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Abstract

One major drawback of phrase-based
translation is that it segments an input sen-
tence into continuous phrases. To sup-
port linguistically informed source discon-
tinuity, in this paper we construct graphs
which combine bigram and dependency
relations and propose a graph-based trans-
lation model. The model segments an
input graph into connected subgraphs,
each of which may cover a discontinuous
phrase. We use beam search to combine
translations of each subgraph left-to-right
to produce a complete translation. Experi-
ments on Chinese–English and German–
English tasks show that our system is
significantly better than the phrase-based
model by up to +1.5/+0.5 BLEU scores.
By explicitly modeling the graph segmen-
tation, our system obtains further improve-
ment, especially on German–English.

1 Introduction

Statistical machine translation (SMT) starts from
sequence-based models. The well-known phrase-
based (PB) translation model (Koehn et al., 2003)
has significantly advanced the progress of SMT by
extending translation units from single words to
phrases. By using phrases, PB models can cap-
ture local phenomena, such as word order, word
deletion, and word insertion. However, one of the
significant weaknesses in conventional PB models
is that only continuous phrases are used, so gen-
eralizations such as French ne . . . pas to English
not cannot be learned. To solve this, syntax-based
models (Galley et al., 2004; Chiang, 2005; Liu
et al., 2006; Marcu et al., 2006) take tree struc-
tures into consideration to learn translation pat-
terns by using non-terminals for generalization.

Model C D S

(Koehn et al., 2003) • sequence
(Galley and Manning, 2010) • • sequence
(Quirk et al., 2005) and • tree(Menezes and Quirk, 2005)
This work • • graph

Table 1: Comparison between our work and pre-
vious work in terms of three aspects: keeping
continuous phrases (C), allowing discontinuous
phrases (D), and input structures (S).

However, the expressiveness of these models is
confined by hierarchical constraints of the gram-
mars used (Galley and Manning, 2010) since these
patterns still cover continuous spans of an input
sentence.

By contrast, Quirk et al. (2005), Menezes and
Quirk (2005) and Xiong et al. (2007) take treelets
from dependency trees as the basic translation
units. These treelets are connected and may
cover discontinuous phrases. However, their mod-
els lack the ability to handle continuous phrases
which are not connected in trees but could in fact
be extremely important to system performance
(Koehn et al., 2003). Galley and Manning (2010)
directly extract discontinuous phrases from input
sequences. However, without imposing additional
restrictions on discontinuity, the amount of ex-
tracted rules can be very large and unreliable.

Different from previous work (as shown in Ta-
ble 1), in this paper we use graphs as input struc-
tures and propose a graph-based translation model
to translate a graph into a target string. The ba-
sic translation unit in this model is a connected
subgraph which may cover discontinuous phrases.
The main contributions of this work are summa-
rized as follows:

• We propose to use a graph structure to com-
bine a sequence and a tree (Section 3.1). The
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graph contains both local relations between
words from the sequence and long-distance
relations from the tree.

• We present a translation model to translate a
graph (Section 3). The model segments the
graph into subgraphs and uses beam search
to generate a complete translation from left
to right by combining translation options of
each subgraph.

• We present a set of sparse features to explic-
itly model the graph segmentation (Section
4). These features are based on edges in the
input graph, each of which is either inside
a subgraph or connects the subgraph with a
previous subgraph.

• Experiments (Section 5) on Chinese–English
and German–English tasks show that our
model is significantly better than the PB
model. After incorporating the segmentation
model, our system achieves still further im-
provement.

2 Review: Phrase-based Translation

We first review the basic PB translation approach,
which will be extended to our graph-based trans-
lation model. Given a pair of sentences 〈S, T 〉, the
conventional PB model is defined as Equation (1):

p(tI1 | sI1) =
I∏
i=1

p(ti|sai)d(sai , sai−1) (1)

The target sentence T is broken into I phrases
t1 · · · tI , each of which is a translation of a source
phrase sai . d is a distance-based reordering model.
Note that in the basic PB model, the phrase seg-
mentation is not explicitly modeled which means
that different segmentations are treated equally
(Koehn, 2010).

The performance of PB translation relies on the
quality of phrase pairs in a translation table. Con-
ventionally, a phrase pair 〈s, t〉 has two proper-
ties: (i) s and t are continuous phrases. (ii) 〈s, t〉
is consistent with a word alignment A (Och and
Ney, 2004): ∀(i, j) ∈ A, si ∈ s ⇔ tj ∈ t and
∃si ∈ s, tj ∈ t, (i, j) ∈ A.

