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Abstract

We present a novel dependency pars-
ing method which enforces two structural
properties on dependency trees: bounded
block degree and well-nestedness. These
properties are useful to better represent the
set of admissible dependency structures in
treebanks and connect dependency pars-
ing to context-sensitive grammatical for-
malisms. We cast this problem as an Inte-
ger Linear Program that we solve with La-
grangian Relaxation from which we derive
a heuristic and an exact method based on
a Branch-and-Bound search. Experimen-
tally, we see that these methods are effi-
cient and competitive compared to a base-
line unconstrained parser, while enforcing
structural properties in all cases.

1 Introduction

We address the problem of enforcing two struc-
tural properties on dependency trees, namely
bounded block degree and well-nestedness, with-
out sacrificing algorithmic efficiency. Intuitively,
bounded block degree constraints force each sub-
tree to have a yield decomposable into a lim-
ited number of blocks of contiguous words, while
well-nestedness asserts that every two distinct sub-
trees must not interleave: either the yield of one
subtree is entirely inside some gap of the other or
they are completely separated. These two types
of constraints generalize the notion of projectiv-
ity: projective trees actually have a block degree
bounded to one and are well-nested.

Our first motivation is the fact that most de-
pendency trees in NLP treebanks are well-nested
and have a low block degree which depends on
the language and the linguistic representation, as
shown in (Pitler et al., 2012). Unfortunately, al-

though polynomial algorithms exist for this class
of trees (Gómez-Rodrı́guez et al., 2009), they are
not efficient enough to be of practical use in ap-
plications requiring syntactic structures. In ad-
dition, if either property is dropped, but not the
other, then the underlying decision problem be-
comes harder. That is why practical parsing algo-
rithms are either completely unconstrained (Mc-
Donald et al., 2005) or enforce strict projectivity
(Koo and Collins, 2010). This work is, to the
best of our knowledge, the first attempt to build
a discriminative dependency parser that enforces
well-nestedness and/or bounded block degree and
to use it on treebank data.

We base our method on the following obser-
vation: a non-projective dependency parser, thus
not requiring neither well-nestedness nor bounded
block degree, returns dependency trees satisfying
these constraints in the vast majority of sentences.
This would tend to indicate that the heavy machin-
ery involved to parse with these constraints is only
needed in very few cases.

We consider arc-factored dependency parsing
with well-nestedness and bounded block degree
constraints. We formulate this problem as an In-
teger Linear Program (ILP) and apply Lagrangian
Relaxation where the dualized constraints are
those associated with bounded block degree and
well-nestedness. The Lagrangian dual objective
then reduces to a maximum spanning arbores-
cence and can be solved very efficiently. This pro-
vides an efficient heuristic for our problem. An ex-
act method can be derived by embedding this La-
grangian Relaxation in a Branch-and-Bound pro-
cedure to solve the problem with an optimality cer-
tificate. Despite the exponential worst-time com-
plexity of the Branch-and-Bound procedure, it is
tractable in practice. Our formulation can enforce
both types of constraints or only one of them with-
out changing the resolution method.
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As stated in (Bodirsky et al., 2009), well-nested
dependency trees with 2-bounded block degree are
structurally equivalent to derivations in Lexical-
ized Tree Adjoining Grammars (LTAGs) (Joshi
and Schabes, 1997).12 While LTAGs can be
parsed in polynomial time, developing an efficient
parser for these grammars remains an open prob-
lem (Eisner and Satta, 2000) and we believe that
this work could be a useful step in that direction.

Related work is reviewed in Section 2. We de-
fine arc-factored dependency parsing with block
degree and well-nestedness constraints in Sec-
tion 3. We derive an ILP formulation of this prob-
lem in Section 4 and then present our method
based on Lagrangian Relaxation in Section 5 and
Branch-and-Bound in Section 6. Section 7 con-
tains experimental results on several languages.

2 Related Work

A dynamic programming algorithm has been pro-
posed for parsing well-nested and k-bounded
block degree dependency trees in (Gómez-
Rodrı́guez et al., 2009; Gómez-Rodrı́guez et
al., 2011). Unfortunately, it has a prohibitive
O(n3+2k) time complexity, equivalent to Lexi-
calized TAG parsing when k = 2. Variants of
this algorithm have also been proposed for further
restricted classes of dependency trees: 1-inherit
(O(n6)) (Pitler et al., 2012), head-split (O(n6))
(Satta and Kuhlmann, 2014) and both 1-inherit
and head-split (O(n5)) (Satta and Kuhlmann,
2014). Although those restricted classes have
good empirical coverage, they do not cover the
exact search space of Lexicalized TAG deriva-
tion and their time complexity is still prohibitive.
Spinal TAGs, described as a dependency parsing
task in (Carreras et al., 2008), weaken even more
the empirical coverage in practice, restricted to
projective trees, but still remain hardly tractable
with a complexity of O(n4). On the contrary, the
present work does not restrict the search space.

