
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 747–755,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Extracting token-level signals of syntactic processing from fMRI - with an
application to PoS induction

Joachim Bingel Maria Barrett Anders Søgaard
Centre for Language Technology, University of Copenhagen

Njalsgade 140, 2300 Copenhagen S, Denmark
{bingel, barrett, soegaard}@hum.ku.dk

Abstract

Neuro-imaging studies on reading differ-
ent parts of speech (PoS) report somewhat
mixed results, yet some of them indicate
different activations with different PoS.
This paper addresses the difficulty of using
fMRI to discriminate between linguistic
tokens in reading of running text because
of low temporal resolution. We show that
once we solve this problem, fMRI data
contains a signal of PoS distinctions to the
extent that it improves PoS induction with
error reductions of more than 4%.

1 Introduction

A few recent studies have tried to extract mor-
phosyntactic signals from measurements of human
sentence processing and used this information to
improve NLP models. Klerke et al. (2016), for ex-
ample, used eye-tracking recordings to regularize
a sentence compression model. More related to
this work, Barrett et al. (2016) recently used eye-
tracking recordings to induce PoS models. How-
ever, a weakness of eye-tracking data is that while
eye movement surely does reflect the temporal as-
pect of cognitive processing, it is only a proxy of
the latter and does not directly represent which
processes take place in the brain.

A recent neuro-imaging study suggests that
concrete nouns and verbs elicit different brain sig-
natures in the frontocentral cortex, and that con-
crete and abstract nouns elicit different brain acti-
vation patterns (Moseley and Pulvermüller, 2014).
Also, for example, concrete verbs activate motor
and premotor cortex more strongly than concrete
nouns, and concrete nouns activate inferior frontal
areas more strongly than concrete verbs. A decade
earlier, Tyler et al. (2004) showed that the left in-
ferior frontal gyrus was more strongly activated in

processing regularly inflected verbs compared to
regularly inflected nouns.

Such studies suggest that different parts of our
brains are activated when reading different parts
of speech (PoS). This would in turn mean that
neuro-images of readers carry information about
the grammatical structure of what they read. In
other words, neuro-imaging provides a partial,
noisy annotation of the data with respect to mor-
phosyntactic category.

Say neuro-imaging data of readers was readily
available. Would it be of any use to, for exam-
ple, engineers interested in PoS taggers for low-
resource languages? This is far from obvious.
In fact, it is well-known that neuro-imaging data
from reading is noisy, in part because the reading
signal is not always very distinguishable (Taga-
mets et al., 2000), and also because the content
of what we read may elicit certain activation in
brain regions e.g. related to sensory processing
(Boulenger et al., 2006; González et al., 2006).

Other researchers such as Borowsky et al.
(2013) have also questioned that there are differ-
ences, claiming to show that the majority of acti-
vation is shared between nouns and verbs – includ-
ing in regions suggested by previous researchers
as unique to either nouns or verbs. Berlingeri et
al. (2008) argue that only verbs could be associ-
ated with unique regions, not nouns.

In this paper we nevertheless explore this ques-
tion. The paper should be seen as a proof of con-
cept that interesting linguistic signals can be ex-
tracted from brain imaging data, and an attempt
to show that learning NLP models from such data
could be a way of pushing the boundaries of both
fields.

Contributions (a) We present a novel technique
for extracting syntactic processing signal at the to-
ken level from neuro-imaging data that is charac-
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Figure 1: Neural activity by brain region and type
of information processed, as measured and ren-
dered by Wehbe et al. (2014).

terized by low temporal resolution. (b) We demon-
strate that the fMRI data improves performance of
a type-constrained, second order hidden Markov
model for PoS induction. Our model leads to an
error reduction of more than 4% in tagging accu-
racy despite very little training data, which to the
best of our knowledge is the first positive result on
weakly supervised part-of-speech induction from
fMRI data in the literature.

