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Abstract

This paper describes WriteAhead, a
resource-rich, Interactive Writing Envi-
ronment that provides L2 learners with
writing prompts, as well as ”get it right”
advice, to helps them write fluently and
accurately. The method involves automat-
ically analyzing reference and learner cor-
pora, extracting grammar patterns with ex-
ample phrases, and computing dubious,
overused patterns. At run-time, as the user
types (or mouses over) a word, the system
automatically retrieves and displays gram-
mar patterns and examples, most relevant
to the word. The user can opt for patterns
from a general corpus, academic corpus,
learner corpus, or commonly overused du-
bious patterns found in a learner corpus.
WriteAhead proactively engages the user
with steady, timely, and spot-on informa-
tion for effective assisted writing. Pre-
liminary experiments show that WriteA-
head fulfills the design goal of foster-
ing learner independence and encouraging
self-editing, and is likely to induce better
writing, and improve writing skills in the
long run.

1 Introduction

The British Council has estimated that roughly
a billion people are learning and using English
around the world (British Council 1997), mostly
as a second language, and the numbers are grow-
ing. Clearly, many of L2 speakers of English feel
themselves to be at a disadvantage in work that
requires communication in English. For exam-
ple, Flowerdew (1999) reports that a third of Hong

Kong academics feel disadvantged in publishing a
paper internationally, as compared to native speak-
ers.

These L2 speakers and learners provide moti-
vation for research and development of computer
assisted language learning, in particular tools that
help identify and correct learners’ writing errors.
Much work has been done on developing tech-
nologies for automated gramatical error correc-
tion (GEC) to assist language learners (Leacock,
Chodorow, Gamon, and Tetreault 2010). How-
ever, such efforts have not led to the development
of a production system (Wampler, 2002).

However, Milton (2010) pointed out that fo-
cusing on fully-automatic, high quality GEC so-
lutions has overlooked the long-term pedagogi-
cal needs of L2 learner writers. Learners could
be more effectively assisted in an interactive
writring environment (IWE) that constantly pro-
vides context-sensitive writing suggestions, right
in the process of writing or self-editing.

Consider an online writer who starts a sentence
with ”This paper discusses ....” The best way the
system can help is probably displaying the patterns
related to the last word discuss such as discuss
something and discusses with someone, that help
the user to write accurately and fluently. If the user
somehow writes or pastes in some incorrect sen-
tence, ”This paper discusses about the influence of
interference and reflection of light.” The best way
the system can help is probably displaying the er-
roneous or overused pattern, discuss about some-
thing, that prompts the user to change the sentence
to ”This paper discusses the influence of interfer-
ence and reflection of light.”

Intuitively, by extracting and displaying such
patterns and examples, distilled from a very large
corpus, we can guide the user towards writing flu-

139



Figure 1: Example WriteAhead session where an user typed ”This paper present method”.

ently, and free of grammatical errors.
We present a new system, WriteAhead, that

proactively provides just-in-time writing sugges-
tions to assist student writers, while they type
away. Example WriteAhead suggestions for ”We
discussed ...” are shown in Figure 1. WriteAhead
has determined the best patterns and examples ex-
tracted from the underlying corpus. WriteAhead
learns these patterns and examples automatically
during training by analyzing annotated dictionary
examples and automatically tagged sentences in a
corpus. As will be described in Section 4, we used
the information on collocation and syntax (ICS)
for example sentences from online Macmillan En-
glish Dictionary, as well as in the Citeseer x cor-
pus, to develop WriteAhead.

At run-time, WriteAhead activates itself as the
user types in yet another word (e.g., ”discussed”
in the prefix ”We discussed ...”). WriteAhead then
retrieves patterns related to the last word. WriteA-
head goes one step further and re-ranks the sug-
gestions, in an attempt to move most relevant sug-
gestions to the top. WriteAhead can be accessed at
http://writehead.nlpweb.org/.

In our prototype, WriteAhead returns the sug-
gestions to the user directly (see Figure 1); alterna-
tively, the suggestions returned by WriteAhead can
be used as input to an automatic grammar checker
or an essay rater.

The rest of this paper is organized as follows.

We review the related work in the next section.
Then we present our method for automatically
learning normal and overused grammar patterns
and examples for use in an interactive writing en-
vironment (Section 3). Section 5 gives a demon-
stration script of the interactive writing environ-
ment.

2 Related Work

Much work described in a recent survey (Lea-
cock, Chodorow, Gamon, and Tetreault 2010)
show that the elusive goal of fully-automatic and
high-quality grammatical error correction is far
from a reality. Moreover, Milton (2010) pointed
out that we should shift the focus and responsi-
bility to the learner, since no conclusive evidence
shows explicit correction by a teacher or machine
is leads to improved writing skills (Truscott, 1996;
Ferris and Hedgcock, 2005). In this paper, we
develop an interactive writing environment (IWE)
that constantly provides context-sensitive writing
suggestions, right in the process of writing or self-
editing.