Parsing mildly context-sensitive languages with
dependencies has been explored in (Fernández-
González and Martins, 2015) but the resulting
parser cannot guarantee compliance with strict
structural properties. On the other hand, the

1It is possible to express a wider class of dependencies
with LTAG if we allow dependencies direction to be different
from the derivation tree (Kallmeyer and Kuhlmann, 2012).

2In order to be fully compatible with LTAGs, we must
ensure that the root has only one child. For algorithmic issues
see (Fischetti and Toth, 1992) or (Gabow and Tarjan, 1984).

present method enforces the well-nestedness and
bounded block degree of solutions.

The methods mentioned above all use the
graph-based approach and rely on dynamic pro-
gramming to achieve tractability. There is also
a line of of work in transition-based parsing for
various dependency classes. Systems have been
proposed for projective dependency trees (Nivre,
2003), non-projective, or even unknown classes
(Attardi, 2006). Pitler and McDonald (2015) pro-
pose a transition system for crossing interval trees,
a more general class than well-nested trees with
bounded block degree. In the case of spinal
TAGs, we can mention the work of Ballesteros
and Carreras (2015) and Shen and Joshi (2007).
Transition-based algorithms offer low space and
time complexity, typically linear in the length of
sentences usually by relying on local predictors
and beam strategies and thus do not provide any
optimality guarantee on the produced structures.
The present work follows the graph-based ap-
proach, but replaces dynamic programming with
a greedy algorithm and Lagrangian Relaxation.

The use of Lagrangian Relaxation to elaborate
sophisticated parsing models based on plain max-
imum spanning arborescence solutions originated
in (Koo et al., 2010) where this method was used
to parse with higher-order features. This technique
has been explored to parse CCG dependencies in
(Du et al., 2015) without a precise definition of
the class of trees. We can also draw connections
between our problem reduction procedure and the
use of Lagrangian Relaxation to speed up dynamic
programming and beam search with exact pruning
in (Rush et al., 2013).

In this work we rely on Non-Delayed Relax-
and-Cut for lazy constraint generation (Lucena,
2006). This can be linked to (Riedel, 2009) which
uses a cutting plane algorithm to solve MAP in-
ference in Markov Logic and (Riedel et al., 2012)
which uses column and row generation for higher-
order dependency parsing.

In NLP, the Branch-and-Bound framework
(Land and Doig, 1960) has previously been used
for dependency parsing with high order features
in (Qian and Liu, 2013), and Das et al. (2012)
combined Branch-and-Bound to Lagrangian Re-
laxation in order to retrieve integral solutions for
shallow semantic parsing.
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3 Dependency Parsing

We model the dependency parsing problem using
a graph-based approach. Given a sentence s =
〈s0, . . . , sn〉 where s0 is a dummy root symbol,
we consider the directed graph D = (V,A) with
V = {0, . . . n} and A ⊆ V × V . Vertex i ∈ V
corresponds to word si and arc (i, j) ∈ A models
a dependency from word si to word sj . In the rest
of the paper, we denote V \ {0} by V +.

An arborescence is a set of arcs T inducing a
connected graph with no circuit such that every
vertex has at most one entering arc. The set of
vertices incident with any arc of T is denoted by
V [T ]. If V [T ] = V , then T is a spanning arbores-
cence. Among the vertices of V [T ], the one with
no entering arc is called the root of T . A vertex t
is reachable from a vertex s with respect to T if
there exists a path from s to t using only arcs of T .
The yield of a vertex v ∈ V corresponds to the set
of vertices reachable from v with respect to T .

It is well-known that there is a bijection be-
tween dependency trees for s and spanning ar-
borescences with root 0 (McDonald et al., 2005).
In what follows, the term dependency tree will re-
fer to both the dependency tree of s and its associ-
ated spanning arborescence of D with root 0.

In the dependency parsing problem, one has to
find a dependency tree with maximal score. Sev-
eral scores can be associated with each depen-
dency tree and different conditions can restrict the
set of valid dependency trees.