PB decoders generate hypotheses (partial trans-
lations) from left to right. Each hypothesis main-
tains a coverage vector to indicate which source
words have been translated so far. A hypothe-
sis can be extended on the right by translating an
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Figure 1: Beam search for phrase-based MT. • de-
notes a covered source position while indicates
an uncovered position (Liu and Huang, 2014).

uncovered source phrase. The translation process
ends when all source words have been translated.

Beam search (as in Figure 1) is taken as an ap-
proximate search strategy to reduce the size of the
decoding space. Hypotheses which cover the same
number of source words are grouped in a stack.
Hypotheses can be pruned according to their par-
tial translation cost and an estimated future cost.

3 Graph-Based Translation

Our graph-based translation model extends PB
translation by translating an input graph rather
than a sequence to a target string. The graph is seg-
mented into a sequence of connected subgraphs,
each of which corresponds to a target phrase, as in
Equation (2):

(2)

p(tI1 | G(s̃I1))

=
I∏
i=1

p(ti|G(s̃ai))d(G(s̃ai), G(s̃ai−1))

≈
I∏
i=1

p(ti|G(s̃ai))d(s̃ai , s̃ai−1)

where G(s̃i) denotes a connected source subgraph
which covers a (discontinuous) phrase s̃i.

3.1 Building Graphs
As a more powerful and natural structure for sen-
tence modeling, a graph can model various kinds
of word-relations together in a unified represen-
tation. In this paper, we use graphs to combine
two commonly used relations: bigram relations
and dependency relations. Figure 2 shows an ex-
ample of a graph. Each edge in the graph denotes
either a dependency relation or a bigram relation.
Note that the graph we use in this paper is directed,
connected, node-labeled and may contain cycles.

Bigram relations are implied in sequences and
provide local and sequential information on pairs
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2010
2010Nian

FIFA
FIFA

World Cup
Shijiebei

in
Zai

South Africa
Nanfei

successfully
Chenggong

held
Juxing

Figure 2: An example graph for a Chinese sen-
tence. Each node includes a Chinese word and its
English meaning. Dashed red lines are bigram re-
lations. Solid lines are dependency relations. Dot-
ted blue lines are shared by bigram and depen-
dency relations.

of continuous words. Phrases connected by bi-
gram relations (i.e. continuous phrases) are known
to be useful to improve phrase coverage (Hanne-
man and Lavie, 2009). By contrast, dependency
relations come from dependency structures which
model syntactic and semantic relations between
words. Phrases whose words are connected by
dependency relations (also known as treelets) are
linguistic-motivated and thus more reliable (Quirk
et al., 2005).

By combining these two relations together in
graphs, we can make use of both continuous and
linguistic-informed discontinuous phrases as long
as they are connected subgraphs.

3.2 Training
Different from PB translation, the basic translation
units in our model are subgraphs. Thus, during
training, we extract subgraph–phrase pairs instead
of phrase pairs on parallel graph–string sentences
associated with word alignments.1 An example of
a translation rule is as follows:

FIFA Shijiebei Juxing FIFA World Cup was held

Note that the source side of a rule in our model is a
graph which can be used to cover either a continu-
ous phrase or a discontinuous phrase according to
its match in an input graph during decoding.

The algorithm for extracting translation rules is
shown in Algorithm 1. This algorithm traverses
each phrase pair 〈s̃, t〉, which is within a length
limit and consistent with a given word alignment

1Different from translation rules in conventional syntax-
based MT, rules in our model are not learned based on syn-
chronous grammars and so non-terminals are disallowed.

Algorithm 1: Algorithm for extracting trans-
lation rules from a graph-string pair.
Data: A word-aligned graph–string pair

(G(S), T, A)
Result: A set of translation pairs R

1 for each phrase t in T : | t |≤ L do
2 find the minimal (may be discontinuous)

phrase s̃ in S so that | s̃ |≤ L and 〈s̃, t〉 is
consistent with A ;

3 Queue Q = {s̃};
4 while Q is not empty do
5 pop an element s̃ off;
6 if G(s̃) is connected then
7 add 〈G(s̃), t〉 to R;
8 end
9 if | s̃ |< L then

10 for each unaligned word si
adjacent to s̃ do

11 s̃′ = extend s̃ with si;
12 add s̃′ to Q;
13 end
14 end
15 end
16 end

(lines 1–2), and outputs 〈G(s̃), t〉 if s̃ is covered by
a connected subgraph G(s̃) (lines 6–8). A source
phrase can be extended with unaligned source
words which are adjacent to the phrase (lines 9–
14). We use a queue Q to store all phrases which
are consistently aligned to the same target phrase
(line 3).