2 fMRI

Functional Magnetic Resonance Imaging (fMRI)
is a technology for spatial visualization of brain
activity. It measures the changes in oxygenation
of the blood in the brain, often by use of the blood
oxygenation level-dependent contrast (Ogawa et
al., 1992), which correlates with neural activity.
While the spatial resolution of fMRI is very high,
its temporal resolution is low compared to other
brain imaging technologies like EEG, which usu-
ally returns millisecond records of brain activity,
but on the contrary have low spatial resolution.
The temporal resolution of fMRI is usually be-
tween 0.5Hz and 1Hz. fMRI data contains rep-
resentations of neural activity of millimeter-sized
cubes called voxels.

The high spatial resolution may enable us to de-
tect fine differences in brain activation patterns,
such as between processing nouns and verbs, but
the low temporal resolution is a real challenge
when the different tokens are processed serially
and quickly after each other, as is the case in read-
ing.

Another inherent challenge when working with

fMRI data is the lag between the the reaction to
a stimulus and the point when it becomes visi-
ble through fMRI. This lag is called the hemo-
dynamic response latency. While we know from
brain imaging technologies with higher tempo-
ral resolution that the neural response to a stim-
uli happens within milliseconds, it only shows in
fMRI data after a certain period of time, which
further blurs the low temporal dimension of se-
rial fMRI recordings. This latency has been stud-
ied as long as fMRI technology itself. It depends
on the blood vessels and varies between e.g. vox-
els, brain regions, subjects, and tasks. A meta
study of the hemodynamic response report laten-
cies between 4 and 14 seconds in healthy adults,
though latencies above 11 seconds are less typi-
cally reported (Handwerker et al., 2012). Accord-
ing to Handwerker et al. (2012), the precise re-
sponse shape for a given stimulus and voxel region
is hard to predict and remains a challenge when
modeling temporal aspects of fMRI data.

Figure 1 visualizes the neural activations in
different brain regions as a reaction to the type
of information that is processed during reading.
See Price (2012) for a thorough review of fMRI
language studies.

Wehbe et al. (2014) presented a novel approach
to fMRI studies of linguistic processing by study-
ing a more naturalistic reading scenario, and mod-
eling the entire process of reading and story un-
derstanding. They used data from 8 subjects read-
ing contextualized, running text: a chapter from
a Harry Potter book. The central benefit of this
approach is that it allows studies of complex text
processing closer to a real-life reading experi-
ence. Wehbe et al. (2014) used this data to train
a comprehensive, generative model that—given
a text passage—could predict the fMRI-recorded
activity during the reading of this passage. Us-
ing the same data, our goal is to model a specific
aspect of the story understanding process, i.e. the
grammatical processing of words.

3 Data

3.1 Textual data

We use the available fMRI recordings from We-
hbe et al. (2014), where 8 adult, native English
speakers read chapter 9 from Harry Potter and the
Sorcerer’s Stone in English. The textual data as
provided in the data set does not explicitly mark
sentence boundaries, neither is punctuation sep-
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Figure 2: Computation of token-level fMRI vectors from the original fMRI data for the first token
“Harry” while accounting for hemodynamic response latency using a Gaussian sliding window over
a certain time window (indicated by red horizontal line). The final fMRI vector for “Harry” (red box) is
computed as specified in Equation 1. In this example, the time stamp t for the token is 20s and the time
window stretches from t+ 1s to t+ 2.5s.

arated from the tokens at the end of clauses and
sentences. As the temporal alignment between to-
kens and fMRI recordings (see below) forbids us
to detach punctuation marks from their preceding
tokens and introduce them as new tokens, we opt
to remove all punctuation from the data. In the
same process, we use simple heuristics to detect
sentence boundaries. Finally, we correct errors in
sentence splitting manually.

The chapter counts 4,898 tokens (excluding
punctuation) and 1,411 types in 408 sentences.

3.2 fMRI data

The fMRI data from the same data set is available
as high-dimensional vectors of flattened third-
order tensors, in which each component represents
the blood-oxygen-level dependent contrast for a
certain voxel in the three-dimensional fMRI im-
age. The resolution of the image is at 3×3×3 mm,
such that the brain activity for the eight subjects
is represented by approximately 31,400 voxels on
average (standard deviation is 3,607) depending
on the size of their brain.