In this paper, we consider an arc-factored
model: each arc (i, j) ∈ A is assigned a score
wij ; the score of a dependency tree is defined
as the sum of the scores of the arcs it con-
tains. This model can be computed in O(n2)
with Chu–Liu-Edmonds’ algorithm for Maximum
Spanning Arborescence (MSA) (McDonald et al.,
2005). Unfortunately, this algorithm forbids any
modification of the score function, for example
adding score contribution for combinations of arcs
(i.e. grand-parent or sibling models). Moreover,
adding score contribution for combinations of cou-
ple of arcs makes the problem NP-hard (McDon-
ald and Pereira, 2006), although several methods
have been developed to tackle this problem, for
instance dual decomposition (Koo et al., 2010).

Likewise, restrictions on the tree structure such
as the well-nestedness and bounded block degree
conditions are not permitted in the MSA algo-
rithm. We first give a precise definition of these
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Figure 1: (Left) A 2-BBD arborescence: the block degree of
vertex 1 is 2 (its yield is {1, 4}) whereas the block degree
of all other vertices is 1. (Right) A not well-nested arbores-
cence: the yields of vertices 1 and 2 interleave.

structural properties, equivalent to (Bodirsky et al.,
2009), before we present a method to take them
into account. From now on, we suppose that in-
stances are equipped with a positive integer k and
we call valid dependency trees those satisfying the
k-bounded block degree and well-nestedness con-
ditions. A graph-theoretic definition of these two
conditions can be given as follows.

Block degree The block degree of a vertex set
W ⊆ V is the number of vertices of W without a
predecessor3 inside W . Given an arborescence T ,
the block degree of a vertex is the block degree of
its yield and the block degree of T is the maximum
block degree of its incident vertices. An arbores-
cence satisfies the k-bounded block degree condi-
tion if its block degree is less than or equal to k.
We then say it is k-BBD for short. Figure 1 (left)
gives an example of a 2-BBD arborescence.

Well-nestedness Two disjoint subsets I1, I2 ⊂
V + interleave if there exist i, j ∈ I1 and k, l ∈
I2 such that i < k < j < l. An arborescence
is well-nested if it is not incident to two vertices
whose yields interleave. Figure 1 (right) shows an
arborescence which is not well-nested.

4 ILP Formulation

In this section we formulate the dependency pars-
ing problem described in Section 3 as an ILP. We
start with some notation and two theorems charac-
terizing k-BBD and well-nested dependency trees.

Given a subset W ⊆ V , the set of arcs en-
tering W is denoted by δin(W ) and the set of
arcs leaving W is denoted by δout(W ). The set
δ(W ) = δin(W )∪δout(W ) is called the cut ofW .
Given a positive integer l, let W≥l be the family
of vertex subsets of V + with block degree greater
than or equal to l. For instance, given any sen-
tence with more than 6 words, {1, 3, 5, 6} ∈ W≥3,

3The predecessor of a vertex v ∈ V is v − 1.
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while {1, 2, 5, 6} 6∈ W≥3. We also denote by I
the family of couples of disjoint interleaving ver-
tex subsets of V +. For instance, ({1, 4}, {2, 3, 5})
belongs to I. Finally, given a vector x ∈ RA and
a subset B ⊆ A, x(B) corresponds to

∑
a∈B xa.

Theorem 1. A dependency tree T is not k-BBD iff
there exists a vertex subset W ∈ W≥k+1 whose
cut δ(W ) contains a unique arc of T .

Proof. By definition of block degree, a depen-
dency tree is not k-BBD iff it is incident with a
vertex whose yield W belongs to W≥k+1. It is
equivalent to say that T contains a subarbores-
cence T ′ such that V [T ′] equals W . This holds
iff W has one entering arc (since 0 /∈ W ) and no
leaving arc belonging to T .

Theorem 2. A dependency tree T is not well-
nested iff there exists (I1, I2) ∈ I such that
δ(I1) ∩ T and δ(I2) ∩ T are singletons.

Proof. δ(I1) and δ(I2) both intersect T only once
iff T contains two arborescences T1 and T2 such
that V [T1] = I1 and V [T2] = I2. This means
that T is incident with two vertices whose yields
are I1 and I2, respectively. Result follows from the
definition of I and well-nested arborescences.