3.3 Model and Decoding
We define our model in the log-linear framework
(Och and Ney, 2002) over a derivation D =
r1r2 · · · rN , as in Equation (3):

p(D) ∝
∏
i

φi(D)λi (3)

where ri are translation rules, φi are features de-
fined on derivations and λi are feature weights.
In our experiments, we use the standard 9 fea-
tures: two translation probabilities p(G(s)|t) and
p(t|G(s)), two lexical translation probabilities
plex(s|t) and plex(t|s), a language model lm(t)
over a translation t, a rule penalty, a word penalty,
an unknown word penalty and a distortion feature
d for distance-based reordering.

The calculation of the distortion feature d in our
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Figure 3: Distortion calculation for both continu-
ous and discontinuous phrases in a derivation.

.

model is different from the one used in conven-
tional PB models, as we need to take disconti-
nuity into consideration. In this paper, we use a
distortion function defined in Galley and Manning
(2010) to penalize discontinuous phrases that have
relatively long gaps. Figure 3 shows an example of
calculating distortion for discontinuous phrases.

Our graph-based decoder is very similar to the
PB decoder except that, in our decoder, each hy-
pothesis is extended by translating an uncovered
subgraph instead of a phrase. Positions covered
by the subgraph are then marked as translated.

4 Graph Segmentation Model

Each derivation in our graph-based translation
model implies a sequence of subgraphs (also
called a segmentation). By default, similar to
PB translation, our model treats each segmenta-
tion equally as shown in Equation (2). However,
previous work on PB translation has suggested
that such segmentations provide useful informa-
tion which can improve translation performance.
For example, boundary information in a phrase
segmentation can be used for reordering models
(Xiong et al., 2006; Cherry, 2013).

In this paper, we are interested in directly mod-
eling the segmentation using information from
graphs. By making the assumption that each sub-
graph is only dependent on previous subgraphs,
we define a generative process over a graph seg-
mentation as in Equation (4):

(4)

p(G(s̃1) · · ·G(s̃I))

=
I∏
i=1

P (G(s̃i)|G(s̃1) · · ·G(s̃i−1))

Instead of training a stand-alone discriminative
segmentation model to assign each subgraph a
probability given previous subgraphs, we imple-
ment the model via sparse features, each of which
is extracted at run-time during decoding and then

ZH–EN #Sents

Train 1.5M+
MT02 (Dev) 878
MT04 1,597
MT05 1,082

DE–EN #Sents

Train 2M+
WMT11 (Dev) 3,003
WMT12 3,003
WMT13 3,000

Table 2: The number of sentences in our corpora.

directly added to the log-linear framework, so that
these features can be tuned jointly with other fea-
tures (of Section 3.3) to directly maximize the
translation quality.

Since a segmentation is obtained by breaking up
the connectivity of an input graph, it is intuitive
to use edges to model the segmentation. Accord-
ing to Equation (4), for a current subgraph Gi, we
only consider those edges which are either inside
Gi or connectGi with a previous subgraph. Based
on these edges, we extract sparse features for each
node in the subgraph. The set of sparse features is
defined as follows:{

n.w
n.c

}
×
{
n′.w
n′.c

}
×

C
P
H

×
{
in
out

}

where n.w and n.c are the word and class of the
current node n, and n′.w and n′.c are the word
and class of a node n′ connected to n. C, P , and
H denote that the node n′ is in the current sub-
graph Gi or the adjacent previous subgraph Gi−1

or other previous subgraphs, respectively. Note
that we treat the adjacent previous subgraph differ-
ently from others since information from the last
previous unit is quite useful (Xiong et al., 2006;
Cherry, 2013). in and out denote that the edge is
an incoming edge or outgoing edge for the current
node n. Figure 4 shows an example of extracting
sparse features for a subgraph.

Inspired by success in using sparse features in
SMT (Cherry, 2013), in this paper we lexicalize
only on the top-100 most frequent words. In ad-
dition, we group source words into 50 classes by
using mkcls which should provide useful general-
ization (Cherry, 2013) for our model.

