
Proceedings of ACL-IJCNLP 2015 System Demonstrations, pages 91–96,
Beijing, China, July 26-31, 2015. c©2015 ACL and AFNLP

Sharing annotations better: RESTful Open Annotation

Sampo Pyysalo1 Jorge Campos2 Juan Miguel Cejuela2 Filip Ginter1

Kai Hakala1 Chen Li3 Pontus Stenetorp4 Lars Juhl Jensen5

1 University of Turku, Finland, 2 tagtog, Germany,
3 Massachusetts Institute of Technology, United States,

4 University of Tokyo, Japan, 5 University of Copenhagen, Denmark
sampo@pyysalo.net jorge@tagtog.net juanmi@tagtog.net

filip.ginter@utu.fi kai.hakala@utu.fi cli@csail.mit.edu
p.stenetorp@cs.ucl.ac.uk lars.juhl.jensen@cpr.ku.dk

Abstract

Annotations are increasingly created and
shared online and connected with web re-
sources such as databases of real-world
entities. Recent collaborative efforts to
provide interoperability between online
annotation tools and resources have intro-
duced the Open Annotation (OA) model,
a general framework for representing an-
notations based on web standards. Build-
ing on the OA model, we propose to share
annotations over a minimal web inter-
face that conforms to the Representational
State Transfer architectural style and uses
the JSON for Linking Data representation
(JSON-LD). We introduce tools support-
ing this approach and apply it to several
existing annotation clients and servers,
demonstrating direct interoperability be-
tween tools and resources that were pre-
viously unable to exchange information.
The specification and tools are available
from http://restoa.github.io/.

1 Introduction

Annotation is an important task in many fields
ranging from historical and literary study to exper-
imental sciences including biology. The value of
annotations is closely associated with the ability to
share them. The web has become instrumental to
information sharing, and there has thus been much
interest in web-based tools and repositories for the
creation, collaborative editing and sharing of an-
notations. Unfortunately, design and implemen-
tation differences have resulted in poor interoper-
ability, raising barriers to communication and in-
troducing costs from the need to convert between

data models, formats, and protocols to bridge dif-
ferent systems.

To fully interoperate, annotation tools and re-
sources must agree at least on a way to name and
refer to things, an abstract data model, a format
capturing that model, and a communication proto-
col. Here, we suggest a web application program-
ming interface (API) that resolves these questions
by building upon web standards and best practices,
namely Linked Data principles (Bizer et al., 2009),
the Open Annotation data model (Bradshaw et al.,
2013) and its serialization as JSON-LD (Sporny
et al., 2014), and a minimal HTTP-based proto-
col adhering to the Representational State Trans-
fer (REST) architectural style (Fielding and Tay-
lor, 2002). By implementing support for the API
in a variety of independently developed annotation
tools and resources, we demonstrate that this ap-
proach enables interoperability and novel ways of
combining previously isolated methods.

2 Design

We aim to define a minimal web API for shar-
ing annotations that conforms closely to relevant
standards and best practices. This should reduce
implementation effort and ensure generality and
compatibility with related efforts (Section 5). We
next briefly discuss the components of our design.

Linked Data. We use representations based on
the Resource Description Framework (RDF) stan-
dards for modeling data on the web, following
the best practice of using HTTP uniform resource
identifiers (URIs), which provide useful informa-
tion when dereferenced (Bizer et al., 2009).

Open Annotation. We describe text annotations
according to the OA draft W3C standard1, which

1http://www.openannotation.org/

91



body target

“related”

example.org/annotations/1example.org/annotations/1

www.w3.orgwww.w3.orgen.wikipedia.org/wiki/W3Cen.wikipedia.org/wiki/W3C

Figure 1: OA model example. The annotation ex-
presses that the W3C Wikipedia article is related
to the W3C homepage. The three resources are all
in different domains, and the ”related” relation is
not represented explicitly.

is an RDF-based graph representation compati-
ble with linguistic annotation formalisms such as
LAF/GrAF (Ide and Suderman, 2007; Verspoor
and Livingston, 2012). At its most basic level, the
OA model differentiates between three key com-
ponents: annotation, body, and target, where the
annotation expresses that the body is related to the
target of the annotation (Figure 1). The body can
carry arbitrarily complex embedded data.