The dependency parsing problem can be formu-
lated as follows. A dependency tree will be repre-
sented by its incidence vector. Hence, we use vari-
ables z ∈ RA such that za = 1 if arc a belongs to
the dependency tree and 0 otherwise.

max
z

∑
a∈A

waza (1)

z(δin(v)) = 1 ∀v ∈ V + (2)

z(δin(W )) ≥ 1 ∀W ⊆ V + (3)

z(δ(W )) ≥ 2 ∀W ∈ W≥k+1 (4)

z(δ(I1)) + z(δ(I2)) ≥ 3 ∀(I1, I2) ∈ I (5)

z ∈ {0, 1}A (6)

The objective function (1) maximizes the score of
the dependency tree. Inequalities (2) ensure that
all vertices but the root have one entering arc. In-
equalities (3) force the set of arcs associated with z
to induce a connected graph. Inequalities (2) and
(3), together with z ≥ 0, give a linear descrip-
tion of the convex hull of the incidence vectors of
the spanning arborescences with root 0 — see e.g.,
(Schrijver, 2003). Inequalities (4) ensure that the

dependency tree is k-BBD and inequalities (5) im-
pose well-nestedness. The validity of (4) and (5)
follows from Theorems 1 and 2, respectively.

Remark that (3) could be replaced by a polyno-
mial number of additional flow variables and con-
straints, see (Martins et al., 2009).4

5 Lagrangian Relaxation

Solving this ILP using an off-the-shelf solver is
ineffective due to the huge number of constraints.
We tackle this problem with Lagrangian Relax-
ation, which has become popular in the NLP com-
munity, see for instance (Rush and Collins, 2012).
Note that contrary to most previous work on La-
grangian Relaxation for NLP, we do not use it to
derive a decomposition method.

We note that optimizing objective (1) subject to
constraints (2), (3) and (6) amounts to finding a
MSA and can be solved combinatorially (McDon-
ald et al., 2005). Thus, since formulation (1)–(6)
is based only on arc variables, by relaxing con-
straints (4) and (5), one obtains a Lagrangian dual
objective which is nothing but a MSA problem
with reparameterized arc scores. Our Lagrangian
approach relies on a subgradient descent where a
MSA problem is solved at each iteration. We give
more details in the rest of the section.

5.1 Dual Problem

Let Z be the set of the incidence vectors of depen-
dency trees. Keeping tree shape constraints (2), (3)
and (6) while dualizing k-bounded block degree
constraints (4) and well-nestedness constraints (5),
we build the following Lagrangian (Lemaréchal,
2001):

L(z, u) =
∑
a∈A

waza

+
∑

W∈W≥k

uW
1 × (z(δ(W ))− 2)

+
∑

(I1,I2)∈I
uI1,I2

2 × (z(δ(I1)) + z(δ(I2))− 3)

(7)

4Based on this remark, we also developed a formulation
of this problem with a polynomial number of variables and
constraints. However it requires adding many more variables
than (Martins et al., 2009). This leads to a formulation which
is not tractable, see Section 7.2. Moreover, it cannot be tack-
led by our Lagrangian Relaxation approach.
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with z ∈ Z and u = (u1, u2) ≥ 0 is a vector of
Lagrangian multipliers. We refactor to:

L(z, u) =
∑
a∈A

θaza + c (8)

where θ are modified scores and c a constant term.
The dual objective is L∗(u) = maxz L(z, u)

with z ∈ Z. Note that computing L∗(u) amounts
to solving the MSA problem with modified scores
θ and can be efficiently computed. The dual prob-
lem is minu≥0 L

∗(u). L∗ is a non-differentiable
convex piece-wise linear function and one can find
its minimum via subgradient descent. For any vec-
tor u, we use the following subgradient. Denote
Mz ≤ b the set of constraints given by (4) and (5)
and z∗ = arg maxz L(z, u). Let g = b − Mz∗

be a subgradient at u, see (Lemaréchal, 2001) for
more details. From this subgradient, we compute
the descent direction following (Camerini et al.,
1975), which aggregates information during the it-
eration of the subgradient descent algorithm. Un-
fortunately, optimizing the dual is expensive with
so many relaxed constraints. We handle this prob-
lem in the next subsection.

5.2 Efficient Optimization with Many
Constraints

The Non Delayed Relax-and-Cut (NDRC) method
(Lucena, 2005) tackles the problem of optimiz-
ing a Lagrangian dual problem with exponentially
many relaxed constraints. In standard subgradient
descent, at each iteration p of the descent, the La-
grangian update can be formulated as:

up+1 = (up − sp × gp)+ (9)

where sp > 0 is the stepsize5 and ()+ denotes
the projection onto R+, which replaces each nega-
tive component by 0. If all Lagrangian multipliers
are initialized to 0, the compononent correspond-
ing to a constraint will not be changed until this
constraint is violated for the first time. Indeed, by
definition of g, we have [gp]i ≥ 0 if constraint i
is satisfied at iteration p: the projection on R+ en-
sure that [up+1]i stays at 0.6 Thus we do not need
to know constraints that have not been violated yet
in order to correctly update the Lagrangian multi-
pliers: this is the main intuition behind the NDRC

5As stated above, instead of the subgradient we follow an
improved descent direction which aggregates information of
previous iterations. However, this does not change the pro-
posal of this subsection.

