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Abstract

Kernel-based learning algorithms have
been shown to achieve state-of-the-art re-
sults in many Natural Language Process-
ing (NLP) tasks. We present KELP, a Java
framework that supports the implementa-
tion of both kernel-based learning algo-
rithms and kernel functions over generic
data representation, e.g. vectorial data or
discrete structures. The framework has
been designed to decouple kernel func-
tions and learning algorithms: once a new
kernel function has been implemented it
can be adopted in all the available kernel-
machine algorithms. The platform in-
cludes different Online and Batch Learn-
ing algorithms for Classification, Regres-
sion and Clustering, as well as several Ker-
nel functions, ranging from vector-based
to structural kernels. This paper will show
the main aspects of the framework by ap-
plying it to different NLP tasks.

1 Introduction

Most of the existing Machine Learning (ML) plat-
forms assume that instances are represented as
vectors in a feature space, e.g. (Joachims, 1999;
Hall et al., 2009; Chang and Lin, 2011), that must
be defined beforehand. In Natural Language Pro-
cessing (NLP) the definition of a feature space of-
ten requires a complex feature engineering phase.
Let us consider any NLP task in which syntactic
information is crucial, e.g. Boundary Detection in
Semantic Role Labeling (Carreras and Màrquez,
2005). Understanding which syntactic patterns
should be captured is non-trivial and usually the
resulting feature vector model is a poor approxi-

mation. Instead, a more natural approach is oper-
ating directly with the parse tree of sentences. Ker-
nel methods (Shawe-Taylor and Cristianini, 2004)
provide an efficient and effective solution, allow-
ing to represent data at a more abstract level, while
their computation still looks at the informative
properties of them. For instance, Tree Kernels
(Collins and Duffy, 2001) take in input two syntac-
tic parse trees, and compute a similarity measure
by looking at the shared sub-structures.

In this paper, KELP, a Java kernel based learn-
ing platform is presented. It supports the imple-
mentation of Kernel-based learning algorithms, as
well as kernel functions over generic data repre-
sentations, e.g. vectorial data or discrete struc-
tures, such as trees and sequences. The framework
has been designed to decouple data structures, ker-
nel functions and learning algorithms in order to
maximize the re-use of existing functionalities: as
an example, a new kernel can be included inherit-
ing existing algorithms and vice versa. KELP sup-
ports XML and JSON serialization of kernel func-
tions and algorithms, enabling the agile definition
of kernel-based learning systems without writing
additional lines of code. KELP can effectively
tackle a wide variety of learning problems. In par-
ticular, in this paper we will show how vectorial
and structured data can be exploited by KELP in
three NLP tasks: Twitter Sentiment Analysis, Text
Categorization and Question Classification.

2 Framework Overview

KELP is a machine learning library completely
written in Java. The Java language has been cho-
sen in order to be compatible with many Java
NLP/IR tools that are developed by the commu-
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nity, such as Stanford CoreNLP1, OpenNLP2 or
Lucene3. KELP is released as open source soft-
ware under the Apache 2.0 license and the source
code is available on github4. Furthermore it can
be imported via Maven. A detailed documentation
of KELP with helpful examples and use cases is
available on the website of the Semantic Analytics
Group5 of the University of Roma, Tor Vergata.

In this Section, a closer look at the implementa-
tion of different kinds of data representations, ker-
nel functions and kernel-based learning algorithms
is provided.

2.1 Data Representations

KELP supports both vectorial and structured
data to model learning instances. For ex-
ample, SparseVector can host a Bag-of-
Words model, while DenseVector can rep-
resent data derived from low dimensional em-
beddings. TreeRepresentation can model
a parse tree and SequenceRepresentation
can be adopted to represent sequences of charac-
ters or sequences of words. Moreover, the plat-
form enables the definition of more complex forms
of data such as pairs, which are useful in model-
ing those problems where instances can be natu-
rally represented as pairs of texts, such as question
and answer in Q/A re-ranking (Severyn and Mos-
chitti, 2013), text and hypothesis in textual entail-
ment (Zanzotto et al., 2009) or sentence pairs in
paraphrasing detection (Filice et al., 2015).

2.2 Kernels

Many ML algorithms rely on the notion of similar-
ity between examples. Kernel methods (Shawe-
Taylor and Cristianini, 2004) leverage on the
so-called kernel functions, which compute the
similarity between instances in an implicit high-
dimensional feature space without explicitly com-
puting the coordinates of the data in that space.
The kernel operation is often cheaper from a com-
putational perspective and specific kernels have
been defined for sequences, graphs, trees, texts,
images, as well as vectors.