Autocompletion has been widely used in many
language production tasks (e.g., search query and
translation). Examples include Google Suggest
and TransType, which pioneered the interactive
user interface for statistical machine translation
(Langlais et al., 2002; Casacuberta et al. 2009).
However, previous work focuses exclusively on
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————————————————————————-
Procedure ExtractPatterns(Sent, Keywords, Corpus)

(1) Learning phrase templates for grammar patterns of
content words (Section 3.1.1)

(2) Extracting grammar patterns for all keywords in the
given corpus based on phrase templates (Section 3.1.2)

(3) Extracting exemplary instances for all patterns of all
keywords (Section 3.1.3)

————————————————————————-
Figure 2: Outline of the pattern extraction process

providing surface suggestions lacking in general-
ity to be truely effective for all users in different
writing situation. In contrast, we provide sugges-
tions in the form of theoretical and pedagogically
sound language representation, in the form of Pat-
tern Grammar (Hunston and Francis 2000). We
also provide concise examples much like concor-
dance advocated by Sinclair (1991).

Much work has been done in deriving context-
free grammar from a corpus, while very little work
has been done in deriving pattern grammar. Ma-
son and Hunston (2004) reports on a pilot study
to automatically recognize grammar patterns for
verbs, using only limited linguistic knowledge. It
is unclear whether their method can scale up and
extend to other parts of speech. In contrast, we
show it is feasible to extract grammar patterns for
nouns, verbs, and adjectives on a large scale using
a corpus with hundreds of million words.

Researchers have been extracting error patterns
in the form of word or part of speech (POS) se-
quencesto detect real-word spelling errors (e.g.,
Golding and Schabes, 1996; Verberne, 2002). For
example, the sequence of det. det. n. definitely
indicate an error, while v. prep. adv. might or
might not indicate an error. For this reason, func-
tion words (e.g., prepositions) are not necessarily
reduced to POS tags (e.g., v. to adv.). Sometimes,
even lexicalized patterns are necessary (e.g., go to
adv.) Sun et al. (2007) extend n-grams to non-
continuous sequential patterns allowing arbitrary
gaps between words. In a recent study closer to
our work, Gamon (2011) use high-order part-of-
speech ngram to model and detect learner errors
on the sentence level.

In contrast to the previous research in devel-
oping computer assisted writing environment, we
present a system that automatically learns gram-
mar patterns and examples from an academic writ-
ten corpus as well as learner corpus, with the goal
of providing relevant, in-context suggestions.

3 Method

Non-native speakers often make grammatically er-
ror, particularly in using some common words in
writing (e.g., discuss vs. discuss *about). In addi-
tion, using dictionaries or mere lexical suggestions
to assist learner in writing is often not sufficient,
and the information could be irrelevant at times.
In this section, we address such a problem. Given
various corpora (e.g., BNC or CiteseerX) in a spe-
cific genre/domain and a unfinished or completed
sentence, we intend to assist the user by retrieving
and displaying a set of suggestions extracted from
each corpus. For this, by a simple and intuitional
method, we extract grammatical error patterns and
correction such that the top ranked suggestions are
likely to contain a pattern that fits well with the
context of the unfinished sentence. We describe
the stage of our solution to this problem in the sub-
sections that followed.

3.1 Extracting Grammar Patterns

We attempt to extract grammatical error patterns
and correction for keywords in a given corpus to
provide writing suggestions, in order to assist ESL
learners in an online writing session. Our extrac-
tion process is shown in Figure 2.

3.1.1 Learning Extraction Templates In the
first stage of the extraction process (Step (1) in
Figure 2), we generate a set of phrase templates
for identifying grammar patterns based on infor-
mation on Collocation and Syntax (ICS) in an on-
line dictionary.

For example, the dictionary entry of difficulty
may provide examples with ICS pattern, such as
have difficulty/problem (in) doing something:
Six months after the accident, he still has difficulty
walking. This complicated pattern with parenthet-
ical and alternative parts can be expanded to yield
patterns such as have difficulty in doing some-
thing. By generalizing such a pattern into tem-
plates with PoS and phrase tags (e.g., v. np prep.
v np, we can identify instances of such a pattern
in tagged and chunked sentences. For this, we ex-
pand the parentheticals (e.g., (in)) and alternatives
(e.g., difficulty/problem) in ICS.