5 Experiment

We conduct experiments on Chinese–English
(ZH–EN) and German–English (DE–EN) transla-
tion tasks. Table 2 provides a summary of our cor-
pra. Our ZH–EN training corpus contains 1.5M+
sentences from LDC. NIST 2002 (MT02) is taken
as a development set to tune weights, and NIST
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2010
2010Nian

FIFA
FIFA

World Cup
Shijiebei

in
Zai

South Africa
Nanfei

successfully
Chenggong

held
Juxing

2010 FIFA World Cup was held successfully in South Africa

r1

r2

r3

Sparse features for r3:

W:Zai W:Nanfei C in
W:Zai W:Nanfei C out
W:Zai W:Shijiebei P out
W:Zai W:Juxing P in
W:Nanfei W:Zai C in
W:Nanfei W:Zai C out
W:Nanfei W:Chenggong C in
W:Chenggong W:Nanfei C out
W:Chenggong W:Juxing P in

C:4 W:Nanfei C in
C:4 W:Nanfei C out
C:4 W:Shijiebei P out
C:4 W:Juxing P in
C:5 W:Zai C in
C:5 W:Zai C out
C:5 W:Chenggong C in
C:6 W:Nanfei C out
C:6 W:Juxing P in

W:Zai C:5 C in
W:Zai C:5 C out
W:Zai C:3 P out
W:Zai C:7 P in
W:Nanfei C:4 C in
W:Nanfei C:4 C out
W:Nanfei C:6 C in
W:Chenggong C:5 C out
W:Chenggong C:7 P in

C:4 C:5 C in
C:4 C:5 C out
C:4 C:3 P out
C:4 C:7 P in
C:5 C:4 C in
C:5 C:4 C out
C:5 C:6 C in
C:6 C:5 C out
C:6 C:7 P in

Figure 4: An illustration of extracting sparse features for each node in a subgraph during decoding. The
decoder segments the graph in Figure 2 into three subgraphs (solid rectangles) and produces a complete
translation by combining translations of each subgraph (dashed rectangles). In this figure, the class of a
word is randomly assigned.

2004 (MT04) and NIST 2005 (MT05) are two test
sets used to evaluate the systems. The Stanford
Chinese word segmenter (Chang et al., 2008) is
used to segment Chinese sentences. The Stan-
ford dependency parser (Chang et al., 2009) parses
a Chinese sentence into a projective dependency
tree which is then converted to a graph by adding
bigram relations.

The DE–EN training corpus is from WMT
2014, including Europarl V7 and News Commen-
tary. News-Test 2011 (WMT11) is taken as a de-
velopment set while News-Test 2012 (WMT12)
and News-Test 2013 (WMT13) are test sets. We
use mate-tools2 to perform morphological analy-
sis and parse German sentences (Bohnet, 2010).
Then, MaltParser3 converts a parse result into a
projective dependency tree (Nivre and Nilsson,
2005).

5.1 Settings

In this paper, we mainly report results from five
systems under the same configuration. PBMT is
built by the PB model in Moses (Koehn et al.,

2http://code.google.com/p/mate-tools/
3http://www.maltparser.org/

2007). Treelet extends PBMT by taking treelets
as the basic translation units (Quirk et al., 2005;
Menezes and Quirk, 2005). We implement a
Treelet model in Moses which produces transla-
tions from left to right and uses beam search for
decoding. DTU extends the PB model by allow-
ing discontinuous phrases (Galley and Manning,
2010). We implement DTU with source disconti-
nuity in Moses.4 GBMT is our basic graph-based
translation system while GSM adds the graph seg-
mentation model into GBMT. Both systems are
implemented in Moses.

Word alignment is performed by GIZA++ (Och
and Ney, 2003) with the heuristic function grow-
diag-final-and. We use SRILM (Stolcke, 2002)
to train a 5-gram language model on the Xinhua
portion of the English Gigaword corpus 5th edi-
tion with modified Kneser-Ney discounting (Chen
and Goodman, 1996). Batch MIRA (Cherry and
Foster, 2012) is used to tune weights. BLEU (Pa-
pineni et al., 2002), METEOR (Denkowski and
Lavie, 2011), and TER (Snover et al., 2006) are
used for evaluation.