Kernels can be combined and composed to
create richer similarity metrics, where infor-
mation from different Representations can

1
http://nlp.stanford.edu/software/corenlp.shtml

2
https://opennlp.apache.org/

3
http://lucene.apache.org/

4
https://github.com/SAG-KeLP

5
http://sag.art.uniroma2.it/demo-software/kelp/

be exploited at the same time. This flexibil-
ity is completely supported by KELP, which is
also easy to extend with new kernels. Among
the currently available implementations of ker-
nels, there are various standard kernels, such
as LinearKernel, PolynomialKernel or
RbfKernel. A large set of kernels specifically
designed for NLP applications will be described
in the following section.

2.2.1 Kernels for NLP
Many tasks in NLP cannot be properly tackled
considering only a Bag-of-Words approach and re-
quire the exploration of deep syntactic aspects. In
question classification the syntactic information is
crucial has largely demonstrated in (Croce et al.,
2011). In Textual Entailment Recognition or in
Paraphrase Detection a pure lexical similarity be-
tween text and hypothesis cannot capture any dif-
ference between Federer won against Nadal and
Nadal won against Federer. A manual definition
of an artificial feature set accounting for syntax
is a very expensive operation that requires a deep
knowledge of the linguistic phenomena character-
izing a specific task. Moreover, every task has
specific patterns that must be considered, making
a manual feature engineering an extremely com-
plex and not portable operation. How can linguis-
tic patterns characterizing a question be automat-
ically discovered? How can linguistic rewriting
rules in paraphrasing be learnt? How can seman-
tic and syntactic relations in textual entailment be
automatically captured? An elegant and efficient
approach to solve NLP problems involving the us-
age of syntax is provided by tree kernels (Collins
and Duffy, 2001). Instead of trying to design a
synthetic feature space, tree kernels directly oper-
ate on the parse tree of sentences evaluating the
tree fragments shared by two trees. This operation
implicitly corresponds to a dot product in the fea-
ture space of all possible tree fragments. The di-
mensionality of such space is extremely large and
operating directly on it is not viable.

Many tree kernels are implemented in KELP,
and they differ by the type of tree fragment
considered in the evaluation of the matching
structures. In the SubTreeKernel (Collins
and Duffy, 2001) valid fragments are subtrees
(ST), i.e. any node of a tree along with
all its descendants. A subset tree (SST) ex-
ploited by the SubSetTreeKernel is a more
general structure since its leaves can be non-
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Figure 1: a) Constituent parse tree of the sentence
Federer won against Nadal. b) some subtrees. c)
some subset trees. d) some partial trees.

terminal symbols. The SSTs satisfy the con-
straint that grammatical rules cannot be bro-
ken. PartialTreeKernel (Moschitti, 2006)
relaxes this constraint considering partial trees
(PT), i.e. fragments generated by the applica-
tion of partial production rules. Examples of dif-
ferent kinds of tree fragments are shown in Fig-
ure 1. The SmoothedPartialTreeKernel
(SPTK) (Croce et al., 2011) allows to match those
fragments that are not identical but that are se-
mantically related, by relying on the similarity
between lexical items, e.g. by applying a word
similarity metric (e.g. WordNet or word em-
beddings similarities). The adopted implementa-
tion allows to easily extend the notion of simi-
larity between nodes, enabling the implementa-
tion of more expressive kernels, as the Compo-
sitionally Smoothed Partial Tree Kernel (CSPTK)
that embeds algebraic operators of Distributional
Compositional Semantics (Annesi et al., 2014).
Moreover, the SequenceKernel (Bunescu and
Mooney, 2005) is included in the library, and it
allows to compare two texts evaluating the num-
ber of common sub-sequences. This implicitly
corresponds to operate on the space of all possi-
ble N-grams. Kernels operating over pairs, such
as the PreferenceKernel (Shen and Joshi,
2003) for re-ranking, are also included in KELP.

2.3 Machine Learning Algorithms

In ML, a plethora of learning algorithms have
been defined for different purposes, and many

variations of the existing ones as well as com-
pletely new learning methods are often proposed.
KELP provides a large number of learning algo-
rithms6 ranging from batch, e.g. Support Vec-
tor Machines (Vapnik, 1995), to online learning
models, e.g. PassiveAggressive algorithms
(Crammer et al., 2006), and from linear to kernel-
based methods, for tackling classification, regres-
sion or clustering tasks. Moreover, algorithms
can be composed in meta-learning schemas, like
multi-class classification (e.g. One-VS-One and
One-VS-All, (Rifkin and Klautau, 2004)) and
multi-label classification, or can be combined in
ensembles. A simple interface taxonomy allows
to easily extend the platform with new custom
learning algorithms. A complete support for tack-
ling NLP tasks is thus provided. For exam-
ple, in scenarios where the syntactic informa-
tion is necessary for achieving good accuracy,
C-SVM or ν-SVM (Chang and Lin, 2011) oper-
ating on trees with kernels can be effectively ap-
plied. When dealing with large datasets, many
efficient learning algorithm can be adopted, like
linear methods, e.g. Pegasos (Shalev-Shwartz
et al., 2007) or LibLinear, (Fan et al., 2008),
or like budgeted kernel-based algorithms, e.g.
RandomizedPerceptron (Cesa-Bianchi and
Gentile, 2006).

