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Abstract

Most sentence embedding models typical-
ly represent each sentence only using word
surface, which makes these models indis-
criminative for ubiquitous homonymy and
polysemy. In order to enhance represen-
tation capability of sentence, we employ
conceptualization model to assign associ-
ated concepts for each sentence in the tex-
t corpus, and then learn conceptual sen-
tence embedding (CSE). Hence, this se-
mantic representation is more expressive
than some widely-used text representation
models such as latent topic model, espe-
cially for short-text. Moreover, we fur-
ther extend CSE models by utilizing a lo-
cal attention-based model that select rel-
evant words within the context to make
more efficient prediction. In the experi-
ments, we evaluate the CSE models on two
tasks, text classification and information
retrieval. The experimental results show
that the proposed models outperform typi-
cal sentence embed-ding models.

1 Introduction

Many natural language processing applications re-
quire the input text to be represented as a fixed-
length feature, of which sentence representation is
very important. Perhaps the most common fixed-
length vector representation for texts is the bag-of-
words or bag-of-n-grams (Harris, 1970). Howev-
er, they suffer severely from data sparsity and high
dimensionality, and have very little sense about
the semantics of words or the distances between
the words. Recently, in sentence representation
and classification, deep neural network (DNN) ap-
proaches have achieved state-of-the-art results (Le
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and Mikolov, 2014; Liu et al., 2015; Palangi et al.,
2015; Wieting et al., 2015). Despite of their use-
fulness, recent sentence embeddings face several
challenges: (i) Most sentence embedding models
represent each sentence only using word surface,
which makes these models indiscriminative for u-
biquitous polysemy; (ii) For short-text, however,
neither parsing nor topic modeling works well be-
cause there are simply not enough signals in the
input; (iii) Setting window size of context word-
s is very difficult. To solve these problems, we
must derive more semantic signals from the input
sentence, e.g., concepts. Besides, we should as-
signed different attention for different contextual
word, to enhance the influence of words that are
relevant for each prediction.

This paper proposed Conceptual Sentence Em-
bedding (CSE), an unsupervised framework that
learns continuous distributed vector representa-
tions for sentence. Specially, by innovatively in-
troducing concept information, this concept-level
vector representations of sentence are learned to
predict the surrounding words or target word in
contexts. Our research is inspired by the recent
work in learning vector representations of word-
s using deep learning strategy (Mikolov et al.,
2013a; Le and Mikolov, 2014). More precisely,
we first obtain concept distribution of the sentence,
and generate corresponding concept vector. Then
we concatenate or average the sentence vector,
contextual word vectors with concept vector of the
sentence, and predict the target word in the given
context. All of the sentence vectors and word vec-
tors are trained by the stochastic gradient descen-
t and backpropagation (Rumelhart et al., 1986).
At prediction time, sentence vectors are inferred
by fixing the word vectors and observed sentence
vectors, and training the new sentence vector until
convergence.

In parallel, the concept of attention has gained
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popularity recently in neural natural language
processing researches, which allowing models
to learn alignments between different modalities
(Bahdanau et al., 2014; Bansal et al., 2014; Rush
et al., 2015). In this work, we further propose the
extensions to CSE, which adds an attention mod-
el that considers contextual words differently de-
pending on the word type and its relative position
to the predicted word. The main intuition behind
the extended model is that prediction of a word is
mainly dependent on certain words surrounding it.

In summary, the basic idea of CSE is that, we al-
low each word to have different embeddings under
different concepts. Taking word apple into consid-
eration, it may indicate a fruit under the concept
food, and indicate an IT company under the con-
cept information technology. Hence, concept in-
formation significantly contributes to the discrimi-
native of sentence vector. Moreover, an importan-
t advantage of the proposed conceptual sentence
embeddings is that they could be learned from un-
labeled data. Another advantage is that we take
the word order into account, in the same way of n-
gram model, while bag-of-n-grams model would
create a very high-dimensional representation that
tends to generalize poorly.

To summarize, this work contributes on the
following aspects: We integrate concepts and
attention-based strategy into basic sentence em-
bedding representation, and allow the resulting
conceptual sentence embedding to model differ-
ent meanings of a word under different concep-
t. The experimental results on text classification
task and information retrieval task demonstrate
that this concept-level sentence representation is
robust. The outline of the paper is as follows. Sec-
tion 2 surveys related researches. Section 3 for-
mally de-scribes the proposed model of concep-
tual sentence embedding. Corresponding experi-
mental results are shown in Section 4. Finally, we
conclude the paper.

2 Related Works

Conventionally, one-hot sentence representation
has been widely used as the basis of bag-of-words
(BOW) text model. However, it can-not take the
semantic information into consideration. Recent-
ly, in sentence representation and classification,
deep neural network approaches have achieved
state-of-the-art results (Le and Mikolov, 2014; Li-
u et al., 2015; Ma et al., 2015; Palangi et al., 2015;

Wieting et al., 2015), most of which are inspired
by word embedding (Mikolov et al., 2013a). (Le
and Mikolov, 2014) proposed the paragraph vector
(PV) that learns fixed-length representations from
variable-length pieces of texts. Their model rep-
resents each document by a dense vector which is
trained to predict words in the document. Howev-
er, their model depends only on word surface, ig-
noring semantic information such as topics or con-
cepts. In this paper, we extent PV by introducing
concept information.