This data is recorded every two seconds during
the reading process, in which each token is con-
secutively displayed for 0.5 seconds on a screen
inside the fMRI scanner. Prior to reading, the sub-
jects are asked to focus on a cross displayed at
the center of the screen in a warm-up phase of 20
seconds. The chapter is divided into four blocks,
separated by additional concentration phases of 20
seconds. Furthermore, paragraphs are separated
by a 0.5-seconds display of a cross at the center of
the screen.

As mentioned in the preceding section, punc-
tuation marks were not displayed separately, but
instead attached to the preceding token. This is
arguably motivated through the attempt to create
a reading scenario that is as natural as possible
within the limitations of an fMRI recording. In
similar fashion, contractions such as don’t or he’s
were represented as one token, just as they appear
in the original text.

In order to make the data feasible for our HMM
approach (see Section 4), we apply Principal Com-
ponent Analysis (PCA) to the high-dimensional
fMRI vectors. We initially tune the number of
principal components, which we describe in Sec-
tion 5.

3.2.1 Computing token-level fMRI vectors
As outlined above, the time resolution of the
fMRI recordings means that every block of four
consecutive tokens is time-aligned with a single
fMRI image. Naturally, this shared representa-
tion of consecutive tokens complicates any lan-
guage learning at the token level. Furthermore, the
hemodynamic response latency inherent to fMRI
recordings entails that the image recorded while
reading a certain token most probably does not
give any clues about the mental state elicited by
this stimulus.

We therefore face the dual challenge of

1. inferring token-level information from supra-
token recordings, and

2. identifying the lag after which the perceptual
effects of reading a given token are visible.
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Figure 3: Second-order HMM incorporating tran-
sitional probabilities from first and second-degree
preceding states.

We address this problem through the follow-
ing procedure that we illustrate in Figure 2. First,
we copy the number of fMRI recordings fourfold,
such that every fMRI vector is aligned to exactly
one token (excluding the vectors that are recorded
while no token was displayed). The representation
for a given token is then computed as a weighted
average over all fMRI vectors that lie within a cer-
tain time window in relation to the token in ques-
tion. Two consecutive tokens that originally lie
within the same block of four thus receive differ-
ent representations, provided that the window is
large enough to transcend the border between two
blocks.

The fMRI representation for the token at time
stamp t is given by

vt =
1
|V |

|V |∑
k=1

Vk · wk (1)

where V is the series of fMRI vectors within the
time window [t+ s, t+ e], and w is a Gaussian
window of |V | points, with a standard deviation of
1. In factoring the Gaussian weight vector into the
equation, we lend less weight to the fMRI record-
ings at the outset and at the end of the time window
specified through s (start) and e (end).

4 Model

We use a second-order hidden Markov model
(HMM) with Wiktionary-derived type con-
straints (Li et al., 2012) as our baseline for weakly
supervised PoS induction. We use the original
implementation by Li et al. (2012). The model is

a type-constrained, second order version of the
first-order featurized HMM previously introduced
by Berg-Kirkpatrick et al. (2010).

In each state zi, a PoS HMM generates a se-
quence of words by consecutively generating word
emissions xi and successor states zi+1. The emis-
sion probabilities and state transition probabilities
are multinomial distributions over words and PoS.
The joint probability of a word sequence and a tag
sequence is

Pθ(x, z) = Pθ(z1)
∏
i=1

Pθ(xi|zi)
∏
i=2

Pθ(zi|zi−1)

(2)
Following Berg-Kirkpatrick et al. (2010), the

model calculates the probability distribution θ that
parameterizes the emission probabilities as the
output of a maximum entropy model, which en-
ables unsupervised learning with a rich set of fea-
tures. We thus let

θxi,zi =
exp(wᵀf(xi, zi))∑
x′ exp(wᵀf(x′, zi))

(3)

where w is a weight vector and f(xi, zi) is a
feature function that will, in our case, consider the
fMRI vectors vt that we computed in section 3.2.1
and a number of basic features that we adopt from
the original model (Li et al., 2012). See Section 5
for details.