JSON-LD was recently accepted as a standard
RDF serialization format (Sporny et al., 2014) and
is the recommended serialization of OA. Every
JSON-LD document is both a JSON document and
a representation of RDF data. Figure 2 shows
an example of a simple annotation using the OA
JSON-LD representation.2

{
"@id": "/annotations/1",
"@type": "oa:Annotation",
"target": "/documents/1#char=0,10",
"body": "Person"

}

Figure 2: Example annotation in JSON-LD for-
mat.

RESTful architecture We define a resource-
oriented API that uses HTTP verbs to manipulate
resources (Table 1). The API provides hypermedia
controls in data using JSON-LD and established
link relations, in conformance with best practices
for RESTful APIs (Fielding and Taylor, 2002).

The API defines just two types of resources: an
annotation and a collection of annotations. The
former is defined according to the core OA spec-
ification. While there are no formal standards for
the representation of collections in RESTful APIs,

2The OA JSON-LD @context is understood to be ac-
tive. Relative URLs are interpreted with respect to the HTTP
request base.

Verb Resource Action
GET Annotation Read annotation
GET Collection Read all annotations
PUT Annotation Update annotation
DELETE Annotation Delete annotation
POST Collection Create annotation

Table 1: HTTP verbs, resources, and actions.
Read-only services support only the two GET re-
quests.

the basic collection pattern is well established. We
specify a simple implementation, drawing on rel-
evant draft standards such as Collection+JSON3

and Hydra4.

3 Reference Implementation

To support the development, testing and integra-
tion of RESTful OA API implementations, we
have created a reference server and client as well
as tools for format conversion and validation.

3.1 OA Store

The OA Store is a reference implementation of
persistent, server-side annotation storage that al-
lows clients to create, read, update and delete an-
notations using the API. The store uses MongoDB,
which is well suited to the task as it is a document-
oriented, schema-free database that natively sup-
ports JSON for communication. The API is imple-
mented using the Python Eve framework, which is
specifically oriented towards RESTful web APIs
using JSON and is thus easily adapted to support
OA JSON-LD.

3.2 OA Explorer

The OA Explorer is a reference client that provides
an HTML interface for navigating and visualizing
the contents of any compatible store (Figure 3).
The service first prompts the user for a store URL
and then provides the user with a dynamically gen-
erated view of the contents of the store, which it
discovers using the API. OA Explorer is imple-
mented in Python using the Flask microframework
for web development.

3http://amundsen.com/media-types/
collection/

4http://www.hydra-cg.com/spec/latest/
core/

92



Figure 3: OA Explorer shown visualizing annotations from the CRAFT corpus (Bada et al., 2012) con-
verted to OA and served from the OA Store.

3.3 Format conversion

The OA Adapter is middleware that we created
for sharing Open Annotation data. The software
implements both the client and server sides of the
API and a variety of conversions to and from dif-
ferent serializations of the OA model and related
formats using the OA JSON-LD serialization as
the pivot format. This allows the OA Adapter
to operate transparently between a client and a
server, providing on-the-fly conversions of client
requests from representations favored by the client
into ones favored by the server, and vice versa for
server responses. Standard HTTP content negotia-
tion is used to select the best supported representa-
tions. The adapter implements full support for all
standard RDF serializations: JSON-LD, N-Triples
and N-Quads, Notation3, RDF/XML, TriG, TriX,
and Turtle. With the exception of named graphs
for serializations that do not support them, conver-
sion between these representations is guaranteed
to preserve all information.

In addition to the general, reversible format
translation services provided by the OA Adapter,
we provide scripts for offline conversion of vari-
ous annotation file formats into the OA JSON-LD
format to allow existing datasets to be imported
into OA stores. The following are currently sup-
ported: Penn Treebank format (including PTB II
PAS) (Marcus et al., 1994), a number of variants
of CoNLL formats, including CoNLL-U,5 Know-
tator XML (Ogren, 2006), and the standoff format
used by the BRAT annotation tool (Stenetorp et al.,
2012). We also provide supporting tools for im-
porting files with OA JSON-LD data to a store and
exporting to files over the RESTful OA API.