Aiming at enhancing discriminativeness for u-
biquitous polysemy, (Liu et al., 2015) employed
latent topic models to assign topics for each word
in the text corpus, and learn topical word em-
beddings (TWE) and sentence embeddings based
on both words and their topics. Besides, to
combine deep learning with linguistic structures,
many syntax-based embedding algorithms have
been proposed (Severyn et al., 2014; Wang et
al., 2015b) to utilize long-distance dependencies.
However, short-texts usually do not observe the
syntax of a written language, nor do they con-
tain enough signals for statistical inference (e.g.,
topic model). Therefore, neither parsing nor top-
ic modeling works well because there are simply
not enough signals in the input, and we must de-
rive more semantic signals from the input, e.g.,
concepts, which have been demonstrated effective
in knowledge representation (Wang et al., 2015c;
Song et al., 2015). Shot-text conceptualization, is
an interesting task to infer the most likely concepts
for terms in the short-text, which could help bet-
ter make sense of text data, and extend the texts
with categorical or topical information (Song et
al., 2011). Therefore, our models utilize short-
text conceptualization algorithm to discriminate
concept-level sentence senses and provide a good
performance on short-texts.

Recently, attention model has been used to im-
prove many neural natural language pro-cessing
researches by selectively focusing on parts of the
source data (Bahdanau et al., 2014; Bansal et al.,
2014; Wang et al., 2015a). To the best of our
knowledge, there has not been any other work ex-
ploring the use of attentional mechanism for sen-
tence embeddings.

3 Conceptual Sentence Embedding

This paper proposes four conceptual sentence em-
bedding models. The first one is based on continu-
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ous bag-of-word model (denoted as CSE-1) which
have not taken word order into consideration. To
overcome this drawback, its extension model (de-
noted as CSE-2), which is based on Skip-Gram
model, is proposed. Based on the basic concep-
tual sentence embedding models above, we obtain
their variants (aCSE-1 and aCSE-2) by introduc-
ing attention model.

3.1 CBOW Model & Skip-Gram Model
As inspiration of the proposed conceptual sen-
tence embedding models, we start by dis-
cussing previous models for learning word vec-
tors (Mikolov et al., 2013a; Mikolov et al., 2013b)
firstly.

Let us overview the framework of Continuous
Bag-of-Words (CBOW) firstly, which is shown in
Figure 1(a). Each word is typically mapped to
an unique vector, represented by a column in a
word matrix W ∈ <d∗|V |. Wherein, V denotes
the word vocabulary and d is embedding dimen-
sion of word. The column is indexed by posi-
tion of the word in V . The concatenation or av-
erage of the vectors, the context vector wt, is then
used as features for predicting the target word in
the current context. Formally, Given a sentence
S = {w1, w2, . . . , wl}, the objective of CBOW is
to maximize the average log probability:

L(S)= 1
(l−2k−2)

∑l−k

t=k+1
logPr(wt|wt−k,···,wt+k) (1)

Wherein, k is the context windows size of target
word wt. The prediction task is typically done via
a softmax function, as follows:

Pr(wt|wt−k, · · · , wt+k) =
eywt∑

wi∈V e
ywi

(2)

Each of y(wt) is an un-normalized log-
probability for each target word wt, as follows:

ywt = Uh(wt−k, . . . , wt+k); W) + b (3)

Wherein, U and b are softmax parameters. And
h(·) is constructed by a concatenation or average
of word vectors {wt−k, . . . ,wt+k} extracted from
word matrix W according to {wt−k, . . . , wt+k}.
For illustration purposes, we utilize average here.
On the condition of average, the context vector ct
is obtained by averaging the embeddings of each
word, as follows:

ct =
1
2k

∑
−k≤c≤k,c6=0

wt+c (4)

The framework of Skip-Gram (Figure 1(b))
aims to predict context words given a target word
wt in a sliding window, instead of predicting the
current word based on its context. Formally, given
a sentence S = {w1, w2, . . . , wl}, the objective of
Skip-Gram is to maximize the following average
log probability:

L(S)= 1
(l−2k)

∑l−k

t=k+1

∑
−k≤c≤k,c6=0

logPr(wt+c|wt)

(5)
Wherein, wt and wc are respectively the vector

representations of the target word wt and the con-
text word wc. Usually, during the training stage of
CBOW and Skip-Gram: (i) in order to make the
models efficient for learning, the techniques of hi-
erarchical softmax and negative sampling are used
to ensure the models efficient for learning (Morin
and Bengio, 2005; Mikolov et al., 2013a); (ii) the
word vectors are trained by using stochastic gra-
dient descent where the gradient is obtained via
backpropagation (Rumelhart et al., 1986). After
the training stage converges, words with similar
meaning are mapped to a similar position in the se-
mantic vector space. e.g., ‘powerful’ and ‘strong’
are close to each other.