In addition, we use a second-order HMM, first
introduced for PoS tagging in Thede and Harper
(1999), in which transitional probabilities are also
considered for second-degree subsequent states
(cf. figure 3). Here, the joint probability becomes

Pθ(x, z) = Pθ(z1)Pθ(x1|z1)Pθ(z2|z1)∏
i=2

Pθ(xi|zi)
∏
i=3

Pθ(zi|zi−2, zi−1) (4)

In order to optimize the HMM (including the
weight vector w), the model uses the EM algo-
rithm as applied for feature-rich, locally normal-
ized models introduced in Berg-Kirkpatrick et al.
(2010), with the important modification that we
use type constraints in the E-step, following Li
et al. (2012). Specifically, for each state zi, the
emission probability P (xi|zi) is initialized ran-
domly for every word type associated with zi in
our tag dictionary (the type constraints). This
weakly supervised setup allows us to predict the
actual PoS tags instead of abstract states. The M-
step is solved using L-BFGS (Liu and Nocedal,
1989)
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Figure 4: Accuracy on the development set for the
different subjects when trained and tested on fMRI
data from only this one subject. Dashed line is the
development set baseline. Only in one out of eight
cases does adding fMRI features lead to worse per-
formance.

EM-HMM Parameters We use the same set-
ting as Li et al. (2012) for the number of EM
iterations, fixing this parameter to 30 for all ex-
periments.

5 Experiments

Experimental setup From the neuro-imaging
dataset described above, we use 41 sentences (720
tokens) as a development set and 41 sentences
(529 tokens) as a test set, and the remaining 326
sentences (corresponding to 80%) for training our
model.

Basic features The basic features of all the mod-
els (except when explicitly stated otherwise) are
based on seven features that we adopt from Li et
al. (2012), capturing word form, hyphenation, suf-
fix patterns, capitalization and digits in the token.

Wiktionary Of the 1,411 word types in the cor-
pus, we find that 1,381 (97.84%) are covered by
the Wiktionary dump made available by Li et al.
(2012),1 which we use as our type constraints
when inducing our models.

5.1 Part-of-speech annotation

Though Wehbe et al. (2014) also provide syntac-
tic information, these are automatic parses that are
not suitable for the evaluation of our model. The
development and test data are therefore manually

1https://code.google.com/archive/p/
wikily-supervised-pos-tagger/

annotated for universal part-of-speech tags (Petrov
et al., 2011) by two linguistically trained annota-
tors. The development set was annotated by both
annotators, who reached an inter-annotator agree-
ment of 0.926 in accuracy and 0.928 in weighted
F1. For the final development and test data, dis-
agreements were resolved by the annotators.

5.2 Non-fMRI baselines

Our first baseline is a second-order HMM with
type constraints from Wiktionary; this in all re-
spects the model proposed by Liu et al. (2012), ex-
cept trained on our small Harry Potter corpus. In
a second baseline model, we also incorporate 300-
dimensional GloVe word embeddings trained on
Wikipedia and the Gigaword corpus (Pennington
et al., 2014). We also test a version of the baseline
without the basic features to get an estimate of the
contribution of this aspect of the setup.

5.3 Token-level fMRI

We run a series of experiments with token-level
fMRI vectors that we obtain as described in Sec-
tion 3.2.1. Initially, we train separate models for
each of the eight individual subjects, whose per-
formance on the development data are illustrated
in Figure 4.

5.3.1 Tuning hyperparameters
We tune the following hyperparameters on the
token-level development set in the following or-
der: the number of subjects to use, the number
of principal components per subject, and the time
window. For the earlier tuning processes we fix the
later hyperparameters to values we consider rea-
sonable, but once we have tuned a hyperparameter,
we use the best value from this tuning process for
later tuning steps. The initial values are: 10 prin-
cipal components and a time window of [t + 0s,
t+ 6s].