4The re-implementation of DTU in Moses makes it easier
to meaningfully compare systems under the same settings.
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Metric System ZH–EN DE–EN
MT04 MT05 WMT12 WMT13

BLEU ↑

PBMT 33.2 31.8 19.5 21.9
Treelet 33.8∗ 31.7 19.6 22.1∗

DTU 34.5∗ 32.3∗ 19.8∗ 22.3∗
GBMT 34.7∗ 32.4∗ 19.8∗ 22.4∗
GSM 34.9∗+ 32.7∗+ 20.3∗+ 22.9∗+

METEOR ↑

PBMT 32.1 32.3 28.0 29.2
Treelet 31.9 31.8 28.0 29.1
DTU 32.3∗ 32.4 28.2∗ 29.5∗
GBMT 32.4∗+ 32.5∗ 28.2∗ 29.4∗
GSM 32.7∗+ 32.6∗+ 28.5∗+ 29.8∗+

TER ↓

PBMT 60.6 61.6 63.7 60.2
Treelet 60.1∗ 61.4 63.2∗ 59.6∗

DTU 60.0∗ 61.5 63.5∗ 59.8∗

GBMT 59.8∗+ 61.3∗ 63.5∗ 59.8∗

GSM 60.5 62.1 63.1∗+ 59.3∗+

Table 3: Metric scores for all systems on Chinese–English (ZH–EN) and German–English (DE–EN).
Each score is an average over three MIRA runs (Clark et al., 2011). ∗ means a system is significantly
better than PBMT at p ≤ 0.01. Bold figures mean a system is significantly better than Treelet at p ≤ 0.01.
+ means a system is significantly better than DTU at p ≤ 0.01. In this table, we mark a system by
comparing it with previous ones.

5.2 Results and Discussion

Table 3 shows our evaluation results. We find
that our GBMT system is significantly better than
PBMT as measured by all three metrics across all
test sets. Specifically, the improvements are up to
+1.5/+0.5 BLEU, +0.3/+0.2 METEOR, and -0.8/-
0.4 TER on ZH–EN and DE–EN, respectively.
This improvement is reasonable as our system al-
lows discontinuous phrases which can reduce data
sparsity and handle long-distance relations (Gal-
ley and Manning, 2010). Another argument for
discontinuous phrases is that they allow the de-
coder to use larger translation units which tend to
produce better translations (Galley and Manning,
2010). However, this argument was only verified
on ZH–EN. Therefore, we are interested in seeing
whether we have the same observation in our ex-
periments on both language pairs.

We count the used translation rules in MT02 and
WMT11 based on different target lengths. The re-
sults are shown in Figure 5. We find that both DTU
and GBMT indeed tend to use larger translation
units on ZH–EN. However, more smaller transla-
tion units are used on DE–EN.5 We presume this
is because long-distance reordering is performed
more often on ZH–EN than on DE–EN. Based on
the fact that the distortion function d measures the
reordering distance, we find that the average dis-
tortion value in PB on ZH–EN MT02 is 18.4 and

5We have the same finding on all test sets.

System # Rules
ZH–EN DE–EN

DTU 224M+ 352M+
GBMT 99M+ 153M+

Table 4: The number of rules in DTU and GBMT.

3.5 on DE–EN WMT11. Our observations suggest
that the argument that discontinuous phrases allow
decoders to use larger translation units should be
considered with caution when we explain the ben-
efit of discontinuity on different language pairs.

Compared to PBMT, the Treelet system does
not show consistent improvements. Our system
achieves significantly better BLEU and METEOR
scores than Treelet on both ZH–EN and DE–EN,
and a better TER score on DE–EN. This suggests
that continuous phrases are essential for system ro-
bustness since it helps to improve phrase coverage
(Hanneman and Lavie, 2009). Lower phrase cov-
erage in Treelet results in more short phrases be-
ing used, as shown in Figure 5. In addition, we
find that both DTU and our systems do not achieve
consistent improvements over Treelet in terms of
TER. We observed that both DTU and our systems
tend to produce longer translations than Treelet,
which might cause unreliable TER evaluation in
our experiments as TER favours shorter sentences
(He and Way, 2010).