W

wt-k wt-k+1 wt+k-1 wt+k…

W WW

wt

wt

W

wt-k wt-k+1 wt+k-1 wt+k…

(a) (b)

Figure 1: (a) CBOW model and (b) Skip-Gram
model.

3.2 CSE based on CBOW Model
Intuitively, the proposed (attention-based) concep-
tual sentence embedding model for learning sen-
tence vectors, is inspired by the methods for learn-
ing the word vectors. The inspiration is that, in
researches of word embeddings: (i) The word vec-
tors are asked to contribute to a prediction task
about the target word or the surrounding words
in the context; (ii) The word representation vec-
tors are initialized randomly, however they could
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finally capture precise semantics as an indirect re-
sult. Therefore, we will utilize this idea in our sen-
tence vectors in a similar manner: The concept-
associated sentence vectors are also asked to con-
tribute to the prediction task of the target word or
surrounding words in given contextual text win-
dows. Furthermore, attention model will attribute
different influence value to different contextual
words.

We describe the first conceptual sentence em-
bedding model, denoted as CSE-1, which is based
on CBOW. In the framework of CSE-1 (Figure
2(a)), each sentence, denoted by sentence ID, is
mapped to a unique vector s, represented by a col-
umn in matrix S. And its concept distribution θC
are generated from a knowledge-based text con-
ceptualization algorithm (Wang et al., 2015c).
Moreover, similar to word embedding methods,
each word wi is also mapped to a unique vec-
tor wi, represented by a column in matrix W.
The surrounding words in contextual text window
{wt−k, . . . , wt+k}, sentence ID and concept dis-
tribution θC corresponding to this sentence are the
inputs. Besides, C is a fixed linear operator similar
to the one used in (Huang et al., 2013) that con-
verts the concept distribution θC to a concept vec-
tor, denoted as c. Note that, this makes our model
very different from (Le and Mikolov, 2014) where
no concept information is used, and experimental
results demonstrate the efficiency of introducing
concept information. It is clear that CSE-1 also
does not take word order into consideration just
like CBOW.

Afterward, the sentence vector s, surrounding
word vectors {wt−k, . . . ,wt+k} and the concept
vector c are concatenated or averaged to predic-
t the target word wt in current context. In reali-
ty, the only change in this model compared to the
word embedding method is in Eq. 3, where h(·)
is constructed from not only W but also C and S.
Note that, the sentence vector is shared across all
contexts generated from the same sentence but not
across sentences. Wherein, the contexts are fixed-
length (length is 2k) and sampled from a sliding
window over the current sentence. However, the
word matrix W is shared across sentences.

In summary, the procedure of CSE-1 itself is
described as follows. A probabilistic conceptu-
alization algorithm (Wang et al., 2015c) is em-
ployed here to obtain the corresponding concepts
about given sentence: Firstly, we preprosess and

Sentence ID

Conceptualization

C S

wt-k wt-k+1 wt+k-1 wt+k…

W

wt-k wt-k+1 wt+k-1 wt+k…

W WW

wt

Sentence ID

Conceptualization

C S

θC θC

c s c s

(a) (b)

Figure 2: CSE-1 model (a) and CSE-2 model (b).
Green circles indicate word embeddings, blue cir-
cles indicate concept embeddings, and purple cir-
cles indicate sentence embeddings. Besides, or-
ange circles indicate concept distribution θC gen-
erated by knowledge-based text conceptualization
algorithm.

segment the given sentence into a set of words;
Then, based on a probabilistic lexical knowledge-
base Probase (Wu et al., 2012), the heteroge-
neous semantic graph for these words and their
corresponding concepts are constructed (Figure 3
shows an example); Finally, we utilize a simple
iterative process to identify the most likely map-
ping from words to concepts. After efforts above,
we could conceptualize words in given sentence,
and access the concepts and corresponding proba-
bilities, which is the concept distribution θC men-
tioned before. Note that, the concept distribution
yields an important influence on the entire frame-
work of conceptual sentence embedding, by con-
tributing greatly to the semantic representation.

During the training stage, we aim at obtaining
word matrix W, sentence matrix S, and softmax
weights {U, b} on already observed sentences.
The techniques of hierarchical softmax and nega-
tive sampling are used to make the model efficient
for learning. W and S are trained using stochas-
tic gradient descent: At each step of stochastic
gradient descent, we sample a fixed-length con-
text from the given sentence, compute the error
gradient which is obtained via backpropagation,
and then use the gradient to update the parame-
ters. During the inferring stage, we get sentence
vectors for new sentences (unobserved before) by
adding more columns in S and gradient descend-
ing on S while holding W, U and b fixed. Finally,
we use S to make a prediction about multi-labels
by using a standard classifier in output layer.
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FRUIT

microsoft office

apple ipad

COMPANY

BRAND PRODUCT

LOCATION
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0.80

0.41

0.16

0.86

0.81

0.91

0.31

ACCESSORY
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Figure 3: Semantic graph of example sentence mi-
crosoft unveils office for apples ipad. Rectangles
indicate terms occurred in given sentence, and el-
lipses indicate concept defined in knowledge-base
(e.g., Probase). Bule solid links indicate isA re-
lationship between terms and concepts, and red
dashed lines indicate correlation relationship be-
tween two concepts. Numerical values on the line
is corresponding probabilities.