Listing 1: A JSON example.
{"algorithm" : "oneVsAll",
"baseAlgorithm" : {
"algorithm" : "binaryCSvmClassification",
"c" : 10,
"kernel" : {
"kernelType" : "linearComb",
"weights" : [1,1],
"toCombine" : [
{
"kernelType" : "norm",
"baseKernel" : {
"kernelType" : "ptk",
"mu" : 0.4,
"lambda" : 0.4,
"representation" : "parseTree"

}
},
{
"kernelType" : "linear",
"representation" : "Bag-of-Words"

}
]

}
}

}

2.4 A JSON example

Kernel functions and algorithms are serializable in
JSON or XML. This is useful for instantiating a
new algorithm without writing a single line of Java

6All the algorithms are completely re-implemented in
Java and they do not wrap any external library
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code, i.e. the algorithm description can be pro-
vided in JSON to an interpreter that will instantiate
it. Listing 1 reports a JSON example of a kernel-
based Support Vector Machine operating in a one-
vs-all schema, where a kernel linear combination
between a normalized Partial Tree Kernel and a
linear kernel is adopted. As the listing shows ker-
nels and algorithms can be easily composed and
combined in order to create new training models.

3 Case Studies in NLP

In this Section, the functionalities and use of the
learning platform are shown. We apply KELP to
very different NLP tasks, i.e. Sentiment Analysis
in Twitter, Text Categorization and Question Clas-
sification, providing examples of kernel-based and
linear learning algorithms. Further examples are
available on the KELP website7 where it is shown
how to instantiate each algorithm or kernel via
JSON and how to add new algorithms, represen-
tations and kernels.

3.1 Sentiment Analysis in Twitter
The task of Sentiment Analysis in Twitter has been
proposed in 2013 during the SemEval competi-
tion (Nakov et al., 2013). We built a classifier
for the subtask B, i.e. the classification of a tweet
with respect to the positive, negative and neutral
classes. The contribution of different kernel func-
tions is evaluated using the Support Vector Ma-
chine learning algorithm. As shown in Table 1, we
apply linear (Lin), polynomial (Poly) and Gaus-
sian (Rbf) kernels on two different data represen-
tations: a Bag-Of-Words model of tweets (BoW )
and a distributional representation (WS). The
last is obtained by linearly combining the distri-
butional vectors corresponding to the words of a
message; these vectors are obtained by applying a
Skip-gram model (Mikolov et al., 2013) with the
word2vec tool8 over 20 million of tweets. The lin-
ear combination of the proposed kernel functions
is also applied, e.g. PolyBow+RbfWS . The mean
F1-measure of the positive and negative classes
(pn)9 as well as of all the classes (pnn) is shown
in Table 1.

3.2 Text Categorization
In order to show the scalability of the platform,
a second evaluation considers linear algorithms.

7
http://sag.art.uniroma2.it/demo-software/kelp/

8
https://code.google.com/p/word2vec/

9pn was the official metric of the SemEval competition.

Kernel MeanF1(pn) MeanF1(pnn)
LinBoW 59.72 63.53
PolyBoW 54.58 59.27
LinWS 60.79 63.94
RbfWS 61.68 65.05
LinBoW +LinWS 66.12 68.56
PolyBoW +RbfWS 64.92 68.10

Table 1: Results of Sentiment Analysis

We selected the Text Categorization task on the
RCV1 dataset (Lewis et al., 2004) with the setting
that can be found on the LibLinear website10. In
this version of the dataset, CCAT and ECAT are
collapsed into a positive class, while GCAT and
MCAT are the negative class, resulting in a dataset
composed by 20, 242 examples. As shown in Ta-
ble 2, we applied the LibLinear, Pegasos and Lin-
ear Passive-Aggressive implementations, comput-
ing the accuracy and the standard deviation with
respect to a 5-fold cross validation strategy.