Since discontinuous phrases produced by us-
ing syntactic information are fewer in number but
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Figure 5: Phrase Length Histogram for MT02 and WMT11.

more reliable (Koehn et al., 2003), our GBMT sys-
tem achieves comparable performance with DTU
but uses significantly fewer rules, as shown in Ta-
ble 4. After integrating the graph segmentation
model to help subgraph selection, GBMT is fur-
ther improved and the resulted system G2S has
significantly better evaluation scores than DTU
on both language pairs. However, our segmenta-
tion model is more helpful on DE–EN than ZH–
EN. We find that the number of features learned
on ZH–EN (25K+) is much less than on DE–EN
(49K+). This may result in a lower feature cov-
erage during decoding. The lower number of fea-
tures in ZH–EN could be caused by the fact that
the development set MT02 has many fewer sen-
tences than WMT11. Accordingly, we suggest
to use a larger development set during tuning to
achieve better translation performance when the
segmentation model is integrated.

Our current model is more akin to addressing
problems in phrase-based and treelet-based mod-
els by segmenting graphs into pieces rather than
extracting a recursive grammar. Therefore, simi-
lar to those models, our model is weak at phrase
reordering as well. However, we are interesting in
the potential power of our model by incorporating
lexical reordering (LR) models and comparing it
with syntax-based models.

Table 5 shows BLEU scores of the hierarchi-
cal phrase-based (HPB) system (Chiang, 2005) in
Moses6 and GBMT combined with a word-based

6For a fairer comparison, we disallow target discontinuity
in HPB rules. This means that a non-terminal on the target
side is either the first symbol or the last symbol.

System ZH–EN DE–EN
MT04 MT05 WMT12 WMT13

GBMT+LR 36.0 33.9 20.6 23.6
HPB 36.1 34.1 20.3 22.8

Table 5: BLEU scores of a Moses hierarchi-
cal phrase-based system (HPB) and our system
(GBMT) with a word-based lexical reordering
model (LR).

LR model (Koehn et al., 2005). We find that
the LR model significantly improves our system.
GBMT+LR is comparable with the Moses HPB
model on Chinese–English and better than HPB
on German–English.

5.3 Examples

Figure 6 shows three examples from MT04 to bet-
ter explain the differences of each system. Exam-
ple 1 shows that systems which allow discontin-
uous phrases (namely Treelet, DTU, GBMT, and
GSM) successfully translate a Chinese colloca-
tion “Yu . . . Wuguan” to “have nothing to do with”
while PBMT fails to catch the generalization since
it only allows continuous phrases.

In Example 2, Treelet translates a discontinu-
ous phrase “Dui . . . Zuofa” (to . . . practice) only as
“to” where an important target word “practice” is
dropped. By contrast, bigram relations allow our
systems (GBMT and GSM) to find a better phrase
to translate: “De Zuofa” to “of practice”. In ad-
dition, DTU translates a discontinuous phrase “De
Zuofa . . . Buman” to “dissatisfaction with the ap-
proach of”. However, the phrase is actually not
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Example 1

PBMT: the united
states has indicated
that the united states
and north korea dele-
gation has visited

Treelet: the united
states has indicated
that it has nothing to
do with the us del-
egation visited the
north korea

DTU: the united
states has indicated
that it has nothing to
do with the us dele-
gation visited north
korea

GBMT: the united
states has indicated
that it has nothing to
do with the us dele-
gation visited north
korea

GSM: the united
states has indicated
that it has nothing to
do with the us dele-
gation visited north
korea

REF: the american government said that it has nothing to do with the american delegation to visit north korea

american government said with visit north korea of american delegation no tie

Meiguo Zhengfu Biaoshi Yu Zoufang BeiHan De Meiguo Daibiaotuan Wuguan

the united states has indicated that it has nothing to do with the us delegation visited north korea

Example 2

PBMT: the united
states government to
brazil has repeatedly
expressed its dissatis-
faction .

Treelet: the govern-
ment of brazil to the
united states has on
many occasions ex-
pressed their discon-
tent .

DTU: the united
states has repeat-
edly expressed its
dissatisfaction with
the approach of the
government to brazil .

GBMT: the us gov-
ernment has repeat-
edly expressed dis-
satisfaction with the
practice of brazil .

GSM: the us govern-
ment has repeatedly
expressed dissatisfac-
tion with the practice
of brazil .

REF: the us government has expressed their resentment against this practice of brazil on many occasions .

US government to Brazil of practice already many times express dissatisfaction .

Meiguo Zhengfu Dui Baxi De Zuofa Yijing Duo Ci Biaoshi Buman .

the us government has repeatedly expressed dissatisfaction with the practice of brazil .

Example 3

PBMT: the govern-
ment and all sectors
of society should
continue to explore
in depth and draw on
collective wisdom .