6[x]i denotes the ith component of vector x.

method. However, sp may depend on the full sub-
gradient information. A common step size (Fisher,
1981) is:

sp = αp × L∗(up)− LBp

‖gp‖2 (10)

with αp a scalar and LBp the best known lower
bound. This is also the case with more recent ap-
proaches like AdaGrad (Duchi et al., 2011) and
AdaDelta (Zeiler, 2012). As reported in (Beasley,
1993; Lucena, 2006), when dealing with many re-
laxed constraints, the ‖gp‖2 term can result in each
Lagrangian update being almost equal to 0. There-
fore, a good practice is to modify the subgradient
such that if [gp]i > 0 and [up]i = 0, then we set
[gp]i = 0: this has the same effect on the multipli-
ers as the projection on R+ in (9), but it prevents
the stepsize from becoming too small. Hence, in-
stead of generating a full subgradient at each it-
eration, which is an expensive operation because
we would need to consider all multipliers associ-
ated with constraints, we process only a subpart,
namely the one associated with constraints that
have been violated.

Following (Lucena, 2005), at each iteration p of
the subgradient descent we define two sets: Cur-
rently Violated Active Constraints (CAp) and Pre-
viously Violated Active Constraints (PAp). CAp

and PAp are not necessarily disjoint. The subgra-
dient is computed only for constraints in CAp ∪
PAp. At each iteration p, we update PAp =
PAp−1 ∪ CAp−1 and a violation detection step,
similar to the separation step in a cutting plane al-
gorithm, generates CAp. Two strategies are pos-
sible for the detection: (1) adding to CAp all the
constraints violated by the current dual solution;
(2) adding only a subset of them. The latter is jus-
tified by the fact that many constraints may over-
lap thus leading to exageration of modified scores
on some arcs. We found that strategy (2) gives bet-
ter convergence results.

Detection for violated block degree con-
straints (4) can be done with the algorithm de-
scribed in (Möhl, 2006) in O(n2). If no violated
block degree constraint is found, we search for
violated well-nestedness constraints (5) using the
O(n2) algorithm described in (Havelka, 2007).

5.3 Lagrangian Heuristic

We derive a heuristic from the Lagragian Relax-
ation. First, a dependency tree is computed with
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the MSA algorithm. If it is valid, it then corre-
sponds to the optimal solution. Otherwise, we pro-
ceed as follows. The computation of the step size
in (10) in the subgradient descent needs a lower
bound which can be given by the score of any valid
dependency tree. In our experiments, we compute
the best projective spanning arborescence (Eisner,
2000). Each iteration of the subgradient descent
computes a spanning arborescence. Since violat-
ing (4) and (5) is penalized in the objective func-
tion, it tends to produce valid dependency trees.
The heuristic returns the highest scoring one.

6 Branch and Bound

Solving the Lagrangian dual problem may not al-
ways give an optimal solution to the original prob-
lem because of the potential duality gap. Still, we
always obtain an upper bound on the optimal so-
lution and if a dual solution satisfies constraints
(4) and (5), its score with the original weights pro-
vides a lower bound.7

Moreover, the subgradient descent algorithm
theoretically converges but we have no guarantee
that this will happen in a realistic number of itera-
tions. Therefore, in order to retrieve an optimal
solution in all cases, we embed the Lagrangian
Relaxation of the problem within a Branch-and-
Bound procedure (Land and Doig, 1960).

The search space is recursively split according
to an arc variable, creating two subspaces, one
where it is fixed to 1 and the other to 0 (branching
step). The procedure returns a candidate solution
when all arc variables are fixed and constraints are
satisfied, and the optimal solution is the highest-
scoring candidate solution.

For each subspace, we estimate an upper bound
using the Lagrangian Relaxation (bounding step).
The recursive exploration of a subspace stops
(pruning step) if (1) we can prove that all candi-
date solutions it contains have a score lower than
the best found so far, or (2) we detect an unsastifi-
able constraint.

The branching strategy is built upon Lagrangian
multipliers: we branch on the variable za with
highest value θa−wa. Intuitively, if the branching
step sets za = 1, it indicates that we add a hard
constraint on an arc which has been strongly pro-
moted by Lagrangian Relaxation. This strategy,
compared to other variants, gave the best parsing

7Because relaxed constraints are inequalities, constraint
satisfaction does not guarantee optimality (Beasley, 1993).

time on development data.