3.3 CSE based on Skip-Gram Model

The above method considers the combination of
the sentence vector with the surrounding word
vectors and concept vector to predict the target
word in given text window. However, it loss in-
formation about word order somehow, just like
CBOW. In fact, there exists another for modeling
the prediction procedure: we could ignore the con-
text words in the input, but force the model to pre-
dict words randomly sampled from the fix-length
contexts in the output. As is shown in Figure 2
(b), only sentence vector s and concept vector c
are used to predict the next word in a text window.
That means, contextual words are no longer used
as inputs, whereas they become what the output
layer predict. Hence, this model is similar to the
Skip-Gram model in word embedding (Mikolov
et al., 2013b). In reality, what this means is that
at each iteration of stochastic gradient descent,
we sample a text window {wt−k, . . . , wt+k}, then
sample a random word from this text window and
form a classification task given the sentence vector
s and corresponding concept vector c.

We denote this sort of conceptual sentence em-
bedding model as CSE-2. The scheme of CSE-2
is similar to that of CSE-1 as described above. In
addition to being conceptually simple, CSE-2 re-
quires to store less data. We only need to store
{U,b,S} as opposed to {U,b,S,W} in CSE-1.

3.4 CSE based on Attention Model

As mentioned above, setting a good value for con-
textual window size k is difficult. Because a larger
value of k may introduce a degenerative behav-
ior in the model, and more effort is spent predict-

ing words that are conditioned on unrelated words,
while a smaller value of k may lead to cases where
the window size is not large enough include words
that are semantically related (Bansal et al., 2014;
Wang et al., 2015a). To solve these problems , we
extend the proposed models by introducing atten-
tion model (Bahdanau et al., 2014; Rush et al.,
2015), by allowing it to consider contextual word-
s within the window in a non-uniform way. For
illustration purposes, we extend CSE-1 here with
attention model. Following (Wang et al., 2015a),
we rewrite Eq.(4) as follows:

ct =
1
2k

∑
−k≤c≤k,c6=0

at+c(wt+c)wt+c (6)

Wherein we replace the average of the sur-
rounding word vectors in Eq.(4) with a weighted
sum of the these vectors. That means, each con-
textual wordwt+c is attributed a different attention
level, representing how much the attention model
believes whether it is important to look at in order
to predict the target word wt. The attention factor
ai(wi) for word wi in position i is formulated as
a softmax function over contextual words (Bah-
danau et al., 2014), as follows:

ai(w) =
edw,i + ri∑

−k≤c≤k,c6=0 e
dw,c + rc

(7)

Wherein, dw,i is an element of matrix D ∈
<|V |∗2k, which is a set of parameters determining
the importance of each word type in each relative
position i (distance to the left/right of target word
wt). Moreover, ri, an element of R ∈ <2k, is
a bias, which is conditioned only on the relative
position i. Note that, attention models have been
reported expensive for large tables in terms of s-
torage and performance (Bahdanau et al., 2014;
Wang et al., 2015a). Nevertheless the computa-
tion consumption here is simple, and compute the
attention of all words in the input requires 2k op-
erations, as it simply requires retrieving on value
from the lookup-matrix D for each word and one
value from the bias vector R for each word in the
context. Although this strategy may not be the
best approach and there exist more elaborate at-
tention models (Bahdanau et al., 2014; Luong et
al., 2015), the proposed attention model is a proper
balance of computational efficiency and complex-
ity.

Thus, besides {W,C,S} in CSE models, D and
R are added into parameter set which relates to
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gradients of the loss function Eq.(1). All parame-
ters are computed with backpropagation and up-
dated after each training instance using a fixed
learning rate. We denote the attention-based CSE-
1 model above as aCSE-1. With limitation of
space, attention variant of CSE-2, denoted as
aCSE-2, is not described here, however the prin-
ciple is similar to aCSE-1.

W

w1
microsoft

w2
unveil

w4
for

w5
ipad

W WW

w
apple

Sentence ID

Conceptualization

C S

w3
office

W

a1 a2 a3 a4 a5

...
θc

c s

Figure 4: aCSE-1 model. The illustration of ex-
ample sentence ‘mcrosoft unveils office for apple’s
ipad’ for predicting word ‘apple’.

Taking example ‘microsoft unveils office for ap-
ple’s ipad’ into consideration. The prediction of
the polysemy word ‘apple’ by CSE-1 is shown in
Figure 4, and darker cycle cell indicate higher at-
tention value. We could observe that preposition
word ‘for’ tend to be attributed very low atten-
tion, while context words, especially noun-words
which contribute much to conceptualization (such
as ‘ipad’, ‘office’, and ‘microsoft’) are attributed
higher weights as these word own more predictive
power. Wherein, ‘ipad’ is assigned the highest at-
tention value as it close to the predicted word and
co-occurs with it more frequently.