5http://universaldependencies.github.
io/docs/

3.4 Validation

OA JSON-LD data can be validated on three lev-
els: 1) whether the data is syntactically well-
formed JSON, 2) whether it conforms to the
JSON-LD specification, and 3) whether the ab-
stract information content fulfills the OA data
model. The first two can be accomplished using
any one of the available libraries that implement
the full JSON-LD syntax and API specifications.6

To facilitate also validation of conformity to the
OA data model, we define the core model of the
OA standard using JSON Schema (Galiegue and
Zyp, 2013). The JSON Schema community has
provided tools in various programming languages
for validating JSON against a JSON Schema. The
schema we defined is capable of validating data for
compliance against JSON-LD and OA Core at the
same time. Complementing this support for data
validation, we are also developing a standalone
tool for testing web services for conformance to
the RESTful OA API specification.

4 Adaptation of Existing Tools

In addition to creating reference implementations,
we have adapted two previously introduced web-
based annotation tools to support the API. We
further demonstrate the scope and scalability of
the framework on several publicly available mass-
scale datasets from the biomedical domain, show-
ing how annotations on millions of documents
can be transparently linked across well-established
database services and to non-textual resources
such as gene and protein databases.

6http://json-ld.org

93



Figure 4: BRAT showing Czech dependency annotations from the Universal Dependencies corpus
(http://universaldependencies.github.io/docs/).

Figure 5: tagtog showing entity annotations for a full-text document from PubMed Central.

4.1 BRAT

The brat rapid annotation tool (BRAT) is an open-
source web-based annotation tool that supports a
wide range of text annotation tasks (Stenetorp et
al., 2012). It provides intuitive visualization of
text-bound and relational annotations and allows
for annotations to be created and edited using a
drag-and-drop interface (Figure 4). The server is
a web service implemented in Python, whereas
the client is a browser-based application written in
JavaScript. For annotation storage, the server uses
a file-based back-end with a stand-off file format7.

The original client and server implement a cus-
tom communication protocol, leading to tight cou-
pling between the two. We rewrote the client
and server communication components to use OA
JSON-LD and the RESTful API as an alternative
to the native format and protocol, thus enabling
both components to communicate also with other
clients and servers.

7http://brat.nlplab.org/standoff.html

4.2 tagtog

The tagtog web-based annotation system is de-
signed to combine manual and automatic annota-
tions to accurately and efficiently mark up full-text
articles (Cejuela et al., 2014). The system was
originally developed with a focus on annotating
biological entities and concepts such as genes and
Gene Ontology terms. The web interface is im-
plemented in JavaScript using the Play framework
with Scala. The system is centered on the concept
of user projects, each of which holds a corpus of
annotated documents.

To make tagtog interoperable with other REST-
ful OA clients and servers, we made two major
implementation changes. First, the server can now
serve annotations in OA JSON-LD format, thus
allowing them to be viewed by other clients. Sec-
ond, the tagtog interface can visualize and edit OA
JSON annotations from other OA stores, without
a backing tagtog project. Figure 5 shows a sample
document annotated in tagtog.

94



4.3 Biomedical entity recognition resources

We implemented the API for four large-scale
databases of biomedical entity mentions. The
COMPARTMENTS database integrates evidence
on protein subcellular localization (Binder et al.,
2014), and TISSUES and DISEASES similarly in-
tegrate evidence on tissue expression and disease-
associations of human genes, respectively (Santos
et al., 2015; Pletscher-Frankild et al., 2015). All
three resources include a text mining component
based on the highly efficient NER engine used
also for detection of species names and names of
other taxa in the ORGANISMS database (Pafilis et
al., 2014). Together, these databases contain over
123M mentions of genes/proteins, cellular compo-
nents, tissues and cell lines, disease terms and tax-
onomic identifiers. This dataset is regularly pre-
computed for the entire Medline corpus, which
currently consists of more than 24M abstracts and
3B tokens.

To make this large collection of automatic an-
notations available as OA JSON-LD, we defined
the annotations of each abstract to be a separate
(sub)collection of a document resource, accessible
using URL patterns of the form http://.../
document/{docid}/annotations/. The
web services were implemented as part of the
Python framework common to all four databases.
They query a PostgreSQL back-end for text and
annotations, which are formatted as OA JSON-LD
using the standard Python json module.