6.1 Problem Reduction
The efficiency of the Branch-and-Bound proce-
dure crucially depends on the number of free vari-
ables. To prune the search space, we rely on prob-
lem reduction (Beasley, 1993), once again based
on duality and Lagrangian Relaxation, which pro-
vides certificates on optimal variable settings.

We fix a variable to 1 (resp. 0), and compute an
upper bound on the optimal score with this new
constraint. If it is lower than the score of the
best solution found so far without this constraint,
we can guarantee that this variable cannot (resp.
must) be in the optimal solution and safely set it
to 0 (resp. 1).

Problem reduction is performed at each node
of the Branch-and-Bound tree after computing the
upper bound with subgradient descent.

6.2 Fixing Variables to 1
Since a node in V + must have exactly one parent,
fixing zij = 1 for an arc a = (i, j) greatly reduces
the problem size, as it will also fix zhj = 0,∀h 6=
i. Among all arc variables that can be set to 1,
promising candidates are the arcs in a solution of
the unconstrained MSA and the arcs obtained in a
solution after the subgradient descent.

There are exactly n such arcs in each set of can-
didates, so we test fixation for less than 2n vari-
ables. In this case, we are ready to pay the price of
a quadratic computation for each of these arcs.

Hence, for each candidate arc we obtain an up-
per bound by seeking the (unconstrained) MSA on
the graph where this arc is removed. If this upper
bound is lower than the score of the best solution
found so far, we can safely say that this arc is in
the optimal solution.

6.3 Fixing Variables to 0
We could apply the same strategy for fixing vari-
ables to 0. However, this reduction is less reward-
ing and there are many more variables set to 0 than
1 in a MSA solution. Instead, we solve an easier
problem, at the expense of a looser upper bound.

For each arc a which is not in the MSA, we
compute a maximum directed graph that contains
this arc and where all nodes but the root have one
parent. Remark that if this graph is connected then
it corresponds to a dependency tree. Therefore,
the score of this directed graph provides an upper
bound on a solution containing arc a. If this upper
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bound is lower than the score of the best solution
found so far, we can fix the variable za to 0.

Note that this whole fixing procedure can be
done in O(n2).

7 Experiments

We ran a series of experiments to test our method
in the case of unlabelled dependency parsing. Our
prototype has been developped in Python with
some parts in Cython and C++. We use the MSA
implementation available in the LEMON library.8

7.1 Datasets

We ran experiments on 5 different corpora:
English: Dependencies were extracted from the

WSJ part of the Penn Treebank (PTB) with addi-
tional NP bracketings (Vadas and Curran, 2007)
with the LTH converter9 (default options). Sec-
tions 02-21 are used for training, 22 for devel-
opment and 23 for testing. POS tags were pre-
dicted by the Stanford tagger10 trained with 10-
jackkniffing.11

German: We used dependencies from the
SPMRL dataset (Seddah et al., 2014), with pre-
dicted POS tags and the official split. We removed
sentences of length greater than 100 in the test set.

Dutch, Spanish and Portuguese: We used
the Universal Dependency Treebank 1.2 (Van der
Beek et al., 2002; McDonald et al., 2013; Afonso
et al., 2002) with gold POS tags and the official
split. We removed sentences of length greater than
100 in the test sets.

Those datasets contain different structure dis-
tributions as shown in Table 1. Fortunately, our
method allows us to easily change the bounded de-
gree constraint or toggle the well-nestedness one.
For each language, we decided to use the most
constrained combination of bounded block degree
constraints and well-nestedness which covers over
99% of the data. Therefore, we chose to enforce
2-BBD and well-nestedness for English and Span-
ish, 3-BBD and well-nestedness for Dutch and
Portuguese and 3-BBD only for German.

7.2 Decoding

In order to compare our methods with previous
approaches, we tested five decoding strategies.

8
https://lemon.cs.elte.hu/trac/lemon

9
http://nlp.cs.lth.se/software/treebank_converter/

10
http://nlp.stanford.edu/software/tagger.shtml

11Prediction precision: 97.40%

(MSA) computes the best unconstrained depen-
dency tree. (Eisner) computes the best projec-
tive tree. (LR) and (B&B) are the heuristic and the
exact method presented in Sections 5.3 and 6 re-
spectively.12 Finally (MSA/Eisner) consists in
running the MSA algorithm and, if the solution is
invalid, returning the (Eisner) solution instead.