Treelet: the govern-
ment must continue
to make in-depth dis-
cussions with various
sectors of the com-
munity and the col-
lective wisdom .

DTU: the govern-
ment must continue
to work together with
various sectors of the
community to make
an in-depth study and
draw on collective
wisdom .

GBMT: the govern-
ment must continue
to work together with
various sectors of the
community in-depth
study and draw on
collective wisdom .

GSM: the govern-
ment must continue
to make in-depth dis-
cussions with various
sectors of the com-
munity and draw on
collective wisdom .

REF: the government must continue to hold thorough discussions with all walks of life to pool the wisdom of the masses .

government must continue with society each community make in-depth discussion , draw collective wisdom .

Zhengfu Wubi Jixu Yu Shehui Ge Jie Zuo Shengru Taolun , Jisi Guangyi .

the government must continue to make in-depth discussions with
various sectors
of the community

and draw on
collective wisdom .

Figure 6: Translation examples from MT04 produced by different systems. Each source sentence is
annotated by dependency relations and additional bigram relations (dotted red edges). We also annotate
phrase alignments produced by our system GSM.
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linguistically motivated and could be unreliable.
By disallowing phrases which are not connected
in the input graph, GBMT and GSM produce bet-
ter translations.

Example 3 illustrates that our graph segmenta-
tion model helps to select better subgraphs. Af-
ter obtaining a partial translation “the government
must”, GSM chooses to translate a subgraph which
covers a discontinuous phrase “Jixu . . . Zuo” to
“continue to make” while GBMT translates “Jixu
Yu” (continue . . . with) to “continue to work to-
gether with”. By selecting the proper subgraph to
translate, GSM performs a better reordering on the
translation.

6 Related Work

Starting from sequence-based models, SMT has
been benefiting increasingly from complex struc-
tures.

Sequence-based MT: Since the breakthrough
made by IBM on word-based models in the 1990s
(Brown et al., 1993), SMT has developed rapidly.
The PB model (Koehn et al., 2003) advanced the
state-of-the-art by translating multi-word units,
which makes it better able to capture local phe-
nomena. However, a major drawback in PBMT
is that only continuous phrases are considered.
Galley and Manning (2010) extend PBMT by al-
lowing discontinuity. However, without linguis-
tic structure information such as syntax trees,
sequence-based models can learn a large amount
of phrases which may be unreliable.

Tree-based MT: Compared to sequences, trees
provide recursive structures over sentences and
can handle long-distance relations. Typically,
trees used in SMT are either phrasal structures
(Galley et al., 2004; Liu et al., 2006; Marcu et
al., 2006) or dependency structures (Menezes and
Quirk, 2005; Xiong et al., 2007; Xie et al., 2011;
Li et al., 2014). However, conventional tree-
based models only use linguistically well-formed
phrases. Although they are more reliable in the-
ory, discarding all phrase pairs which are not lin-
guistically motivated is an overly harsh decision.
Therefore, exploring more translation rules usu-
ally can significantly improve translation perfor-
mance (Marcu et al., 2006; DeNeefe et al., 2007;
Wang et al., 2007; Mi et al., 2008).

Graph-based MT: Compared to sequences and
trees, graphs are more general and can represent
more relations between words. In recent years,

graphs have been drawing quite a lot of attention
from researchers. Jones et al. (2012) propose a
hypergraph-based translation model where hyper-
graphs are taken as a meaning representation of
sentences. However, large corpora with annotated
hypergraphs are not readily available for MT. Li
et al. (2015) use an edge replacement grammar to
translate dependency graphs which are converted
from dependency trees by labeling edges. How-
ever, their model only focuses on subgraphs which
cover continuous phrases.

7 Conclusion

In this paper, we extend the conventional phrase-
based translation model by allowing discontinuous
phrases. We use graphs which combine bigram
and dependency relations together as inputs and
present a graph-based translation model. Exper-
iments on Chinese–English and German–English
show our model to be significantly better than the
phrase-based model as well as other more sophisti-
cated models. In addition, we present a graph seg-
mentation model to explicitly guide the selection
of subgraphs. In experiments, this model further
improves our system.

In the future, we will extend this model to allow
discontinuity on target sides and explore the possi-
bility of directly encoding reordering information
in translation rules. We are also interested in using
graphs for neural machine translation to see how it
can translate and benefit from graphs.
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