As described before, concept distribution θC
yields a considerable influence on conceptual sen-
tence embedding. This is because, each dimen-
sionality of this distribution denotes the probabili-
ty of the concept (topic or category) this sentence
is respect to. In other words, the concept distribu-
tion is a solid semantic representation of the sen-
tence. Nevertheless, the information in each di-
mensionality of sentence (or word) vector makes
no sense. Hence, there exist a linear operator
in CSE-1, CSE-2, aCSE-1, and aCSE-2, which
transmit the concept distribution into word vector
and sentence vector, as shown in Figure 2 and Fig-
ure 3.

4 Experiments and Results

In this section, we show experiments on two tex-
t understanding problems, text classification and
information retrieval, to evaluate related models
in several aspects. These tasks are always used
to evaluate the performance of sentence embed-
ding methods (Liu et al., 2015; Le and Mikolov,
2014). The source codes and datasets of this paper
are publicly available1.

4.1 Datasets

We utilize four datasets for training and evalu-
ating. For text classification task, we use three
datasets: NewsTile, TREC and Twitter. Dataset
Tweet11 is used for evaluation in information re-
trieval task. Moreover, we construct dataset Wiki
to fully train topic model-based models.

NewsTitle: The news articles are extracted
from a large news corpus, which contains about
one million articles searched from Web pages. We
organize volunteers to classify these news articles
manually into topics according its article content
(Song et al., 2015), and we select six topics: com-
pany, health, entertainment, food, politician, and
sports. We randomly select 3,000 news articles in
each topic, and only keep its title and its first one
line of article. The average word count of titles is
9.41.

TREC: It is the corpus for question classifica-
tion on TREC (Li and Roth, 2002), which is wide-
ly used as benchmark in text classification task.
There are 5,952 sentences in the entire dataset,
classified into the 6 categories as follows: person,
abbreviation, entity, description, location and nu-
meric.

Tweet11: This is the official tweet collection-
s used in TREC Microblog Task 2011 and 2012
(Ounis et al., 2011; Soboroff et al., 2012). Using
the official API, we crawled a set of local copies
of the corpus. Our local Tweets11 collection has
a sample of about 16 million tweets, and a set of
49 (TMB2011) and 60 (TMB2012) timestamped
topics.

Twitter: This dataset is constructed by manu-
ally labeling the previous dataset Tweet11. Simi-
lar to dataset NewsTitle, we ask our volunteers to
label these tweets. After manually labeling, the
dataset contains 12,456 tweets which are in four

1http://hlipca.org/index.
php/2014-12-09-02-55-58/
2014-12-09-02-56-24/58-acse
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categories: company, country, entertainment, and
device. The average length of the tweets is 13.16
words. Because of its noise and sparsity, this so-
cial media dataset is very challenging for the com-
parative models.

Moreover, we also construct a Wikipedia
dataset (denoted as Wiki) for training. We pre-
process the Wikipedia articles2 with the following
rules. First, we remove the articles less than 100
words, as well as the articles less than 10 links.
Then we remove all the category pages and disam-
biguation pages. Moreover, we move the content
to the right redirection pages. Finally we obtain
about 3.74 million Wikipedia articles for indexing
and training.

4.2 Alternative Algorithms

We compare the proposed models with the follow-
ing comparative algorithms.

BOW: It is a simple baseline which represents
each sentence as bag-of-words, and uses TF-IDF
scores (Salton and Mcgill, 1986) as features to
generate sentence vector.

LDA: It represents each sentence as its topic
distribution inferred by latent dirichlet allocation
(Blei et al., 2003). We train this model in two
ways: (i) on both Wikipedia articles and the eval-
uation datasets above, and (ii) only on the evalua-
tion datasets. We report the better of the two.

PV: Paragraph Vector models are variable-
length text embedding models, including the dis-
tributed memory model (PV-DM) and the dis-
tributed bag-of-words model (PV-DBOW). It has
been reported to achieve the state-of-the-art per-
formance on task of sentiment classification (Le
and Mikolov, 2014), however it only utilizes word
surface.

TWE: By taking advantage of topic model, it
overcome ambiguity to some extent (Liu et al.,
2015). Typically, TWE learn topic models on
training set. It further learn topical word embed-
dings using the training set, then generate sentence
embeddings for both training set and testing set.
(Liu et al., 2015) proposed three models for topical
word embedding, and we present the best result-
s here. Besides, We also train TWE in two ways
like LDA.