Our attempt to run the dynamic programming
algorithm of (Gómez-Rodrı́guez et al., 2009) was
unsuccessful. Even with heavy pruning we were
not able to run it on sentences above 20 words.
We also tried to use CPLEX on a compact ILP
formulation based on multi-commodity flows (see
footnote 4). Parsing time was also prohibitive: a
total of 3473 seconds on English data without the
well-nestedness constraint, 7298 for German.

We discuss the efficiency of our methods on
data for English and German. Other languages
give similar results. Optimality rate after the sub-
gradient descent are reported in Figure 2. We see
that Lagrangian Relaxation often returns optimal
solutions but fails to give a certificate of their op-
timality. Table 2 shows parsing times. We see that
(LR) and (B&B), while slower than (MSA), are fast
in the majority of cases, below the third quartile.
Inevitably, there are some rare cases where a large
portion of the search space is explored, and thus
their parsing time is high. Let us remark that these
algorithms are run only when (MSA) returns an in-
valid structure, and so total time is very acceptable
compared to the baseline.

Finally, we stress the importance of problem re-
duction as a pre-processing step in B&B: after sub-
gradient descent is performed, it removes an aver-
age of 83.97% (resp. 76.59%) of arc variables in
the English test set (resp. German test set).

7.3 Training
Feature weights are trained using the averaged
structured perceptron (Collins, 2002) with 10 iter-
ations where the best iteration is selected on the
development set. We used the same feature set
as in TurboParser (Martins et al., 2010), including
features for lemma. For German, we additionally
use morpho-syntactic features.

The decoding algorithm used at training time
is the MSA. We experimented with Branch-and-
Bound and Lagrangian Relaxation decoding dur-

12In both methods, the subgradient descent is stopped af-
ter a fixed maximum number of iterations. We chose 100 for
English and 200 for other languages after tuning on the de-
velopment set.
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English German Dutch Spanish Portuguese
WN IL WN IL WN IL WN IL WN IL

Block degree 1 92.26 - 67.60 - 69.13 - 93.95 - 81.56 0.05
Block degree 2 7.58 0.12 27.12 0.79 28.50 0.08 5.99 0.04 13.92 0.02
Block degree 3 0.12 0.01 3.86 0.30 2.24 0.01 0.02 - 3.76 -
Block degree 4 - - 0.19 <0.01 0.04 - - - 0.54 -
Block degree > 4 - - 0.11 <0.01 - - - - 0.14 -

Table 1: Distribution of dependency tree characteristics in datasets.

English (96 sentences) German (59 sentences)
MSA LR B&B MSA LR B&B

Mean 0.02 0.26 0.53 0.04 0.51 0.71
Std. 0.01 0.20 0.86 0.02 0.41 1.39
Med. 0.02 0.21 0.27 0.03 0.47 0.47
3rd 0.03 0.34 0.53 0.05 0.71 0.80
Total 1.81 25.09 50.52 2.18 30.19 42.20

Table 2: Timings for strategies (see Section 7.2) on test for solu-
tions which do not satisfy constraints after running MSA. We give
(in seconds) average time, standard deviation, median time, time
to parse up to the 3rd quartile and total time.

50 100 150 200
0.96
0.97
0.98
0.99

1

Figure 2: Optimality rate (y-axis) vs number of sub-
gradient iterations (x-axis) for English (thin blue)
and German (thick red). Solid line is the optimal
rate with certificate, dashed is without.

ing training. It did not significantly improve accu-
racy and made training and decoding slower.

7.4 Parsing Results

Table 3 shows attachment score (UAS), percent-
age of valid dependency trees and relative time to
(MSA) for different systems for our five decoding
strategies. We can see (B&B) is on a par with (LR)
on some corpora and more accurate on the others.
The former takes more time, and the improvement
is correlated with time difference for all corpora
but the PTB. Dividing the five corpora in three
cases, we can see that:

1. For English and Spanish, where projective
dependency trees represent more than 90%
of the data, (Eisner) outperforms (MSA).
Our methods lie between the two. Here it
is better to search for projective trees and
(LR) and (B&B) are not interesting in terms
of UAS. This is confirmed by the results of
(MSA/Eisner).

2. For German and Dutch, where projective
dependency trees represent less than 70%
of the data, (MSA) outperforms (Eisner).
For German, where well-nestedness is not
required, our methods are as accurate as
(MSA)13, while for Dutch our methods seem
to be useful, as (B&B) outperforms all sys-

13For German, we notice a small regression which we at-
tribute to the representation of enumerations in the corpus:
for enumerations of k elements, k-bounded block-degree
subtrees must be generated.

tems. Moreover, our two methods guarantee
validity.