4.4 EVEX

The EVEX database is a collection of events from
the molecular biology domain obtained by pro-
cessing the entire collection of PubMed articles
and PubMed Central Open Access full-text arti-
cles (Van Landeghem et al., 2013), together con-
stituting a corpus of nearly 6B tokens. In to-
tal, EVEX contains 40M individual events among
77M entity mentions. The events are of 24 dif-
ferent types (e.g. POSITIVE REGULATION, PHOS-
PHORYLATION) and the participants are primar-
ily genes and proteins. Where possible, the entity
mentions are grounded to their corresponding En-
trez Gene database identifiers.

The event structures consist of entity mentions,
trigger phrases expressing events, and typed
relations identifying the roles that the entities play
in the events. All of this data is accessible through
a newly implemented EVEX API compliant with

the OA JSON-LD format. Every document is de-
fined as a separate annotation collection following
the approach described in Section 4.3. The EVEX
web service is written in Python using the Django
web framework. Data are stored in a MySQL
database and the OA JSON-LD interface uses the
standard Python json module for formatting.

5 Related work

Our approach builds directly on the OA data
model (Bradshaw et al., 2013), which harmonizes
the earlier Open Annotation Collaboration (Hasl-
hofer et al., 2011) and Annotation Ontology Ini-
tiative (Ciccarese et al., 2011) efforts and is cur-
rently developed further under the auspices of the
W3C Web Annotation WG.8 Approaches build-
ing on RESTful architectures and JSON-LD are
also being pursued by the Linguistic Data Con-
sortium (Wright, 2014) and the Language Appli-
cation Grid (Ide et al., 2014), among others. A
number of annotation stores following similar pro-
tocols have also been released recently, includ-
ing Lorestore (Hunter and Gerber, 2012), PubAn-
notation (Kim and Wang, 2012), the Annotator.js
store9, and NYU annotations10.

6 Conclusions and future work

We have proposed to share annotations using a
minimal RESTful interface for Open Annotation
data in JSON-LD. We introduced reference im-
plementations of a server, client, validation and
conversion tools, and demonstrated the integra-
tion of several independently developed annota-
tion tools and resources using the API. In future
work, we will continue to develop the API speci-
fication further in collaboration with the relevant
standardization efforts and interested parties us-
ing a fully open process. We will focus in par-
ticular on modular extensions to the specification
for supporting search, tagging, and bulk modifica-
tions. We will also continue to develop and ex-
tend the tools, with emphasis on reversible con-
versions between OA JSON-LD and major re-
lated formats. Except for tagtog, a commercial
tool, all of the tools and resources introduced in
this study are available under open licenses from
http://restoa.github.io/.

8http://www.w3.org/annotation/
9http://annotateit.org/

10http://annotations.dlib.nyu.edu/home/

95



Acknowledgments

This work was in part funded by the Novo
Nordisk Foundation Center for Protein Research
[NNF14CC0001], by the National Institutes of
Health [U54 CA189205-01], by JSPS KAKENHI
[13F03041], and by Quanta Computer Inc.

References
Michael Bada, Miriam Eckert, Donald Evans, Kristin

Garcia, Krista Shipley, Dmitry Sitnikov, William A
Baumgartner, K Bretonnel Cohen, Karin Verspoor,
Judith A Blake, et al. 2012. Concept annotation in
the craft corpus. BMC bioinformatics, 13(1):161.

Janos X Binder, Sune Pletscher-Frankild, Kalliopi
Tsafou, Christian Stolte, Sean I O’Donoghue, Rein-
hard Schneider, and Lars Juhl Jensen. 2014. COM-
PARTMENTS: unification and visualization of pro-
tein subcellular localization evidence. Database,
2014:bau012.

Christian Bizer, Tom Heath, and Tim BernersLee.
2009. Linked Data the story so far. International
Journal on Semantic Web & Information Systems.

Shannon Bradshaw, Dan Brickley, Leyla Jael
Garca Castro, Timothy Clark, Timothy Cole,
Phil Desenne, Anna Gerber, Antoine Isaac, Jacob
Jett, Thomas Habing, et al. 2013. Open annotation
data model (community draft).