Then, we replace (non-entry) words in ICS with
the most frequent part of speech tags or phrase
tags, resulting in sequences of POS and phrase la-
bels (e.g., v. difficulty prep. v. np). Then, we
take only the complementation part (e.g., prep.
v. np). Finally, we convert each complementa-
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tion into a regular expression for a RegExp chunk
parser.

Subsequently, we convert each template into a
regular expression of chunk labels, intended to
match instances of potential patterns in tagged
sentences. The chunk labels typically are repre-
sented using B-I-O symbols followed by phrase
type, with each symbol denoting Beginning,
Inside, and Outside of the phrase. Note that in or-
der to identify the head of a phrase, we change the
B-I-O representation to I-H-O, with H signifying
the Head.

3.1.2 Extracting Patterns In the second stage
of the extraction process (Step (2) in Figure 2),
we identify instances of potential patterns for all
keywords. These instances are generated for each
tagged and chunked sentence in the given corpus
and for each chunk templates obtained in the pre-
vious stage.

We adopt the MapReduce framework to extract
salient patterns. At the start of the Map Proce-
dure, we perform part of speech, lemmatization,
and base phrase tagging on the sentences. We
then find all pattern instances anchoring at a key-
word and matching templates obtained in the first
stage. Then, from each matched instance, we ex-
tract the tuple, (grammar pattern, collocation, and
ngrams). Finally, we emit all tuples extracted from
the tagged sentence. The map procedure is applied
to every tagged sentence in the given corpus.

In the reduce part, the ReducePattern Proce-
dure receives a batch of tuples, locally sorted and
grouped by keyword, as is usually done in the
MapReduce paradigm. At the start of the Redu-
cePattern Procedure, we further group the tuple
by pattern. Then we count the number of tuples
of each pattern as well as within-group average
and standard deviation of the counts. Finally, with
these statistics, we filter and identify patterns more
frequent than average by 1 standard deviation. The
ReducePattern Procedure is applied to all tuples
generated in the Map Procedure. Sample output
of this stage is shown in Table 1.

3.1.3 Extracting Exemplary Phrases In the
third and final stage of extraction, we generate ex-
emplary phrases for all patterns of all keywords
of interest using the ReduceCollExm Procedure,
which is done after the Map procedure, and essen-
tially the same as the ReducePattern Procedure in
the second stage (Section 3.1.2).

In the spirit of the GDEX method (Kilgarriff

Table 1: Example difficulty patterns extracted.

Pattern Count Example

difficulty of something 2169 of the problem
difficulty in doing something 1790 in solving the problems
difficulty of doing something 1264 of solving this problem
difficulty in something 1219 in the previous analyses
difficulty with something 755 with this approach
difficulty doing something 718 using it

Note: There are 11200 instances of potential difficulty pat-
terns with average count of 215 and a standard deviation of
318

et al. 2008) of selecting good dictionary exam-
ples for a headword via collocations, we propose
a method for selection good example for a pattern.
For this, we count and select salient collocations
(e.g., the heads of phrases, difficulty in process in
pattern instance difficulty in the optimization pro-
cess). For each selected collocation, we choose
the most frequent instance (augmented with con-
text) to show the user the typical situation of using
the collocation.

These examples also facilitate the system in
ranking patterns (as will be described in Section
3.2). For that, we add one chunk before, and one
chunk after the collocational instance. For exam-
ple, the collocation, method for solution of equa-
tion is exemplified using the authentic corpus ex-
ample, ”method for exact solution of homogeneous
linear differential equation” in the context of ”re-
port a new analytical ... with.” We use a similar
procedure as describe in Section 3.1.2 to extract
examples.

After the grammar patterns are extracted from a
reference corpus and a learner corpus, we normal-
ize and compared the counts of the same pattern in
the two corpora and compuate an overuse ratio for
all patterns and retain patterns with a high overuse
ratio.

3.2 Retrieving and Ranking Suggestions

Once the patterns and examples are automatically
extracted for each keyword in the given corpus,
they are stored and indexed by keyword. At run-
time in a writing session, WriteAway constantly
probes and gets the last keyword of the unfinished
sentence Sent in the text box (or the word under
the mouse when in editing mode). With the key-
word as a query, WriteAway retrieves and ranks all
relevant patterns and examples (Pat and Exm) aim-
ing to move the most relevant information toward
the top. We compute the longest common subse-
quence (LCS) of Sent and an example, Exm. The
examples and patterns are ranked by
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Score(Exm) = | LCS(Exm, Sent) | × Count(Exm).