2http://en.wikipedia.org/wiki/
Wikipedia:Databasedown-load

4.3 Experiment Setup

The details about parameter settings of the com-
parative algorithms are described in this section,
respectively. For TWE, CSE-1, CSE-2 and their
attention variants aCSE-1, and aCSE-2, the struc-
ture of the hierarchical softmax is a binary Huff-
man tree (Mikolov et al., 2013a; Mikolov et al.,
2013b), where short codes are assigned to frequent
words. This is a good speedup trick because com-
mon words are accessed quickly (Le and Mikolov,
2014).We set the dimensions of sentence, word,
topic and concept embeddings as 5,000, which
is like the number of concept clusters in Probase
(Wu et al., 2012; Wang et al., 2015c). Meanwhile,
we have done many experiments on choosing the
context window size (k). We perform experiments
on increasing windows size from 3 to 11, and d-
ifferent size works differently on different dataset
with different average length of short-texts. And
we choose the result of windows size of 5 present
here, because it performs best in almost datasets.
Usually, in project layer, the sentence vector, the
context vector and the concept vectors could be
averaged or concatenated for combination to pre-
dict the next word in a context. We perform exper-
iments following these two strategies respectively,
and report the better of the two. In fact, the con-
catenation performs better since averaging differ-
ent types of vectors may cause loss of information
somehow.

For BOW and LDA, we remove stop words by
using InQuery stop-word list. For BOW, we se-
lect top 50,000 words according to TF-IDF scores
as features. For both LDA and TWE, in the text
classification task, we set the topic number to be
the cluster number or twice, and report the better
of the two; while in the information retrieval task,
we experimented with a varying number of topics
from 100 to 500, which gives similar performance,
and we report the final results of using 500 topics.

In summary, we use the sentence vectors gener-
ated by each algorithm as features and run a linear
classifier using Liblinear (Fan et al., 2010) for e-
valuation.

4.4 Text Classification

In this section, we run the multi-class text clas-
sification experiments on the dataset NewsTitle,
Twitter, and TREC. We report precision, recall
and F-measure for comparison (as shown in Ta-
ble 1). Statistical t-test are employed here. To de-
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NewsTitle Twitter TREC

Model P R F P R F P R F

BOW 0.782 0.791 0.786 0.437 0.429 0.433 0.892 0.891 0.891
LDA 0.717 0.705 0.711 0.342 0.308 0.324 0.813 0.809 0.811
PV-DBOW 0.725 0.719 0.722 0.413 0.408 0.410 0.824 0.819 0.821
PV-DM 0.748 0.740 0.744 0.426 0.424 0.425 0.836 0.825 0.830
TWE 0.811β 0.803β 0.807β 0.459β 0.438 0.448β 0.898β 0.886β 0.892β

CSE-1 0.815 0.809 0.812 0.461 0.449 0.454 0.896 0.890 0.893
CSE-2 0.827 0.817 0.822 0.475 0.447 0.462 0.901 0.895 0.898
aCSE-1 0.824 0.818 0.821 0.471 0.454 0.462 0.901 0.897 0.899
aCSE-2 0.831αβ 0.820αβ 0.825αβ 0.477αβ 0.450αβ 0.463αβ 0.909αβ 0.904αβ 0.906αβ

Table 1: Evaluation results of multi-class text classification task.

cide whether the improvement by method A over
method B is significant, the t-test calculates a val-
ue p based on the performance of A and B. The
smaller p is, the more significant is the improve-
ment. If the p is small enough (p < 0.05), we
conclude that the improvement is statistically sig-
nificant. In Table 1, the superscript α and β re-
spectively denote statistically significant improve-
ments over TWE and PV-DM.

Without regard to attention-based model firstly,
we could conclude that CSE-2 outperforms all the
baselines significantly (expect for recall in Twit-
ter). This fully indicates that the proposed mod-
el could capture more precise semantic informa-
tion of sentence as compared to topic model-based
models and other embedding models. Because
the concepts we obtained contribute significantly
to the semantic representation of sentence, mean-
while suffer slightly from texts noisy and sparsi-
ty. Moreover, as compared to BOW, CSE-1 and
CSE-2 manage to reduce the feature space by 90
percent, while among them, CSE-2 needs to store
less data comparing with CSE-1. By introducing
attention model, performances of CSE models are
entirely promoted, as compared aCSE-2 with o-
riginal CSE-2, which demonstrates the advantage
of attention model.

PV-DM and PV-DBOW are reported as the
state-of-the-art model for sentence embedding.
From the results we can also see that, the proposed
model CSE-2 and aCSE-2 significantly outper-
forms PV-DBOW. As expected, LDA performs
worst, even worse than BOW, because it is trained
on very sparse short-texts (i.e., question and so-
cial media text), where there is no enough sta-
tistical information to infer word co-occurrence

and word topics, and latent topic model suffer ex-
tremely from the sparsity of the short-text. Be-
sides, the number of topics slightly impacts the
performance of LDA. In future, we may conduct
more experiments to explore genuine reasons. As
described in section 3, aCSE-2 (CSE-2) performs
better than aCSE-1 (CSE-1), because the former
one take word order into consideration. Based on
Skip-Gram similarly, CSE-2 outperforms TWE.
Although TWE aims at enhancing sentence repre-
sentation by using topic model, neither parsing nor
topic modeling would work well because short-
texts lack enough signals for inference. Whats
more, sentence embeedings are generated by sim-
ple aggregating over all topical word embeddings
of each word in this sentence in TWE, which lim-
its its capability of semantic representation.

