 33.56 34.41 34.89 35.38 35.80 36.15 36.36 36.72
LINE 27.36 31.08 32.51 33.39 34.26 34.81 35.27 35.52 35.95 36.14

DeepWalk 29.22 31.83 33.06 33.90 34.35 34.66 34.96 35.22 35.42 35.67
SpecClust 24.62 29.33 31.30 32.48 33.24 33.89 34.15 34.47 34.77 34.98
EdgeClust 19.48 25.01 28.15 29.17 29.82 30.65 30.75 31.23 31.45 31.54
Majority 6.12 5.86 6.21 6.10 6.07 6.19 6.17 6.16 6.18 6.19

Table 4: Multi-class classification results in YouTube.
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Figure 3: Parameter Sensitivity in BlogCatalog and Flickr

K 1 5 10 20 50
DDRW(10%) 91.3 71.0 58.3 44.3 31.2
DDRW(50%) 90.9 69.8 62.0 44.7 30.7
DDRW(90%) 90.2 72.8 59.7 43.4 31.1

DeepWalk 91.2 73.2 59.8 46.5 31.2
Random 0.7 0.7 0.7 0.6 0.6

Table 5: Adjacency Predict Accuracy(%) in Blog-
Catalog.

5.3 Representation Efficiency

Finally, we examine the quality of the latent em-
beddings of entities discovered by DDRW. For
network data, our major expectation is that the em-
bedded social space should maintain the topologi-
cal structure of the network. A visualization of the
topological structure in a social space is showed in
Figure 1. Besides, we examine the neighborhood
structure of the vertices. Specifically, we check
the top-K nearest vertices for each vertex in the
embedded social space and calculate how many of
the vertex pairs have edges between them in the
observed network. We call this Adjacency Pre-
dict Accuracy. Table 5 shows the results, where
DDRW with different percentages of labeled data,
DeepWalk and Random are compared in BlogCat-
alog dataset. The baseline method Random maps
all the vertices equably randomly into a fixed-size
space. The experiments show that although Deep-
Walk outperforms on the whole, the performance
of DDRW is approximate. DDRW is proved to
inherit some important properties in latent repre-
sentations of the network.

6 Related Work

Relational classification (Geman and Geman,
1984; Neville and Jensen, 2000; Getoor and
Taskar, 2007) is a class of methods which in-
volve the data item relation links during classi-
fication. A number of researchers have studied
different methods for network relational learning.
(Macskassy and Provost, 2003) present a simple

weighted vote relational neighborhood classifier.
(Xu et al., 2008) leverage the nonparametric infi-
nite hidden relational model to analyze social net-
works. (Neville and Jensen, 2005) propose a la-
tent group model for relational data, which dis-
covers and exploits the hidden structures respon-
sible for the observed autocorrelation among class
labels. (Tang and Liu, 2009a) propose the latent
social dimensions which are represented as con-
tinuous values and allow each node to involve at
different dimensions in a flexible manner. (Gal-
lagher et al., 2008) propose a method that learn
sparsely labeled network data by adding ghost
edges between neighbor vertices, and (Lin and Co-
hen, 2010) by using PageRank. (Wang and Suk-
thankar, 2013) extend the conventional relational
classification to consider more additional features.
(Gallagher and Eliassi-Rad, 2008) propose a com-
plimentary approach to within-network classifica-
tion based on the use of label-independent fea-
tures. (Henderson et al., 2011) propose a re-
gional feature generating method and demonstrate
the usage of the regional feature in within-network
and across-network classification. (Tang and Liu,
2009b) propose an edge-centric clustering scheme
to extract sparse social dimensions for collective
behavior prediction. (Tang and Liu, 2011) propose
the concept of social dimensions to represent the
latent affiliations of the entities. (Vishwanathan
et al., 2010) propose Graph Kernels to use rela-
tional data during classification process and (Kang
et al., 2012) propose a faster approximated method
of Graph Kernels.

7 Conclusion

This paper presents Discriminative Deep Random
Walk (DDRW), a novel approach for relational
multi-class classification on social networks. By
simultaneously optimizing embedding and classi-
fication objectives, DDRW gains significantly bet-
ter performances in network classification tasks
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than baseline methods. Experiments on differ-
ent real-world datasets represent adequate stabil-
ity of DDRW. Furthermore, the representations
produced by DDRW is both an intermediate vari-
able and a by-product. Same as other embedding
methods like DeepWalk, DDRW can provide well-
formed inputs for statistical analyses other than
classification tasks. DDRW is also naturally an
online algorithm and thus easy to parallel.

The future work has two main directions. One
is semi-supervised learning. The low proportion
of labeled vertices is a good platform for semi-
supervised learning. Although DDRW has already
combined supervised and unsupervised learning
together, better performance can be expected after
introducing well-developed methods. The other
direction is to promote the random walk step. Lit-
erature has represented the good combination of
random walk and language models, but this com-
bination may be unsatisfactory for classification.
It would be great if a better form of random walk
is found.
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