Juan Miguel Cejuela, Peter McQuilton, Laura Ponting,
Steven J Marygold, Raymund Stefancsik, Gillian H
Millburn, Burkhard Rost, et al. 2014. tagtog:
interactive and text-mining-assisted annotation of
gene mentions in PLOS full-text articles. Database,
2014:bau033.

Paolo Ciccarese, Marco Ocana, Leyla Jael Garcia-
Castro, Sudeshna Das, and Tim Clark. 2011. An
open annotation ontology for science on web 3.0. J.
Biomedical Semantics, 2(S-2):S4.

Roy T Fielding and Richard N Taylor. 2002. Prin-
cipled design of the modern web architecture.
ACM Transactions on Internet Technology (TOIT),
2(2):115–150.

Francis Galiegue and Kris Zyp. 2013. JSON Schema:
Core definitions and terminology. Internet Engi-
neering Task Force (IETF).

Bernhard Haslhofer, Rainer Simon, Robert Sander-
son, and Herbert Van de Sompel. 2011. The
open annotation collaboration (oac) model. In Proc.
MMWeb’11, pages 5–9.

Jane Hunter and Anna Gerber. 2012. Towards anno-
topiaenabling the semantic interoperability of web-
based annotations. Future Internet, 4(3):788–806.

Nancy Ide and Keith Suderman. 2007. Graf: A graph-
based format for linguistic annotations. In Proc.
LAW’07, pages 1–8.

Nancy Ide, James Pustejovsky, Christopher Cieri, Eric
Nyberg, Denise DiPersio, Chunqi Shi, Keith Su-
derman, Marc Verhagen, Di Wang, and Jonathan
Wright. 2014. The language application grid. Proc.
LREC’14.

Jin-Dong Kim and Yue Wang. 2012. Pubannotation: a
persistent and sharable corpus and annotation repos-
itory. In Proc. BioNLP’12, pages 202–205.

Mitchell Marcus, Grace Kim, Mary Ann
Marcinkiewicz, Robert MacIntyre, Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schas-
berger. 1994. The penn treebank: annotating
predicate argument structure. In Proc. HLT, pages
114–119.

Philip V Ogren. 2006. Knowtator: a protégé plug-
in for annotated corpus construction. In Proc. HLT-
NAACL’06 demos, pages 273–275.

Evangelos Pafilis, Sune Pletscher-Frankild, Lucia
Fanini, Sarah Faulwetter, Christina Pavloudi,
Aikaterini Vasileiadou, Christos Arvanitidis, and
Lars Juhl Jensen. 2014. The SPECIES and OR-
GANISMS resources for fast and accurate identi-
fication of taxonomic names in text. PLoS ONE,
8:e65390.

Sune Pletscher-Frankild, Albert Palleja, Kalliopi
Tsafou, Janos X Binder, and Lars Juhl Jensen. 2015.
DISEASES: Text mining and data integration of
disease-gene associations. Methods, 74:83–89.

Alberto Santos, Kalliopi Tsafou, Christian Stolte,
Sune Pletscher-Frankild, Sean I O’Donoghue, and
Lars Juhl Jensen. 2015. Comprehensive compari-
son of large-scale tissue expression datasets. PeerJ.

Manu Sporny, Dave Longley, Gregg Kellogg, Markus
Lanthaler, and Niklas Lindström. 2014. JSON-LD
1.0: A JSON-based serialization for linked data.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. Brat: a web-based tool for nlp-assisted
text annotation. In Proc. ACL’12 demos, pages 102–
107.

Sofie Van Landeghem, Jari Björne, Chih-Hsuan Wei,
Kai Hakala, Sampo Pyysalo, Sophia Ananiadou,
Hung-Yu Kao, Zhiyong Lu, Tapio Salakoski, Yves
Van de Peer, et al. 2013. Large-scale event extrac-
tion from literature with multi-level gene normaliza-
tion. PLoS ONE, 8(4):e55814.

Karin Verspoor and Kevin Livingston. 2012. Towards
adaptation of linguistic annotations to scholarly an-
notation formalisms on the semantic web. In Proc.
LAW’12, pages 75–84.

Jonathan Wright. 2014. Restful annotation and effi-
cient collaboration. In Proc. LREC’14.

96