Overall, nearly all the alternative algorithms
perform worse on Twitter, especially LDA and
TWE. This is mainly because that data in Twitter
are more challenging for topic model as short-texts
are noisy, sparse, and ambiguous. Although the
training on larger corpus, i.e., way (i), contributes
greatly to improving the performance of these
topic-model based algorithms, they only have sim-
ilar performance to CSE-1 and could not tran-
scend the attention-based variants. Certainly, we
could also train TWE (even LDA) on a very larg-
er corpus, and could expect a letter better result-
s. However, training latent topic model on very
large dataset is very slow, although many fast al-
gorithms of topic models are available (Smola
and Narayanamurthy, 2010; Ahmed et al., 2012).
Whats more, from the complexity analysis, we
could conclude that, compared with PV, CSE only
need a little more space to store look-ups matrix D
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and R; while compared with CSE and PV, TWE
require more parameters to store more discrimina-
tive information for word embedding.

4.5 Information Retrieval

The information retrieval task is also utilized to
evaluate the proposed models, and we want to ex-
amine whether a sentence should be retrieved giv-
en a query. Specially, we mainly focus on short-
text retrieval by utilizing official tweet collection
Tweet11, which is the benchmark dataset for mi-
croblog retrieval. We index all tweets in this col-
lection by using Indri toolkit, and then perform a
general relevance-pseudo feedback procedure, as
follows: (i) Given a query, we firstly obtain asso-
ciated tweets, which are before query issue time,
via preliminary retrieval as feedback tweets. (ii)
We generate the sentence representation vector of
both original query and these feedback tweets by
the alternative algorithms above. (iii) With efforts
above, we compute cosine scores between query
vector and each tweet vector to measure the se-
mantic similarity between the query and candidate
tweets, and then re-rank the feedback tweets with
descending cosine scores.

We utilize the official metric for the TREC Mi-
croblog track, i.e., Precision at 30 (P@30), and
Mean Average Precision (MAP), for evaluating
the ranking performance of different algorithms.
Experimental results for this task are shown in Ta-
ble 2. Besides, we also operate a query-by-query
analysis and conduct t-test to demonstrate the im-
provements on both metrics are statistically sig-
nificant. In Table 2, the superscript α and β re-
spectively denote statistically significant improve-
ments over TWE and PV-DM (p < 0.05).

As shown in Table 2, the CSE-2 significant-
ly outperforms all these models, and exceeds the
best baseline model (TWE) by 11.9% in MAP and
4.5% in P@30, which is a statistically significan-
t improvement. Without regard to attention-based
model firstly, such an improvement comes from
the CSE-2’s ability to embed the contextual and
semantic information of the sentences into a finite
dimension vector. Topic model based algorithm-
s (e.g., LDA and TWE) suffer extremely from the
sparsity and noise of tweet collection. For the twit-
ter data, since we are not able to find appropriate
long texts, latent topic models are not performed.

We could observe that attention-based CSE
model (aCSE-1 and aCSE-2) improves over o-

TMB2011 TMB2012

Model MAP P@30 MAP P@30

BOW 0.304 0.412 0.321 0.494
LDA 0.281 0.409 0.311 0.486
PV-DBOW 0.285 0.412 0.324 0.491
PV-DM 0.327 0.431 0.340 0.524
TWE 0.331 0.446β 0.347β 0.511
CSE-1 0.337 0.451 0.344 0.512
CSE-2 0.367 0.461 0.360 0.517
aCSE-1 0.342 0.459 0.351 0.516
aCSE-2 0.370αβ0.464αβ 0.364αβ0.522αβ

Table 2: Results of information retrieval.

riginal CSE model (CSE-1 and CSE-2). Howev-
er, attention model promotes CSE-1 significant-
ly, while aCSE-2 obtain similar results compared
to CSE-2, indicating that attention model leads
to small improvement for Skip-Gram based CSE
model. We argue that it is because Skip-Gram it-
self gives less weight to the distant words by sam-
pling less from those words, which is essentially
similar to attention model somehow.

5 Conclusion

By inducing concept information, the proposed
conceptual sentence embedding maintains and en-
hances the semantic information of sentence em-
bedding. Furthermore, we extend the proposed
models by introducing attention model, which al-
lows it to consider contextual words within the
window in a non-uniform way while maintaining
the efficiency. We compare them with differen-
t algorithms, including bag-of-word models, topic
model-based model and other state-of-the-art sen-
tence embedding models. The experimental re-
sults demonstrate that the proposed method per-
forms the best and shows improvement over the
compared methods, especially for short-texts.

Acknowledgments

The work was supported by National Natural Sci-
ence Foundation of China (Grant No. 61132009),
National Basic Research Program of China (973
Program, Grant No. 2013CB329303), and Na-
tional Hi-Tech Research & Development Program
(863 Pro-gram, Grant No. 2015AA015404).