Task Accuracy Std
LibLinear 96.74% 0.0029
Pegasos 95.31% 0.0033
Passive Aggressive 96.60% 0.0024

Table 2: Text Categorization Accuracy

3.3 Question Classification

The third case study explores the application of
Tree Kernels to Question Classification (QC), an
inference task required in many Question Answer-
ing processes. In this problem, questions writ-
ten in natural language are assigned to different
classes. A QC system should select the correct
class given an instance question. In this setting,
Tree Kernels allow to directly model the examples
in terms of their parse trees. The reference cor-
pus is the UIUC dataset (Li and Roth, 2002), in-
cluding 5,452 questions for training and 500 ques-
tions for test11, organized in six coarse-grained
classes, such as HUMAN or LOCATION. Again,
Kernel-based SVM has been evaluated adopting
the same setup of (Croce et al., 2011). A pure lex-
ical model based on a linear kernel over a Bag-of-
Words (BoW) is considered a baseline. The con-
tribution of the syntactic information is demon-
strated by the results achieved by the Partial Tree
Kernel (PTK), the Smoothed Partial Tree Kernels
(SPTK) and the Compositionally Smoothed Par-
tial Tree Kernel (CSPTK), as shown in Table 3.

10
http://www.csie.ntu.edu.tw/∼cjlin/

libsvmtools/datasets/
11
http://cogcomp.cs.illinois.edu/Data/QA/QC/
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Kernel Accuracy
BoW 87.2%
PolyBoW 88.8%
PTK 91.6%
SPTK 94.6%
CSPTK 95.0%

Table 3: Question Classification Accuracy.

4 Related Work

Many software tools for computational linguis-
tic research already exist. Tools like Stan-
ford CoreNLP or OpenNLP provide a complete
pipeline for performing linguistic tasks such as
stemming, lemmatization, Part-of-Speech tagging
or parsing. They are complementary to KELP:
they can be used in the feature extraction phase,
while KELP will care about the machine learning
part. Regarding other machine learning platforms
there are plenty of available possibilities, but for
different reasons no one can provide something
close to what the proposed library offers.

Weka (Hall et al., 2009) is a collection of ma-
chine learning algorithms for data mining tasks.
The algorithms can either be applied directly to
a dataset or called from Java. It contains vari-
ous tools for different data mining activities: data
pre-processing, classification, regression, cluster-
ing and visualization.

Mallet (McCallum, 2002) is more oriented to
NLP applications. It is entirely in Java and in-
cludes feature extraction tools for converting text
into vectors and statistical analysis tools for docu-
ment classification, clustering, topic modeling, in-
formation extraction, and other machine learning
applications to text. Regarding the kernel-based
learning both Weka and Mallet leverage on Lib-
SVM, and obviously inherit its limits.

LibSVM (Chang and Lin, 2011) is a machine
learning platform focusing on Support Vector Ma-
chines. It is written in C++ language and it
includes different SVM formulations: C-svm,
Nu-svm and OneClass-svm, as well as a one-
vs-one multi classification schema. It implements
also regression support vector solvers. It has been
ported in different languages, including Java. The
batch learning part of KELP is strongly inspired
by LibSVM formulations and implementations.
LibSVM is mainly intended for plain users and
does not provide any support for extendibility. It
can operate only on sparse feature vectors via stan-
dard kernel functions. No structured representa-
tions are considered.

Another very popular Support Vector Machines
(SVM) package is SvmLight (Joachims, 1999). It
is entirely written in C language and its main fea-
ture is speed. It solves classification and regres-
sion problems, as well as ranking problems. Its
efficiency is paid in terms of extensibility: C lan-
guage does not allow a fast prototyping of new ma-
chine learning kernels or algorithms. Many times
in research contexts fast prototyping is more im-
portant than performances: the proposed platform
has been developed with extensibility in mind.

The most similar platform to ours is JKernel-
Machines (Picard et al., 2013). It is a Java based
package focused on Kernel machines. Just like the
proposed library, JKernelMachines is primary de-
signed to deal with custom kernels that cannot be
easily found in standard libraries. Standard SVM
optimization algorithms are implemented, but also
more sophisticated learning-based kernel combi-
nation methods such as Multiple Kernel Learn-
ing (MKL). However, many features covered by
KELP are not offered by JKernelMachines, just
like tree kernels, regression and clustering. More-
over, different architectural choices have been ap-
plied in KELP in order to support an easier com-
position and combination of representations, ker-
nels as well as learning algorithms.

5 Conclusions

This paper presented KELP, a Java framework
to support the application of Kernel-based learn-
ing methods with a particular attention to Lan-
guage Learning tasks. The library implements a
large variety of kernel functions used in NLP (such
as Tree Kernels or Sequence Kernels) as well as
many learning algorithms useful in classification,
regression, novelty detection or clustering prob-
lems. KELP can be imported via Maven but its
usage is not restricted to a Java-compliant environ-
ment as it allows to build complex kernel machine
based systems, leveraging on JSON/XML inter-
faces to instantiate classifiers. The entire frame-
work has been designed to support researchers in
the development of new kernel functions or algo-
rithms, providing a principled decoupling of the
data structures in order to maximize the re-use of
existing functionalities. The benefits of the pro-
posed environment have been shown in three NLP
tasks, where results in line with the state-of-the-art
have been reached with the simple application of
various kernel functions available in KELP.
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