3. For Portuguese, where projective dependency
trees represent around 80% of the data, (MSA)
is as accurate as (Eisner). In this case we
see that, while our heuristic is below, the ex-
act method is more accurate. This seems to
be an edge case where neither unconstrained
nor projective dependency trees seem to ad-
equately capture the solution space. We also
see that it is harder for our methods to give
solutions (longer computation times, which
tend to indicate that LR cannot guarantee op-
timality). Our methods are best fitted for this
case.

In order to see how much well-nested and
bounded block-degree structures are missed by
a state-of-the-art parser, we compare our results
with TurboParser.14 We run the parser with
three different feature sets: arc-factored, standard
(second-order features), and full (third-order fea-
tures). The results are shown in Table 4. Our
model, by enforcing strict compliance to structural
rules (100% valid dependency trees), is closer
to the empirical distribution than TurboParser in
arc-factored mode on all languages but German.
Higher-order scoring functions manage to get
more similar to the treebank data than our strict
thresholds for all languages but Portuguese, at the
expense of a significative computational burden.

14We used 2.1.0 and all defaults but the feature set.
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MSA Eisner LR B&B MSA/Eisner

English
UAS 89.45 89.82 89.54 89.53 89.60

2-BBD/WN 96.02 – – – –
Relative Time 1 2.5 1.8 2.5 1.2

German
UAS 87.79 86.97 87.78 87.78 87.46

3-BBD 98.81 – – – –
Relative Time 1 2.1 1.5 1.7 1.3

Dutch
UAS 77.30 76.62 76.96 77.40 76.79

3-BBD/WN 94.82 – – – –
Relative Time 1 1.5 1.7 5 1.3

Spanish
UAS 83.37 83.56 83.37 83.44 83.48

2-BBD/WN 92.62 – – – –
Relative Time 1 2.8 2.7 3 1.5

Portuguese
UAS 83.13 83.14 82.99 83.21 82.90

3-BBD/WN 87.84 – – – –
Relative Time 1 2.7 5.7 19.7 1.7

Table 3: UAS, percentage of valid structure and decoding time for test data. Time is relative to MSA decoding. The percentage
of valid structure is always 100% except for MSA decoding.

English (99.84) German (99.27) Dutch (99.87) Spanish (99.94) Portuguese (99.24)
Order UAS VDT RT UAS VDT RT UAS VDT RT UAS VDT RT UAS VDT RT
1st 89.29 94.87 1 87.97 98.74 1 76.10 93.26 1 83.11 93.43 1 83.53 94.79 1
2nd 92.04 99.75 16 89.83 99.28 16 79.05 97.93 18 86.61 98.54 10 87.35 98.96 15
3rd 92.37 99.75 34 90.35 99.24 36 79.68 97.41 37 87.31 99.64 18 88.09 98.98 32

Table 4: UAS, percentage of valid dependency trees (VDT) and relative time (RT) obtained by Turboparser for different score
functions on test sets. For each language we give the percentage of valid dependency structures in the data, according to the
constraints postulated in Section 7.1.

We interpret this fact as an indication that
adding higher order features into our system
would make the relaxation method converge more
often and faster.

8 Conclusion

We presented a novel characterization of depen-
dency trees complying with two structural rules:
bounded block degree and well-nestedness from
which we derived two methods for arc-factored
dependency parsing. The first one is a heuris-
tic which relies on Lagrangian Relaxation and
the Chu-Liu-Edmonds efficient maximum span-
ning arborescence algorithm. The second one
is an exact Branch-and-Bound procedure where
bounds are provided by Lagrangian Relaxation.
We showed experimentally that these methods
give results comparable with state-of-the-art arc-
factored parsers, while enforcing constraints in all
cases.

In this paper we focused on arc-factor models,
but our method could be extended to higher order
models, following the dual decomposition method
presented in (Koo et al., 2010) in which the
maximum-weight spanning arborescence compo-
nent would be replaced by our constrained model.

Our method opens new perspectives for LTAG
parsing, in particular using decomposition tech-
niques where dependencies and templates are pre-

dicted separately. Moreover, while well-nested
dependencies with 2-bounded block degree can
represent LTAG derivations, toggling the well-
nestedness or setting the block degree bound al-
lows to express the whole range of derivations in
lexicalized LCFRS, whether well-nested or with a
bounded fan-out. Our algorithm can exactly repre-
sent these settings with a comparable complexity.
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[Gómez-Rodrı́guez et al.2011] Carlos Gómez-
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