Score(Pat) =
∑

Score(E), where E is an example of Pat

To improve ranking, we also try to find the
longest similar subsequence (LSS) between the
user input, Sent and retrieved example, Exm
based on distributional word similarity using the
word2vec (Mikolov et al., 2013) cosine distance.
The new score function is:

Score(Exm) = LSS(Exm, Sent) × Count(Exm),

LSS(Exm, Sent) = max sim(Exmsub, Sentsub),

sim(A, B) = 0, if |A| 6= |B|.
sim(A, B) =

∑
word-sim(Ai, Bi), otherwise.

4 Experiments and Results

For training, we used a collection of approxi-
mately 3,000 examples for 700 headwords ob-
tained from online Macmillan English Dictionary
(Rundel 2007), to develop the templates of pat-
terns. The headwords include nouns, verbs, ad-
jectives, and adverbs. We then proceeded to ex-
tract writing grammar patterns and examples from
the British National Corpus (BNC, with 100 mil-
lion words), CiteseerX corpus (with 460 million
words) and Taiwan Degree Thesis Corpus (with
10 million words). First, we used Tsujii POS Tag-
ger (Tsuruoka and Tsujii 2005) to generate tagged
sentences. We applied the proposed method to
generate suggestions for each of the 700 content
keywords in Academic Keyword List.

4.1 Technical Architecture

WriteAhead was implemented in Python and Flask
Web framework. We stored the suggestions in
JSON format using PostgreSQL for faster access.
WriteAhead server obtains client input from a pop-
ular browser (Safari, Chrome, or Firefox) dynam-
ically with AJAX techniques. For uninterrupted
service and ease of scaling up, we chose to host
WriteAhead on Heroku, a cloud-platform-as-a-
service (PaaS) site.

4.2 Evaluating WriteAhead

To evaluate the performance of WriteAhead, we
randomly sampled 100 sentences from a learner
corpus with complementation errors. For each
sentence, we identify the keyword related to the er-
ror and checked whether we have identify an over-
used pattern relevant to the error, and if positive
the rank of this pattern. We then use the Mean Re-
ciprocate Rank (MRR) to measure performance.
Evaluation of WriteAhead showed a MMR rate of

.30 and a recall rate of 24%. The Top 1, 2, 3 recall
rates are 31%, 35%, and 38% respectively

5 Demo script

In this demo, we will present a new writing assis-
tance system, WriteAhead, which makes it easy to
obtain writing tips as you type away. WriteAhead
does two things really well.

First, it examines the unfinished sentence you
just typed in and then automatically gives you tips
in the form of grammar patterns (accompanied
with examples similar to those found in a good
dictionary ) for continuing your sentence.

Second, WriteAhead automatically ranks sug-
gestions relevant to your writing, so you spend less
time looking at tips, and focus more on writing
your text.

You might type in The paper present method
and you are not sure about how to continue. You
will instantly receive tips on grammar as well as
content as shown in Figure 1. At a quick glance,
you might find a relevant pattern, method for do-
ing something with examples such as This paper
presents/describes a method for generating solu-
tions. That could tip you off as to change the sen-
tence into This paper presents a method, thus get-
ting rid of tense and article errors, and help you
continue to write something like method for ex-
tracting information.

Using WriteAhead this way, you could at once
speed up writing and avoid making common writ-
ing errors. This writing and tip-taking process re-
peats until you finish writing a sentence. And as
you start writing a new, the process starts all over
again.

Most autocompletion systems such as Google
Suggest and TransType offer word-level sugges-
tions, while WriteAhead organizes, summarizes,
and ranks suggestions, so you can, at a glance,
grasp complex linguistic information and make
quick decision. Our philosophy is that it is impor-
tant to show information from general to specific
to reduce the cognitive load, so while minding the
form, you can still focus on the content of writing.

WriteAhead makes writing easy and fun, and it
also turns writing into a continuous learning pro-
cess by combining problem solving and informa-
tion seeking together to create a satisfying user
experience. WriteAhead can even help you beat
Writers Block. WriteAhead can be accessed at
http://writeahead.nlpweb.org/.
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6 Conclusion

Many avenues exist for future research and im-
provement of WriteAhead. For example, corpora
for different language levels, genres (e.g., emails,
news) could be used to make the suggestions more
relevant to users with diverse proficiency levels
and interests. NLP, IR, and machine learning
techniques could be used to provide more rele-
vant ranking, to pin-point grammatical errors, or
to generate finer-grained semantic patterns (e.g.,
assist someone in something or attend activ-
ity/institution) Additionally, an interesting direc-
tion is identifying grammar patterns using a CRF
sequence labeller.

In summary, in an attempt to assist learner writ-
ers, we have proposed a method for providing
writing suggestion as a user is typewriting. The
method involves extracting, retrieving, and rank-
ing grammar patterns and examples. We have im-
plemented and evaluated the proposed method as
applied to a scholarly corpus with promising re-
sults.
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