Number of subjects To reduce the chance of
overfitting, we use fMRI data from several read-
ers in our model. The data from Wehbe et al.
(2014) would in theory allow us to average the
three-dimensional image space for any number of
readers, but this is not feasible if only for the dif-
ference in brain sizes between the subjects. It is
not feasible, either, to average over the eigenvec-
tors that we obtain from PCA, as the eigenvectors
between subjects do not share the same (or any
concrete) feature space. We therefore concatenate
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(a) Learning curve for increasing number of subjects in the
model. Fixed hyper-parameters: 10 principal components
and a time window of [t + 0s, t + 6s].
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(b) Learning curve for increasing number of principal com-
ponents per subject in the model. Number of principal
components ∈ {1, 2, 3, 4, 5, 10, 15, 20, 50} Fixed hyper-
parameters: 8 subjects, a time window of [t + 0s, t + 6s].

Figure 5: Exploring two individual hyper-parameters of the model on development set. Dashed lines
indicate the development set baseline.

the eigenvectors that we obtain for different sub-
jects, such that the feature vectors grow in length
as the number of included subjects increases.

As Figure 5a shows, exploring an increasing
number of subjects in the model does not seem to
a have consistent effect on development set accu-
racy. However, we expect an increased robustness
from a model that incorporates a greater number
of subjects. In all following experiments we there-
fore use data from all eight readers, but we would
also expect a model with fewer subjects to perform
reasonably.

Principal components Fixing the number of
subjects to eight, we then perform experiments to
determine the number of principal components per
subject to consider in our model, whose results are
visualized in Figure 5b. We observe the first eigen-
vectors carry a strong signal, while a great number
of principal components tends to water down the
signal and lead to worse performance. We choose
to continue using 10 dimensions in all further ex-
periments.

Time window for token vectors We next run
experiments to determine the optimal time win-
dow for the computation of the token vectors, us-
ing different combinations of start and end times
in relation to the token time stamps, but keeping
the number of subjects and principal components
constant at eight and ten, respectively. These ex-
periments yield three different time windows with
an equally good performance on the development
set: [t− 4s, t+ 10s], [t+ 2s, t+ 8s] and [t+ 0s,

t + 6s]. Note that due to the Gaussian weighting
the centre of the interval gets more weight than the
edges and that [t−4s, t+10s] and [t+0s, t+6s]
have the same centre, t+ 3. While [t+ 2s, t+ 8s]
and [t+0, t+6] align better with psycholinguistic
expectations, [t − 4s, t + 10s] makes our model
less prone to overfitting. We therefore select the
model averaging over the largest time window.

5.4 Type-level fMRI aggregates

Next, we aggregate token vectors to compute their
type-level averages, in an effort to explore to
which degree neural activity is dependent on the
read word type rather than the concrete grammat-
ical environment, and whether this can allow our
model to draw conclusions about the grammatical
class of a token. We compute the type-level aggre-
gates as the component-wise arithmetic mean of
the token vectors that we extract using the param-
eter settings optimized above. Note, however, that
out of the 4,898 tokens in the text, 823 (16.9%)
occur only once.

6 Results

Table 1 reports the results that we obtain with our
final hyper-parameter settings, which are as fol-
lows:

Number of subjects 8
Principal components 10
Start of time window t− 4s
End of time window t+ 10s

The results show that our model leads to a consid-
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Accuracy
Baseline (Li et al., 2012) 69.57

Baseline+GloVe 69.38
Baseline w/o basic feats 55.53

fMRI (token-level) w/o basic feats 56.99
fMRI (type-level) 70.32
fMRI (token-level) 70.89

Error reduction over baseline 04.34

Table 1: Tagging accuracy on test data for the dif-
ferent models. The fMRI model is significantly
better than the baseline (p = 0.014, Bootstrap).