513



References
Amr Ahmed, Moahmed Aly, Joseph Gonzalez, Shra-

van Narayanamurthy, and Alexander J. Smola.
2012. Scalable inference in latent variable model-
s. In International Conference on Web Search and
Web Data Mining, WSDM 2012, Seattle, Wa, Usa,
February, pages 123–132.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. Eprint Arxiv.

Mohit Bansal, Kevin Gimpel, and Karen Livescu.
2014. Tailoring continuous word representations for
dependency parsing. In Meeting of the Association
for Computational Linguistics, pages 809–815.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. Journal of Ma-
chine Learning Research, 3:993–1022.

Rongen Fan, Kaiwei Chang, Cho Jui Hsieh, Xiangrui
Wang, and Chih Jen Lin. 2010. Liblinear: A library
for large linear classification. Journal of Machine
Learning Research, 9(12):1871–1874.

Zellig S. Harris. 1970. Distributional Structure.
Springer Netherlands.

Posen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using
clickthrough data. In ACM International Confer-
ence on Conference on Information and Knowledge
Management, pages 2333–2338.

Quoc V. Le and Tomas. Mikolov. 2014. Distributed
representations of sentences and documents. Eprint
Arxiv, 4:1188–1196.

Xin Li and Dan Roth. 2002. Learning question classi-
fiers. In COLING.

Yang Liu, Zhiyuan Liu, Tat-Seng Chua, and Maosong
Sun. 2015. Topical word embeddings. In Twenty-
Ninth AAAI Conference on Artificial Intelligence.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In EMNLP.

Mingbo Ma, Liang Huang, Bing Xiang, and Bowen
Zhou. 2015. Dependency-based convolutional neu-
ral networks for sentence embedding. In Meeting of
the Association for Computational Linguistics and
the International Joint Conference on Natural Lan-
guage Processing.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. Computer Science.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corra-
do, and Jeffrey Dean. 2013b. Distributed represen-
tations of words and phrases and their composition-
ality. Advances in Neural Information Processing
Systems, 26:3111–3119.

Frederic Morin and Yoshua Bengio. 2005. Hierar-
chical probabilistic neural network language model.
Aistats.

Iadh Ounis, Craig MacDonald, Jimmy Lin, and Ian
Soboroff. 2011. Overview of the trec-2011 mi-
croblog track.

H Palangi, L Deng, Y Shen, J Gao, X He, J Chen,
X Song, and R Ward. 2015. Deep sentence em-
bedding using the long short term memory network:
Analysis and application to information retrieval.
Arxiv, 24(4):694–707.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams. 1986. Learning representations by back-
propagating errors. Nature, 323(6088):533–536.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing.

Gerard Salton and Michael J. Mcgill. 1986. Introduc-
tion to modern information retrieval. McGraw-Hill,.

Aliaksei Severyn, Alessandro Moschitti, Manos T-
sagkias, Richard Berendsen, and Maarten De Rijke.
2014. A syntax-aware re-ranker for microblog re-
trieval. In SIGIR, pages 1067–1070.

Alexander Smola and Shravan Narayanamurthy. 2010.
An architecture for parallel topic models. Proceed-
ings of the Vldb Endowment, 3(1):703–710.

Ian Soboroff, Iadh Ounis, Craig MacDonald, and Jim-
my Lin. 2012. Overview of the trec-2012 microblog
track. In TREC.

Yangqiu Song, Haixun Wang, Zhongyuan Wang,
Hongsong Li, and Weizhu Chen. 2011. Short text
conceptualization using a probabilistic knowledge-
base. In Proceedings of the Twenty-Second inter-
national joint conference on Artificial Intelligence -
Volume Volume Three, pages 2330–2336.

Yangqiu Song, Shusen Wang, and Haixun Wang. 2015.
Open domain short text conceptualization: a gener-
ative + descriptive modeling approach. In Proceed-
ings of the 24th International Conference on Artifi-
cial Intelligence.

Ling Wang, Tsvetkov Yulia, Amir Silvio, Fermandez
Ramon, Dyer Chris, Black Alan W, Trancoso Isabel,
and Lin Chu-Cheng. 2015a. Not all contexts are
created equal: Better word representations with vari-
able attention. In Conference on Empirical Methods
in Natural Language Processing, pages 1367–1372.

Mingxuan Wang, Zhengdong Lu, Hang Li, and Qun
Liu. 2015b. Syntax-based deep matching of short
texts. Computer Science.

514



Zhongyuan Wang, Kejun Zhao, Haixun Wang, Xi-
aofeng Meng, and Ji-Rong Wen. 2015c. Query
understanding through knowledge-based conceptu-
alization. In Proceedings of the 24th International
Conference on Artificial Intelligence.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2015. Towards universal paraphrastic sen-
tence embeddings. Computer Science.

Wentao Wu, Hongsong Li, Haixun Wang, and Ken-
ny Q. Zhu. 2012. Probase: a probabilistic taxonomy
for text understanding. In Proceedings of the 2012
ACM SIGMOD International Conference on Man-
agement of Data, pages 481–492.

515