Class Prec. Rec. F1 ± BL
ADJ 37.50 42.86 40.00 +2.71
ADP 83.67 77.36 80.39 +1.54
ADV 66.00 58.93 62.26 +5.69
CONJ 70.97 70.97 70.97 ±0.00
DET 80.49 80.49 80.49 +3.38
NOUN 70.37 76.00 73.08 +0.28
NUM 00.00 00.00 00.00 -20.00
PRON 88.68 74.60 81.03 +4.76
PRT 41.67 41.67 41.67 +11.67
VERB 74.36 76.32 75.32 -0.95

Table 2: Test data tagging performance by part-of-
speech class for the best fMRI model. The right-
most column displays the difference in F1 com-
pared to the baseline model.

erable error reduction over the baseline model as
well as the embeddings-enriched baseline model.
It also outperforms the model which uses type-
level averages over the fMRI recordings. Leaving
out the basic features hurts performance, but even
without the basic features the fMRI data can re-
duce error with 3.28% on the test set. In Table 2
we present the performance on the individual PoS
classes under our best model.

7 Analysis and Discussion

7.1 What’s in the fMRI vectors?

t-SNE (Van der Maaten and Hinton, 2008) is
a powerful supervised dimensionality reduction
tool for visualizing high-dimensional data in two-
dimensional space using Stochastic Neighbor Em-
bedding. In Figure 6, we visualize pairs of PoS
classes of the test data in a two-dimensional re-
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Figure 6: Selected t-SNE visualizations of fMRI
vectors for all tokens of a class of the test set. The
visualizations show that datapoints of a PoS class
tend to cluster in the fMRI vector space.
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duction of the embedding space obtained when us-
ing the settings of the best fMRI model. The fact
that we can discriminate reasonably well between,
e.g., nouns and pronouns, verbs and adpositions,
as well as adpositions and adjectives on the basis
of fMRI data is to the best of our knowledge a new
finding.

7.2 Discussion of the results

We showed that by careful model tuning and de-
sign it is possible to extract a signal of grammati-
cal processing in the brain from fMRI. The figures
that we present in Table 1 reflect, to our knowl-
edge, the first successful results in inferring gram-
matical function at the token level from fMRI data.
Our best model, which we train on the ten princi-
pal components from the fMRI recordings of eight
readers, achieves an error reduction of over 4% de-
spite a very small amount of training data. We find
that our best model uses a very wide window of
fMRI recordings to compute the representations
for individual tokens, considering all recordings
from 4 seconds before the token is displayed until
10 seconds after the token is displayed. Our best
explanation for why the incorporation of preced-
ing fMRI measurements is beneficial to our model,
is that the grammatical function of a token may be
predictable from a reader’s cognitive state while
reading preceding tokens. However, note that the
measurements at the far ends of the time window
only factor into the token vector to a small degree
as a consequence of the Gaussian weighting. Our
experiments further suggest that using token-level
information instead of type-level features, such as
word embeddings or type averages of fMRI vec-
tors, is helpful for PoS induction that already is
type-constrained.

Recently, Huth et al. (2016) found that semanti-
cally related words are processed in the same area
of the brain. Open questions for future work in-
clude whether there is a bigger potential for using
fMRI data for semantic rather than syntactic NLP
tasks, and whether the signal we find mainly stems
from semantic processing differences.

8 Conclusion

This paper presents the first experiments induc-
ing part of speech from fMRI reading data. Cog-
nitive psychologists have debated whether gram-
matical differences lead to different brain activa-
tion patterns. Somewhat surprisingly, we find that
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Figure 7: Learning curve of tagging accuracy on
the development set as a function of different num-
ber of EM iterations for baseline model and the
full model for iteration numbers ∈ [1, 30]. Fixed
hyper-parameters: 8 subjects, 10 principal compo-
nents, and a time window of t− 4s to t+ 10s

the fMRI data contains a strong signal, enabling
a 4% error reduction over a state-of-the-art unsu-
pervised PoS tagger. While our approach may not
be readily applicable for developing NLP models
today, we believe that the presented results may
inspire NLP researchers to consider learning mod-
els from combinations of linguistic resources and
auxiliary, behavioral data that reflects human cog-
nition.
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